纳米膜的制备方法PPT演示文稿

合集下载

光电纳米薄膜的制备课件

光电纳米薄膜的制备课件

4
1.基片架和加热器
5
2. 蒸发料释出的气体
3. 蒸发源 4. 挡板 5. 真空泵 6. 解吸的气体 7.
基片 8. 钟罩
加热方式
螺旋式
电阻加热法
锥形蓝式 舟式
电子轰击加热法
高频感应加热法
辐射加热法
悬浮加热法
2.1.3 Ag-BaO光电薄膜真空沉积制备法
2
34
5
1
11
10
9
1、导轨;2、Ba源;3、样品管 4、正电极;5、Ag源;6、导轨 7、机械泵;8、扩散泵;9、O2源 8 10、沉积薄膜;11、负电极
引言
物理气相沉积(PVD)
真空沉积 离子镀法 离子团束(ICB)
分子束外延(MBE)
化学气相沉积(PVD)
其他
脉冲激光气相沉 积(PLD)
溶胶-凝胶(SolGel)
电沉积
金属有机化学气相沉积 (MOCVD)
微波回旋电子共振化学气 相沉积(MV-ECR-CVD)
直流电弧等离子体喷射法
触媒化学气相沉积(CarCVD)
在层状-岛状中间生长模式中,在最开始一两个原子层厚度 的层状生长之后,生长模式转化为岛状模式。导致这种模式 转变的物理机制比较复杂,但根本的原因应该可以归结为薄 膜生长过程中各种能量的相互消长。
薄膜材料自身相互作用力的大小和薄膜材料原子与基底原子 的相互作用力的大小。
2.4影响薄膜生长和性能的一些因素
大。
原子团中原子间的键能
临界核所 需要原子
数量
原子团中原子与基底原子间的键能 环境条件,如温度、气相等
2.3.3薄膜的形成
一旦大于临界核心尺寸的小岛形成,它接受新的原子而逐渐 长大,而岛的数目则很快达到饱和。小岛像液珠一样互相合 并而扩大,而空出的衬底表面上又形成了新的岛。形成与合 并的过程不断进行,直到孤立的小岛之间相互连接成片,一 些孤立的孔洞也逐渐被后沉积的原子所填充,最后形成薄膜。

纳米薄膜的制备方法 PPT

纳米薄膜的制备方法 PPT

什麼是乳化聚合?
在乳化剂(表面活性剂)存在下,将单体分散于水中,此时 溶液呈乳液状,再加入水溶的引发剂进行聚合反应。
1. 合成聚苯乙烯核。
HMEM: 2-[p-(2-Hydorxy-2-methylpropiphenone)]ethyleneglycol
2. 於核外面覆蓋一層光起始劑-HMEM。 3. 用UV光照射溶液中的粒子,開始行光乳化聚合。
真空溅射室及氮气等离子体辉光放 电图
大家有疑问的,可以询问和交流
可以互相讨论下,但要小声点
3 化学气相沉积法 (CVD) 利用含有方法。
特点: CVD技术可以通过精确控制反应温度 和反应时间来控制晶粒的大小,从而获得纳米 复合薄膜材料。
方法: ① 直流溅射:溅射沉积各类金 属 薄膜 ② 射频溅射:溅射沉积非金属材 料(导电性差) ③ 磁控溅射:提高沉积速率 ④ 反应溅射:在溅射过程中实 现物 质之间的化学反应制备所需 要 的物质薄膜。
本实验采用射频磁控溅射法在石 英衬 底上沉积ZnO(靶材)薄膜 。
磁控溅射就是以磁场束缚和延长电子的运动路径,改 变电子的运动方向,提高工作气体的电离率和有效利 用电子的能量。
HO Si OH
Cl
OH
X
X
adsorption
XX
H
HO Si O O Si OH
OH H
H
OH H
O
O
substrate
-H2O
polymerization
O Si Si
O
O
s u b s tra te
翟怡、张金利等,化学进展,2004,16(4):477-484
电子在加速的过程中受到磁场洛仑兹力的作用,被束 缚在靠近靶面的等离子体区域内。

