式与方程复习

合集下载

(完整版)六年级数学小升初复习:式子与方程

(完整版)六年级数学小升初复习:式子与方程

式子与方程【知识点解析】(式子的运算)四则运算的意义加法:把两个数合并成一个数的运算减法:已知两个数的和与其中一个加数,求另一个加数的运算 乘法:a 、一个数乘以整数,就是求几个相同加数的和的简便运算b 、一个数乘以小数或分数,就是求这个数的几分之几是多少 除法:已知两个因数的积与其中的一个因数,求另一个因数的运算四则运算的法则加法:a 、整数和小数:相同数位对齐,从低位加起,满十进一 b 、同分母分数:分母不变,分子相加;异分母分数:先通分,再相加减法:a 、整数和小数:相同数位对齐,从低位减起,哪一位不够减,退一当十再减 b 、同分母分数:分母不变,分子相减;异分母分数:先通分,再相减乘法:a 、整数和小数:用乘数每一位上的数去乘被乘数,用哪一位上的数去乘,得数的末位就和哪一位对起,最后把积相加。

b 、分数:分子相乘的积作分子,分母相乘的积作分母,能约分的先约分,结果要化简 除法:a 、整数和小数:除数有几位,先看被除数的前几位,(不够就多看一位),除到被除数的哪一位,商就写到哪一位上。

除数是小数是,先化成整数再除,商中的小数点与被除数的小数点对齐b 、分数除法:甲数除以乙数(0除外),等于甲数乘以乙数的倒数【典型例题】 【例】脱式计算21.28-21.28÷7.6×3.1 [1–(41+83)]÷81【举一反三】0.75+(130-0.36×350) 3-59 ×720 -1136【例】简便运算9.9×8.6+0.86 4.6×138 +8.4÷811 -138 ×5【举一反三】2.36×9.8-0.236×2 47-8÷17-917【例】列式计算:32吨的53比65吨的52多多少?【举一反三】 (1)65的倒数加上37除27的商,和是多少?(2)20千克的14 比1吨的3200 少多少千克?【过关检测】 一、直接写出复数910÷320= 14÷78= 45-12= 19×78×9=9÷43= 32×61×109= 59913 = 9×18 ÷9×18 =二、计算下列各题,能简算的要简算(215 +311 )×15×11 37.5+19.5÷2.5×454×65+52÷53 54÷[(85-21)÷85]三、文字题9.81的13 与2.5的差,除以78 ,商是多少? 94的倒数加上2.4乘0.5的积,和是多少?方程的计算与应用方程:含有未知数的等式称为方程。

小学六年级数学小升初珍藏版复习资料第4讲 式与方程(解析)

小学六年级数学小升初珍藏版复习资料第4讲 式与方程(解析)

2022-2023学年小升初数学精讲精练专题汇编讲义第4讲式与方程知识点一:用字母表示数、数量关系、计算公式和运算定律1.用字母表示数(1)一班有男生a人,有女生b人,一共有(a+b)人;(2)每袋面粉重25千克,x袋面粉一共重25x干克2.用字母表示数量关系(1)路程=速度×时间,用字母表示为s=vt;(2)正比例关系:yx=k(一定),反比例关系:x×y=k(一定)等。

3.用字母表示计算公式(1)长方形的周长:C=2(a+b);(2)长方形的面积:S=ab;(3)长方体的体积:V=abh或V=Sh等。

4.用字母表示运算定律加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)乘法交换律:ab=ba 乘法结合律:(ab)c=a(bc)乘法分配律:(a+b)c-ac+bo重点提示:○1数与字母、字母与字母相乘时,乘号可以记作简写为一个点或省略不写,但要注意,省略乘号后,数字要写在字母的前面。

○2两个相同的字母相乘时,可以写成这个字母的平方,如a×a可以写作a2知识点二:等式与方程1.等式与方程的意义及关系意义关系等式表示相等关系的式子叫作等式所有的方程都是等式,但是等式不一定知识精讲方程含有未知数的等式叫作方程是方程2.等式的性质(1)性质1:等式两边同时加上或减去同一个数,所得结果仍然是等式。

(2)性质2:等式的两边同时乘或除以同一个不为0的数,所得结果仍然是等式。

3.解方程(1)方程的解的概念:使方程左右两边相等的未知数的值,叫作方程的解。

(2)解方程的概念:求方程的解的过程叫作解方程。

(3)解方程的依据:可以根据等式的性质和四则运算中各部分之间的关系解方程。

(4)检验方程的解是否正确,步骤如下:(01)把求出的未知数的值代入原方程中;(02)计算,看等式是否成立;(03)等式成立,说明这个未知数的值是方程的解,等式不成立,说明解方程错误,需要重新求解。

