非晶硅虽然是一种很好的电池材料

合集下载

非晶电极材料

非晶电极材料

非晶电极材料
非晶电极材料是一类具有非晶结构的电极材料,其具有高电导率、较高的化学稳定性和优良的机械性能等特点,被广泛应用于电化学储能、传感器、电解池等领域。

目前,非晶电极材料主要包括非晶碳、非晶硅、非晶锂镍钴锰酸盐等种类。

其中,非晶碳是最常用的非晶电极材料之一,它具有高比表面积、优良的导电性能和化学稳定性,广泛应用于超级电容器、锂离子电池等领域。

非晶硅作为一种新型电极材料,其具有高容量、高稳定性和长寿命等优点,正在成为新一代高性能锂离子电池的研究热点。

非晶锂镍钴锰酸盐作为一种新型正极材料,具有高能量密度、长循环寿命和低成本等优点,被广泛应用于电动汽车、储能电池等领域。

未来,随着技术的不断发展,非晶电极材料将在新能源领域、可穿戴设备等领域发挥更加重要的作用。

- 1 -。

太阳能电池的研究进展

太阳能电池的研究进展
子,使其 HO MO 轨道上 的一个 电子跃迁到 L UMO。通常由于给体 L uMO 的电离势 比受 体L UMO 的电离势低, 电子就由给 体转移到 受体,完成 了电子的转移 。激子 分离后产生 的 电子 和 空 穴 向 相 反 的 方 向运 动 , 被 收 集 在 相 应 的 电 极上 ,就 形 成 了光 电压 。
要地位 。
太阳能 电池 发电是根据 爱因斯坦 的光 电 效应 ;值得 注意的是光 电效应 于射线 的强度 大小无关 ,只有 频率达 到或超 越可产生光 电 效应 的阈值 时, 电流才 能产 生 。能够使半 导 体产生光 电效应 的光 的最大波 长同该半导体 的禁带宽度相 关,譬如 晶体硅 的禁带 宽度在 室 温 下约 为 1 . 1 5 5 e V,因 此必 须 波 长 小 于 1 1 0 0 n m 的光 线才可 以使 晶体 硅产 生光 电效 应 。太 阳电池是一种可 以将太 阳能转换 的光 电元件,其基本构造是运用 P型 与 N 型半导 体接合而成的。 半 导体最基本的材料是 “ 硅” , 它是不导 电的,但如果在半 导体中掺入不 同 的杂质,就可以做成 P型与 N 型半导体,再 利用 P型半导体有个电子空穴与 N 型半导体 多 了一个 自由 电子的 电位差 来产生 电流 ,所 以当太 阳光照射时 ,光 能将 硅原子 中的电子 激发 出来 ,而产生 电子和 空穴 的对流 ,这 些 电子和空 穴均会受到 内建 电位的影响 ,分 别 被 N型及 P型半导体吸引 ,而聚集在两端。 此 时外 部如果用 电极连 接起 来 ,形成 一个 回 路 ,这就是太阳电池发 电的原理 。
的光致衰退 s . W 憨应 , 使得电池性能不稳定 。 3 、有机 化合物太 阳能电池
有机 太阳能 电池 利用的也是光 伏效应 。 有机太阳 能电池 在太阳光 的照射 下有机材料 吸收光子 ,如果 该光 子的能量大 于有机 材料 的禁带宽度 E 譬就会使得产生激 子。如图三就