(2021)纳米薄膜材料的制备完美版PPT

(2021)纳米薄膜材料的制备完美版PPT
8
优缺点:
分子束外延法的优点是:生长温度底,能把诸如扩
散这类不希望出现的热激活过程减少到最低;生长速率慢
,外延层厚度可以精确控制,生长表面或界面可以达到原
子级光滑度,因而可以制备极薄的薄膜;超高真空下生长
,与溅射方法相比更容易进行单晶薄膜生长,并为在确定
条件下进行表面研究和外延生长机理的研究创造了条件;
用化学气相沉积法可以制备几乎所有的金属,氧化物、氮化物、碳化合物、复合氧化物等膜材料。
大,有利于在气敏、湿敏及催化方面的应用,可能会使气 纳米材料由于其特殊的性质,近年来引起人们极大的关注。
化学气相沉积是迄今为止气相法制备纳米材料应用最为广泛的方法,该方法是在一个加热的衬底上,通过一种或几种气态元素或化合
技术的发展,由此衍生出来的许多新技术,如金属有机化
学缺陷相沉积、热丝化学气相沉积、等离子体辅助化学气
相沉积、等离子体增强化学气相沉积及激光诱导化学气相
沉积等技术。
化学气相沉积法是纳米薄膜材料制备中使用最多的
一种工艺,广泛应用于各种结构材料和功能材料的制备。
用化学气相沉积法可以制备几乎所有的金属,氧化物、氮
纳米薄膜材料的制备
概述:
纳米材料由于其特殊的性质,近年来引起人们极大 的关注。随着纳米科技的发展,纳米材料的制备方法已日 趋成熟。纳米技术对21世纪的信息技术、医学、环境、自 动化技术及能源科学的发展有重要影响,对生产力的发展 有重要作用。
2
按原理可分为:
化学方法
1.化学气相沉积(CVD); 2.溶胶-凝胶(Sol-Gel)法;
生长的薄膜能保持原来靶材的化学计量比;可以把分析测
试设备,如反射式高能电子衍射仪、四极质谱仪等与生长
系统相结合以实现薄膜生长的原位监测。

纳米薄膜材料制备技术

纳米薄膜材料制备技术

纳米薄膜材料制备技术(2007-05-15 16:13:27)转载▼纳米薄膜分为两类:一类是由纳米粒子组成(或堆砌而成)的薄膜,另一类是在纳米粒子间有较多的孔隙或无序原子或另一种材料。

纳米粒子镶嵌在另一基体材料中的颗粒膜就属于第二类纳米薄膜。

纳米薄膜的制备方法按原理可分为物理方法和化学方法两大类,按物质形态主要有气相法和液相法两种。

1、物理方法:1)、真空蒸发(单源单层蒸发;单源多层蒸发;多源反应共蒸发)2)、磁控溅射3)、离子束溅射(单离子束(反应)溅射;双离子束(反应)溅射;多离子束反应共溅射)4)、分子束外延(MBE)2、化学方法:1)化学气相沉积(CYD):金属有机物化学气相沉积;热解化学气相沉积;等离子体增强化学气相沉积;激光诱导化学气相沉积;微波等离子体化学气相沉积。

2)溶胶-凝胶法3)电镀法3.2.1物理气相沉积法物理气相沉积(PVD)方法作为一类常规的薄膜制备手段被广泛地应用于纳米薄膜的制备与研究工作中,PVD包括蒸镀、电子束蒸镀、溅射等。