式与方程总结

式与方程总结

篇一:苏教版六年级总结复习《式与方程》式与方程第十一课时:式与方程整理与复习(1)教学内容:苏教版六下p81~82“整理与反思”、“练习与实践”第1~4题。

教学目标:1.学生加深理解用字母表示数的意义及方法,进一步体会方程的意义及方程与等式的关系,会用等式的性质解方程,能列方程解答简单的实际问题。

2.学生进一步提高用字母的式子表示数量关系的能力,增强符号意识,体会方程思想;进一步提高分析问题和解决问题的能力。

3.学生主动参与整理和练习等学习活动,进一步感受数学与日常生活的紧密联系,体验学习成功的乐趣,发展数学学习的积极情感。

教学重点:掌握方程的意义及解方程的方法。

教学难点:用含有字母的式子表示数量关系。

教学过程:一、谈话导入谈话:这节课,我们复习“式与方程”的有关知识。

(板书课题)今天主要复习其中的字母表示数、方程的意义和解方程,并且列方程解决一些简单的实际问题。

通过复习进一步掌握用字母表示数,提高解方程和列方程解决简单实际问题的能力。

二、回顾整理1.复习用字母表示数。

(1)回顾举例。

提问:你能举出一些用字母表示数的例子吗?先独立思考,再与同桌交流。

小组交流后组织汇报,教师相应板书:示计算公式,如c=2(a+b)。

②表示运算律,如a+b=b+a.③表示数量关系,如s=vt。

提问:用字母可以表示这么多的内容,那么在用字母表示数的乘法式子里,你觉得应该提醒大家注意些什么?(2)做“练习与实践”第1题。

学生独立在书上完成,教师巡视、指导。

集体订正,选择几题让学生说说是怎样想的。

追问:第(3)题是怎样根据a=3求周长4a和面积各是多少的?提问:列含有字母的式子,是根据数量之间的联系,用字母表示数列出相应的式子。

求含有字母式子的值,只要把字母的值直接代入式子计算结果。

2.复习方程与等式。

(1)复习方程的概念。

下面的式子中,哪些是方程,哪些不是方程?为什么?3x=15 x-2 x-x= 18÷3=6 16+4x=40 a+4<b提问:根据刚才的判断,你能说说什么是方程吗?一个式子是方程,必须具备什么条件?方程与等式有什么关系?请你说一说,并从上面式子中找出例子说明。

小升初专项复习:数与代数-式与方程

小升初专项复习:数与代数-式与方程

练习2用含有字母的式子表示阴影部分的面积,并求当a=4cm, b = 2cm时,阴影部分的面积是多少?题型二用等量代换和设数法解题例 3 已知 a—3b + 4=18,求 4a—12b —5 的值。

练习3 若a=3b=0, c= a,求a + b十0的值。

a b c 3 a + b— 2 c占人例4已知一=—=—=0,求 ------------ 的值。

2 3 4 c一b + a练习4 已知a、b、c分别表示3个自然数,a+b+c = 10, a —b = 174, a + b —c = 27,那么aXbXc的结果是多少?题型三利用方程的计算方法解题例5在括号里填上适当的数,使方程的解是30。

3x+( )X5 = 180练习5 x是自然数。

(1)当x等于什么数时,3x+12的值等于24?(2)当x等于什么数时, 3x+12的值大于24?(3)当x等于什么数时,3x+12的值小于24?例 6 已知 a*b=5a-3b,若 x*(4*6)=9,求 x 的值。

练习6已知x4y = 2x + y,要使口△(*△2)=6中的x值是5, 口里应该填什么数?题型四利用假设推理的方法解题例7已知a= =,b= 2,当x为何值是,a的值比b的值大1。

3 5练习7小明设计的数值转换程序如下:输入xf+ 100fX 50%f减2f输出结果---- ------- ------ | 3| ----------(1)用式子表示输出的数。

(2)如果输出的数是166,输入的数是多少?3例8已知aXb —1 = x,其中a、b为质数且均小于100, x是奇数,那么x的最大值是多少?练习8如果方程8+( 16 + x )=1和方程(x + y )X2 = 36的x值相等,方程(x + y )X2 = 36 中y的值是多少?题型五利用方程解应用题例9服装店运来一批休闲装和羊毛衫,其中羊毛衫的数量是休闲装的1。

休闲装的买进价是每2件240元,羊毛衫的买进价是每件160元。

苏教版七年级代数式与方程经典例题复习

苏教版七年级代数式与方程经典例题复习

代数式与方程知识点及经典例题列代数式1.甲数比乙数的2倍大3,若乙数为x ,则甲数为………………………………………( )A .2x -3B . 2x+3C .21x -3D .21x+3 2.a 、b 两数的平方和: a 、b 两数的平方差:a 、b 两数和的平方: a 、b 两数差的平方:a 与b 的倒数的和: a 与b 的和的倒数:a 与b 的倒数的差: a 与b 的差的倒数:3.【打折问题】苹果每千克P 元,买10千克以上打9折,买20千克应 元。