非晶硅太阳电池分类

非晶硅太阳电池分类

非晶硅太阳电池分类非晶硅太阳电池是一种新型的太阳能电池,也被称为非晶硅薄膜太阳能电池。

它是利用非晶硅材料制成的薄膜,通过吸收太阳光的能量来产生电流,从而转化为可用的电能。

非晶硅太阳电池具有高效能转换、柔性和轻便等特点,被广泛应用于太阳能光伏发电领域。

非晶硅太阳电池主要分为非晶硅薄膜太阳电池和非晶硅多晶太阳电池两种类型。

非晶硅薄膜太阳电池是将非晶硅薄膜沉积在透明导电玻璃基板上制成的,它具有较高的光吸收能力和较高的光电转换效率。

非晶硅多晶太阳电池则是将非晶硅薄膜沉积在多晶硅基底上制成的,它能够在相对较低的光照条件下产生较高的电流输出。

非晶硅太阳电池相比于传统的结晶硅太阳电池具有以下几个优点。

首先,非晶硅薄膜太阳电池可以在室温下制备,而结晶硅太阳电池需要高温制备,因此非晶硅太阳电池的制备成本更低。

其次,非晶硅太阳电池具有较高的光吸收能力,可以在较低的光照条件下产生较高的电流输出。

此外,非晶硅太阳电池可以制成柔性的薄膜形式,可以用于制作柔性太阳能电池板,具有更广阔的应用前景。

非晶硅太阳电池的工作原理是光吸收-电荷分离-电流输出。

当太阳光照射到非晶硅薄膜上时,光子的能量被吸收并转化为电子的能量。

这些电子被激发到导带中,并在电场的作用下形成电流。

同时,光生电子和空穴的复合过程也会发生,这使得非晶硅太阳电池的光电转换效率相对较低。

为了提高非晶硅太阳电池的效率,可以采用掺杂和多层结构等方法进行优化。

非晶硅太阳电池的应用领域非常广泛。

首先,它可以应用于家庭和商业建筑的太阳能光伏发电系统中,用于发电和供电。

其次,非晶硅太阳电池还可以用于太阳能充电器、太阳能通信设备等小型电子设备中,为这些设备提供可再生的电能。

此外,非晶硅太阳电池还可以应用于太阳能电池板、太阳能路灯等领域,为城市提供清洁的能源。

非晶硅太阳电池是一种高效能转换、柔性和轻便的太阳能电池。

它具有较高的光吸收能力和较高的光电转换效率,可以在室温下制备,制备成本较低。

非晶硅太阳电池

非晶硅太阳电池

非晶硅太阳电池非晶硅太阳电池,也被称为非晶硅薄膜太阳电池,是一种利用非晶硅材料制成的光伏电池。

非晶硅太阳电池具有柔性、轻薄和低造价等优点,适用于一些特殊场合和应用领域。

本文将从非晶硅材料的特性、非晶硅太阳电池的结构和工作原理、非晶硅太阳电池的优缺点以及应用领域等方面进行详细介绍。

非晶硅是一种非晶态的硅材料,其原子结构杂乱无序,与晶体硅相比,非晶硅具有更高的能量转换效率和更低的制造成本。

非晶硅太阳电池通常由玻璃或塑料基底、透明导电薄膜、非晶硅光伏层、背电极和接线等部分组成。

非晶硅太阳电池使用非晶硅材料作为光伏层,其中掺杂了少量的杂质元素,使得材料具有较高的光电转换效率。

非晶硅太阳电池的工作原理主要基于光伏效应,即光子入射到非晶硅光伏层上后被吸收,释放出电子和空穴,并在电场的作用下分别流向背电极和透明导电薄膜,从而形成电流。

非晶硅太阳电池的光伏转换效率与光伏层的材料性能、光伏层的厚度、非晶硅材料的电学性质等因素密切相关。

非晶硅太阳电池具有以下优点:首先,非晶硅太阳电池可以制备成柔性和轻薄的结构,适应各种复杂的曲面和形状,具有更广阔的应用空间;其次,非晶硅太阳电池的制造成本较低,生产工艺简单,可以实现大规模生产和应用;此外,非晶硅太阳电池在低光强和低温环境下具有较高的光电转换效率,适用于一些特殊应用领域。

然而,非晶硅太阳电池也存在一些缺点:首先,非晶硅太阳电池的光电转换效率相比于其他材料的太阳电池要低一些;其次,非晶硅太阳电池对光强和温度的变化较为敏感,在高温和强光环境下效果较差;另外,非晶硅太阳电池的使用寿命较短,一般在10年左右。

非晶硅太阳电池在一些特殊领域有广泛应用。

例如,在电子设备领域,非晶硅太阳电池可以用于制备柔性和可折叠的光伏电池组件,为电子设备提供可持续的电力;在建筑领域,非晶硅太阳电池可以嵌入到建筑材料中,如玻璃幕墙、屋顶瓦片等,实现建筑一体化太阳能利用;此外,非晶硅太阳电池还可以应用于一些便携式充电设备、户外太阳能供电系统等领域。