2分子束外延。

以蒸镀为基础发展起来的分子束外延技术和设备,经过十余年的开发,近年来已制备出各种Ⅲ—V族化合物的半导体器件。

外延是指在单晶基体上生长出位向相同的同类单晶体(同质外延),或者生长出具有共格或半共格联系的异类单晶体(异质外延)。

目前分子束外延的膜厚控制水平已经达到单原子层,甚至知道某一单原子层是否已经排满,而另一层是否已经开始生长。

3.溅射制膜溅射制膜是指在真空室中,利用荷能粒子轰击靶材表面,使被轰击出的粒子在基片上沉积的技术。

溅射镀膜有两种。

一种是在真空室中,利用离子束轰击靶表面,使溅射击的粒子在基片表面成膜,这称为离子束溅射。

离子束要由特制的离子源产生,离子源结构较为复杂,价格较贵,只是在用于分析技术和制取特殊的薄膜时才采用离子束溅射。

另一种是在真空室中,利用低压气体放电现象,使处于等离子状态下的离子轰击靶表面,并使溅射出的粒子堆积在基片上溅射制膜溅射制膜是指在真空室中,利用荷能粒子轰击靶材表面,使被轰击出的粒子在基片上沉积的技术。

纳米薄膜的制备方法31页PPT

纳米薄膜的制备方法31页PPT
55、 为 中 华 之 崛起而 读书。 ——周 恩来
纳米薄膜的制备方法
16、人民应该为法律而战斗,就像为 了城墙 而战斗 一样。 ——赫 拉克利 特 17、人类对于不公正的行为加以指责 ,并非 因为他 们愿意 做出这 种行为 ,而是 惟恐自 己会成 为这种 行为的 牺牲者 。—— 柏拉图 18、制定法律法令,就是为了不让强 者做什 么事都 横行霸 道。— —奥维 德 19、法律是社会的习惯和思想的结晶 。—— 托·伍·威尔逊 20、人们嘴上挂着的法律,其真实含 义是财 富。— —爱献 生
谢谢!
51、 天 下 之 事 常成 于困约 ,而败 于奢靡 。——陆 游 52、 生 命 不 等 于是呼 吸,生 命是活 动。——卢 梭
53、 伟 大 的 事 业,需 要决心 ,能力 ,组织 和责任 感。——乔 特

纳米薄膜的制备方法

纳米薄膜的制备方法

五 纳米粒子的性质与应用
纳米粒子表面因其形态而不同,表面活性 和表面能也很高,能有效活化烧结。在烧 结陶瓷时,加入AlN纳米粉可提高烧结体密 度和导热率。 纳米粒子因表面活性中心多而催化效果好, 此外,纳米粒子还可作磁性材料,其性能 依赖于粒子尺寸及其表面。
六 纳米粉体材料表面研究进展
实际生产中,纳米材料表面修饰技术严重 地影响了纳米材料在高分子,如:塑料、 合成纤维方面的应用。由于纳米粉体颗粒 表面与高分子材料之间的相容性问题还没 解决,纳米颗粒没有达到纳米级分散等。
真空溅射原理及方法

方法: ① 直流溅射:溅射沉积各类金 属 薄膜 ② 射频溅射:溅射沉积非金属材 料(导电性差) ③ 磁控溅射:提高沉积速率 ④ 反应溅射:在溅射过程中实 现物 质之间的化学反应制备所需 要 的物质薄膜。 本实验采用射频磁控溅射法在石 英衬 底上沉积ZnO(靶材)薄膜 。
射频溅射沉积装置示意图
五 纳米碳管制备技术
1 2 3 4 石墨电弧放电法 化学气相沉积法(CVD)(催化裂解法) 激光蒸发(烧蚀)法 太阳能法
第三节 纳米材料表面修饰和改性
一 纳米粉体表面结构及状态 二 纳米粉体的表面及其形貌 三 纳米粉体材料的制造方法及其对表面状态 的影响 (1)机械粉碎法及其纳米粉的表面特点 (2)化学法及其纳米粉的表面特点
四 纳米颗粒表面修饰和改性方法
(1)高分子材料对表面进行包覆 如:纳米药物磁粒子载体 (2) 偶联剂与纳米粒子表面反应,强化纳 米粒子与高分子材料的相容性,如:有机 硅偶联剂 (3)无机材料对纳米粒子进行包覆,有效解 决纳米颗粒的单分散性,如:纳米二氧化 钛粉末中加入锆的盐溶液,可得到包覆一 层二氧化锆的纳米二氧化钛粒子
二 纳米薄膜的制备方法

纳米技术资料PPT演示文稿

纳米技术资料PPT演示文稿
例如:纳米Cu膜的制备 将硝酸铜Cu(NO3)2·3H2O和正硅酸乙脂与
乙醇混合形成溶胶,用玻璃(SiO2)衬板浸入溶 胶后进行提拉(提拉速度<10-1mm/s),再在 100℃温度下干燥成膜,经过450~650℃氢气中 还原处理100分钟左右,就可以获得纳米Cu膜。
纳米科技
3
溶胶-凝胶法
优缺点:
如果把两亲媒性平衡的物质溶于苯、二氯甲烷 等挥发性溶剂中,并把该溶液分布于水面上,待 溶剂挥发后,就留下了垂直站立在水面上的定向 单分子膜,这种在水面上的单分子,上端呈亲油 性(疏水性),下端呈亲水性。
返回
纳米科技
5
磁控溅射法
磁控溅射是溅射镀膜中的一种,所谓溅射是 指荷能粒子轰击固体表面(靶),使固体原子 (或分子)从表面射出,射出的粒子大多呈原子 态,称为溅射原子。用于轰击靶的荷能粒子可以 是电子、离子或中性粒子,因为离子可以在电场 下易于加速并获得所需动能,因此大多采用离子 作轰击粒子,该粒子又称入射离子。所以溅射镀 膜又称离子溅射镀膜。
纳米科技
15
LB膜的特点
❖ 超薄且厚度可准确控制,因此这种纳米薄膜 可满足现代电子学器件(纳电子器件)和光学 器件的尺寸要求。 ❖ 膜中分子排列高度有序且各向异性,使之 可根据需要设计,便于实现分子水平上的组装。
❖ 制膜条件温和,操作简便。
纳米科技
16
LB膜的制备
能形成LB膜的材料,大都是表面活性分子,即 两亲分子。若两亲分子材料两者平衡,即称为 “两亲媒性平衡”,该材料就会吸附于水-气界面。
纳米科技
6
磁控溅射法
为了克服成
膜速度低的缺点,
人们设计了磁控
溅射镀膜,在溅
射靶与基片之间

纳米薄膜的制备方法

纳米薄膜的制备方法

原子力显微镜(FM):测量纳米薄膜的 表面形貌和厚度
拉曼光谱(Rmn):分析纳米薄膜的化 学组成和结构
扫描电子显微镜(SEM):观察纳米薄 膜的表面形貌和结构
X射线光电子能谱(XPS):分析纳米薄 膜的化学组成和元素价态
透射电子显微镜(TEM):观察纳米薄 膜的微观结构
电子探针(EPM):分析纳米薄膜的元 素分布和化学组成
纳米薄膜在电子、光学、生物 医学等领域的应用将越来越广 泛
纳米薄膜的性能将不断提高如 提高薄膜的导电性、光学性能