太阳能电池材料的种类、原理和特点

太阳能电池材料的种类、原理和特点

太阳能电池是一种将太阳能直接转换为电能的装置,它是太阳能光伏发电系统的核心部件之一。

太阳能电池材料的种类、原理和特点是影响太阳能电池性能和应用领域的关键因素。

本文将围绕这一主题展开讨论,以便为读者深入了解太阳能电池提供全面的了解。

一、太阳能电池材料的种类太阳能电池材料可以分为晶体硅、非晶硅、多晶硅、柔性薄膜电池材料等几种主要类型。

1. 晶体硅晶体硅是太阳能电池最常用的材料之一,它主要由单晶硅和多晶硅两种类型,其中单晶硅的电池效率较高,但成本较高,多晶硅则相对便宜一些。

2. 非晶硅非晶硅是一种非晶态材料,是将硅薄片进行涂覆和烧结而成的,其电池效率较低,但成本较低,适合一些需要成本控制的应用场景。

3. 多晶硅多晶硅电池是利用多晶硅片制成,其性价比相对较高,广泛应用于家用光伏电站和商业光伏电站中。

4. 柔性薄膜电池材料柔性薄膜电池是一种新型的太阳能电池材料,主要由非晶硅材料、铜铟镓硒等化合物材料制成,具有柔性、轻薄、便于携带等优点,是未来太阳能电池发展的方向。

二、太阳能电池材料的原理太阳能电池是利用光电效应将太阳能直接转换为电能的装置。

不同类型的太阳能电池材料有着不同的工作原理。

1. 晶体硅晶体硅太阳能电池的工作原理是通过P-N结构实现的。

当太阳光照射在P-N结上时,光子的能量被硅中的电子吸收并激发,使得电子跃迁到导带中,形成光生电子和空穴。

这些光生电子和空穴会在P-N结的作用下分离,从而形成电流,从而实现将太阳能光能转化为电能。

2. 非晶硅非晶硅太阳能电池利用非晶硅薄膜吸收太阳光的能量,并将其转化为电能。

其工作原理与晶体硅相似,但非晶硅的材料结构不规则,电子的运动方式也有所不同。

3. 柔性薄膜电池材料柔性薄膜电池材料利用非晶硅、铜铟镓硒等化合物材料,通过薄膜沉积技术将材料制备成薄膜,实现光伏效应的转化工作原理与晶体硅和非晶硅类似,通过材料的光电转换将太阳光能转换为电能。

三、太阳能电池材料的特点不同种类的太阳能电池材料各有其独特的特点和适用场景。

单晶硅、多晶硅、非晶硅三种太阳能电池介绍

单晶硅、多晶硅、非晶硅三种太阳能电池介绍

单晶硅、多晶硅、非晶硅三种太阳能电池介绍(1)北极星电力网技术频道作者: 2010-12-13 17:12:07 (阅606次)所属频道: 太阳能电源关键词: 太阳能电池单晶硅太阳能电池硅系列太阳能电池中,单晶硅大阳能电池转换效率最高,技术也最为成熟。

高性能单晶硅电池是建立在高质量单晶硅材料和相关的成热的加工处理工艺基础上的。

现在单晶硅的电地工艺己近成熟,在电池制作中,一般都采用表面织构化、发射区钝化、分区掺杂等技术,开发的电池主要有平面单晶硅电池和刻槽埋栅电极单晶硅电池。

提高转化效率主要是靠单晶硅表面微结构处理和分区掺杂工艺。

在此方面,德国夫朗霍费费莱堡太阳能系统研究所保持着世界领先水平。

该研究所采用光刻照相技术将电池表面织构化,制成倒金字塔结构。

并在表面把一13nm。

厚的氧化物钝化层与两层减反射涂层相结合.通过改进了的电镀过程增加栅极的宽度和高度的比率:通过以上制得的电池转化效率超过23%,是大值可达23.3%。

Kyocera公司制备的大面积(225cm2)单电晶太阳能电池转换效率为19.44%,国内北京太阳能研究所也积极进行高效晶体硅太阳能电池的研究和开发,研制的平面高效单晶硅电池(2cmX2cm)转换效率达到19.79%,刻槽埋栅电极晶体硅电池(5cmX5cm)转换效率达8.6%。

单晶硅太阳能电池转换效率无疑是最高的,在大规模应用和工业生产中仍占据主导地位,但由于受单晶硅材料价格及相应的繁琐的电池工艺影响,致使单晶硅成本价格居高不下,要想大幅度降低其成本是非常困难的。

为了节省高质量材料,寻找单晶硅电池的替代产品,现在发展了薄膜太阳能电池,其中多晶硅薄膜太阳能电池和非晶硅薄膜太阳能电池就是典型代表。

多晶硅薄膜太阳能电池通常的晶体硅太阳能电池是在厚度350-450μm的高质量硅片上制成的,这种硅片从提拉或浇铸的硅锭上锯割而成。

因此实际消耗的硅材料更多。

为了节省材料,人们从70年代中期就开始在廉价衬底上沉积多晶硅薄膜,但由于生长的硅膜晶粒大小,未能制成有价值的太阳能电池。

晶体硅太阳电池材料的分类

晶体硅太阳电池材料的分类

晶体硅太阳电池材料的分类晶体硅太阳电池材料的分类有单晶硅、多晶硅和非晶硅三种。

下面将分别介绍这三种材料的特点和应用。

1.单晶硅单晶硅是最早被工业应用的太阳能电池材料之一,也是目前应用最广泛的晶体硅太阳电池材料。

单晶硅可以通过Czochralski法或浮区法生长,具有较高的结晶度和电学性能。

其特点主要包括:-高转换效率:由于单晶硅晶体的高纯度和完整的结构,其转换效率较高,可以达到20%以上。

-稳定性好:单晶硅材料的热稳定性较好,可以在高温环境下长期稳定运行。

-美观性强:单晶硅太阳电池具有均匀一致的外观,适用于建筑一体化设计。

-适用性广:单晶硅太阳电池材料可以应用于各种形状和大小的太阳能电池板。

2.多晶硅多晶硅是由多个晶体颗粒组成的太阳能电池材料,通过熔融和晶化的方法制备。

其特点主要包括:-成本低廉:多晶硅的制备过程简单,成本相对较低。

-转换效率较低:由于晶体颗粒的不规则排列和晶界缺陷等原因,多晶硅的转换效率一般在15%左右。

-适用范围广:多晶硅太阳电池材料适用于大面积应用,如在光伏电站和农业温室等较大区域的发电场景中。

3.非晶硅非晶硅是一种非晶态材料,与晶体硅相比,其主要特点包括:-制备简单:非晶硅可以通过化学气相沉积的方法制备,工艺简单。

-柔韧性强:由于非晶硅材料没有晶体结构,因此可以制备成薄膜材料,具有较好的柔性。

-转换效率较低:非晶硅太阳电池的转换效率一般在10%左右。

-适用性广:由于非晶硅可以制备成薄膜材料,因此可以应用于柔性电子产品中。

总的来说,单晶硅太阳电池具有高转换效率和稳定性好的特点,多晶硅太阳电池具有较低的制备成本和适用广泛的特点,非晶硅太阳电池具有制备简单和柔韧性强的特点。

不同的应用场景和需求可以选择不同类型的晶体硅太阳电池材料。

CIGS薄膜太阳能电池结构分析

CIGS薄膜太阳能电池结构分析

CIGS薄膜太阳能电池结构分析综述了目前国际上研究得最多的几种薄膜太阳能电池材料的研究现状和各自的最新进展,包括硅基类(非晶硅、多晶硅、微晶硅)、无机化合物类(碲化镉、铜铟硒、砷化镓)、有机类、染料敏化(二氧化钛、氧化锌)等,并从材料、工艺和转换效率等方面比较和讨论了它们各自性能的优劣,最后展望了这些薄膜太阳能电池材料未来的研究方向及应用前景。