纳米薄膜的制备技术将更加环 保如采用绿色化学方法制备薄

应用领域:纳米 薄膜在电子、光 学、生物医学等 领域具有广泛的 应用前景
技术进步:随着 科技的发展纳米 薄膜的制备技术 将不断进步提高 产品质量和性能
纳米薄膜在电子、光学、生物医学 等领域具有广泛的应用前景
纳米薄膜在环境保护、能源储存、 生物医药等领域具有潜在的应用前 景
添加标题
添加标题
添加标题
添加标题
纳米薄膜在太阳能电池、LED照明、 生物传感器等领域具有重要的应用 价值
纳米薄膜在航空航天、国防军工等 领域具有重要的战略意义
纳米薄膜的制备方法将更加多 样化如化学气相沉积、溶液浸 渍等
X射线衍射:通过X射线衍射可以确定晶体的晶系、晶胞参数、 晶面间距等
电子衍射:通过电子衍射可以确定晶体的晶系、晶胞参数、晶 面间距等
透射电子显微镜:通过透射电子显微镜可以观察晶体的微观结 构
扫描电子显微镜:通过扫描电子显微镜可以观察晶体的表面形 貌和结构
拉曼光谱:通过拉曼光谱可以确定晶体的晶系、晶胞参数、晶 面间距等
原理:通过化学反应将金属离子或金属氧化物转化为纳米颗粒再通过溶剂蒸发或热处理 形成纳米薄膜
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10
• 真空蒸发沉积的过程:
• 1. 蒸发源物质由凝聚相转变为气相; • 2.在蒸发源与基片之间蒸发粒子的输
运;
• 3. 蒸发粒子到到基片后凝结、成核、
长大、成膜
11
• 采用真空沉积镀膜技术,在玻璃
表面形成纳米级微孔结构的二氧化钛 光催化薄膜,在阳光的作用下,产生 电子空穴对,以其特有的强氧化能力, 将玻璃表面的几乎所有的有机物完全 氧化并降解为相应的无害无机物,在 雨水冲刷下便可自洁,从而对环境不 会产生二次污染,同时使玻璃表面具 有超亲水性,从而使玻璃表面具有自 洁、防雾和不易被再被污染的功能。
纳米薄膜材料的制备
• 1.模板法 • 2.分子束外延法 • 3.真空蒸发法 • 4.化学气相沉积法 • 5.其他方法
1
1.模板法合成纳米薄膜 • 纳米颗粒的形成一般可分为两个阶
段:
• 第一是晶核的生成。 • 第二是晶核的长大。
2
• 要制备粒径均匀,结构相同的
纳米颗粒,相当于让烧杯中天文数 字的原子同时形成大小一样的晶核, 并且同时长大到相同的尺寸。因此 为了得到尺寸可控,无团聚的纳米 颗粒,必须找到有效的“窍门”, 来干预化学反应的过程。
3
4
5
2.分子束外延法
• 分子束外延(MBE)技术主要是一种
可以在原子尺度上精确控制外延厚度、 掺杂和界面平整度的超薄层薄膜制备 技术。
• 所谓“外延”就是在一定的单晶体材
料衬底上,沿着衬底的某个指数晶面 向外延伸生长一层单晶薄膜。
6
• 分子束外延是在超高真空条件下,
精确控制原材料的分子束强度,把 分子束射入被加热的底片上而进行 外延生长的。由于其蒸发源、监控 系统和分析系统的高性能和真空环 境的改善,能够得到极高质量的薄 膜单晶体。
15
• 由PaulaHammond教
授负责的美国工程师 学会称他们已经通过 一种新的燃料电池薄 膜把燃料电池的功率 提高了50%之多。
16
12
13
4.化学气相沉积法
• 化学气相沉积(CVD,chemical
vapor deposition)是利用气态的先 驱反应物,通过原子、分子间发生热 分解、还原或其他化学反应的途径生 成固态薄膜的技术。
14
• 化学气相沉积法按照激发源的不同
又可分为高温气相裂解法、激光辅 助化学气相沉积法、等离子体辅助 化学气相沉积法等。萦 绕着神秘气 息的连绵雪 山。
8
• 硅柱与硅线
结合,宛如
石林,突兀
参差,千姿
百态。
9
3.真空蒸发法
真空蒸发法沉积纳米薄膜的原理:
• 在真空环境下,给待蒸发物提供足
够的热量以获得蒸发所必需的蒸气 压,在适当的温度下,蒸发粒子在 基片上凝结,实现真空蒸发薄膜沉 积。
相关文档
最新文档