标签:薄膜太阳能电池引言近年来,环境污染和能源衰竭等问题与全球经济发展之间的矛盾越来越突出,加上人类对可再生能源的不断需求,这样就促使人们致力于开发新的能源。

太阳能作为一种可再生能源有着其它能源不可比拟的优势,因此,合理利用好太阳能将是人类解决能源问题的长期发展战略,太阳能受到人们广泛的重视也是顺理成章的事情。

典型的太阳能电池本质上是一个半导体二极管(p-n结),它利用光伏效应原理把太阳辐射能转换为电能。

当太阳光照射到半导体二极管p-n结上并被吸收时,其能量大于半导体材料禁带宽度Eg的光子能把价带中的电子激发到导带上去,同时价带中留下带正电的空穴,即形成了电子-空穴对,通常称其为光生载流子。

这些光生载流子在p-n结内建电场作用下迅速分离,电子被扫到电池的n型一侧,空穴被扫到电池的p型一侧,从而在二极管的两侧分别形成了正负电荷积累,并产生了“光生电压”,这就是所谓的“光伏效应”(Photovoltaiceffect)。

若在p-n结两侧引出电极并接上负载,则负载中就有“光生电流”通过,即得到可利用的电能,典型的太阳能电池就是根据这个基本原理工作的。

一、CIGS薄膜太阳能电池具有曲面造型的光伏建筑物和移动式的光伏电站等要求太阳能电池具有柔性和可折叠性,这便促使了柔性薄膜太阳能电池的发展。

所谓柔性薄膜太阳能电池是以金属箔片或高分子聚合物作衬底的薄膜太阳能电池。

一般说来,所有薄膜太阳能电池都可以做成柔性的。

柔性CIGS薄膜太陽能电池的制作工艺和刚性玻璃衬底CIGS薄膜太阳能电池的制作工艺基本相同,不同之处主要体现在衬底材料的选择和CIGS制备两方面。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

非晶硅虽然是一种很好的电池材料,但是还存在一些不
足:
(1)光学禁带宽度为1.7eV,使得材料本身对太阳辐射
光谱的长波区域不敏感,从而限制了其光电转换效率。

(2)光电转换效率会随着光照时间的延长而衰减,即所
谓的光致衰退(S-W)效应,使得电池性能很不稳定。

近年来国内外对其的研究主要在于提高光电转换效率
和光致稳定性,并得到了一些改进的方法:采用有不同带隙
的多结迭层;降低表面光反射;使用更薄的i层。

经过这些努力,使得非晶硅薄膜太阳能电池的光致衰减
率从30%下降到了15%,同时光电转换效率也得到了一定
程度的提高。

非晶硅薄膜太阳能电池的制备方法有反溅射法、低压化
学气相沉积法(LPcvD)、等离子体增强化学气相沉积法(PECVD)和热丝化学气相沉积法(HWCVD)。

西班牙巴塞罗那大学的Villar.F等[43在温度低于150℃
的条件下利用HWCVD方法制备出转换效率为4.6%的非
晶硅薄膜光电池。

日本三菱重工(MHI)制成了1.4m×
1.1m世界上面积最大的高效非晶硅薄膜太阳能电池,其转
换效率达到8%[5]。

目前,稳定的单结非晶硅薄膜太阳能电池的光电转换效率最高达到9.5%[6]。

我国对非晶硅薄膜太阳能电池的研究在20世纪80年
代中期达到高潮,并取得了一些成果:研制出面积为lcm×
lcm和30crux30cm的单结非晶硅薄膜太阳能电池的实验
室转换效率分别达到11.4%和6.2%。

2000年以双结非晶
硅薄膜太阳能电池为重点的硅基薄膜太阳能电池研究被列
为国家重点基础研究发展计划“973”项目。

鉴于非晶硅薄膜太阳能电池良好的发展前景,我国将在四川崇州市建全国最大的非晶硅太阳能薄膜生产基地,建成后预计年生产量达
30MW[¨。

如果能解决非晶硅薄膜太阳能电池的稳定性差和转换
效率低等问题,则其将在未来的光伏产业中占有越来越重要的地位。

1.2多。

相关文档
最新文档