4.【出租车问题】已知某市出租车的起步价是10元(3≤x 公里),超过3公里的路程,每公里收费1.8元,当x >3公里时,所付的费用是 元。

5.【水费问题】我市为鼓励居民节约用水,对自来水用户按分段计费方式收取水费:若每月用水不超过7立方米,则按每立方米1元收费;若每月用水超过7立方米,则超过部分按每立方米2元收费. 如果某居民用户今年5月用水a 立方米,那么这户居民今年5月应交纳水费 元; 如果某居民用户今年5月缴纳了17元水费,那么这户居民今年5月的用水量为________立方米 .5.【风速、水流问题】某飞机无风航速为a 千米/时,风速为20千米/时,飞机顺风飞行4小时的行程是 千米;逆风飞行3小时的行程是 千米考点三:解方程143312=---x x 154353+=--x x 352)63(61-=-x x 36)452(3)233(51=---x x 21131+-=--x x 15331++=--x x x 1255241345--=-++y y y 14126110312-+=+--x x x 方程的应用1.若23(2)0x y ++-=,则=yx __________。

2.代数式353x x x -+-与互为相反数,则的值为___________.3.如果23321133a b x y x y +--与是同类项,那么a=_________,b=___________. 4.方程423x m x +=-与方程662x -=-的解一样,则m =________. 【数字问题】○1三个连续偶数的和是60,那么其中最大的一个是 ○2一个两位数,个位上的数字是十位上数字的3倍,它们的和是12, 那么这个两位数是______ .○3一个两位数的个位数字与十位数字都是x ,如果将个位数字与十位数字分别加2和1,所得新数比原数大12,则可列方程是( )A. 2312x +=B. (10)10(1)(2)12x x x x +-+-+=C. 2312x +=D. 10(1)(2)1012x x x x +++=++○3一个两位数,个位数字与十位数字的和为9,如果将个位数字与十位数字对调后所得新数比原数大9,则原来两位数是( )A.54B.27C.72D.45○4有一列数,按一定规律排列成 8127931、、、、--其中某三个相邻的数之和是-1701,求这三个数分别为多少?【行程问题】○1一艘船从甲码头到乙码头顺水行驶,用了2小时;从乙码头返回甲码头逆水行驶,用了2.5小时,已知水流的速度是3千米/时。

人教版六年级数学下册总复习《式与方程》整理和复习课件

人教版六年级数学下册总复习《式与方程》整理和复习课件

5.下面是明明用火柴棒摆成的金鱼,摆1条金鱼要几 根火柴棒?摆2条金鱼要多少根火柴棒?摆n条金 鱼要多少根火柴棒?38根火柴棒可以摆几条金鱼?
摆1条金鱼:2+6=8(根) 摆2条金鱼:2+6×2=14(根) 摆n条金鱼:2+6n(根) 38根可以摆:(38-2)÷6=6(条)
《式与方程》解方程
练习
考点 1 方程、等式的性质、方程的解、解方程
1.判断。(对的画“√”,错的画“×”)
(1)含有未知数的式子叫做方程。
()
(2)5x=0是方程。
()
(3)等式的两边同时加上或减去、乘或除以相同的数,等
式仍然成立。
()
(4)x=140是方程4+0.7x=102的解。 ( ) (5)求方程解的过程叫做解方程。 ( )
答:杉树有 160 棵,松树有 200 棵。
提分点 1 列方程解盈亏问题
4.徐老师将一盒糖分给大班的小朋友,若每人分得5
块,则余下46块,若每人分得8块,则少了2块。 这盒糖有多少块? 解:设小朋友有x人。
5x+46=8x-2
x= 16
5×16+46=126(块)
答:这盒糖有126块。
提分点 2 列方程解稍复杂的分数实际问题
6 整理和复习
式与方程
方程这个名词,最早见于我国古代算书《九章算术》。《九 章算术》是在我国东汉初年编定的一部现有传本的、最古老的 中国数学经典著作.书中收集了246个应用问题和其他问题的 解法,分为九章,“方程”是其中的一章。
“方程”一词是中国发明的词汇,但方程本身却不是发源于 中国。
十六世纪,随着各种数学符号的相继出现,特别是法国数 学家韦达创立了较系统的表示未知量和已知量的符号后,“方 程”这一专门的概念就出现了

北师版六年级下册数学总复习 《式与方程》列方程解决问题

北师版六年级下册数学总复习 《式与方程》列方程解决问题

解:设甲筐原有苹果xkg。 320-80%x-75%(320-x)=70 x=200 320-200=120(kg) 答:甲筐原有苹果200kg,乙筐原有苹果120kg。
5.有一堆黑白棋子,黑棋子的数量是白棋子的2倍, 如果每次取出黑棋子5颗,白棋子4颗,待取到若 干次后,白棋子没有了,黑棋子还有24颗,这堆 棋子共有多少颗?(列方程解答)
解:设一共取了x次。 5x+24=4x×2 x=8 5×8+24+4×8=96(颗) 答:这堆棋子共有96颗。
B.x+35x-8=368
2.列方程解决问题。 (1)张叔叔的水果超市支持现金、微信和支付宝三种 支付方式。某日店里收款的情况如下:收到微信 支付和支付宝支付共195次,微信支付的次数是支 付宝支付次数的1.6倍。收到微信支付和支付宝支 付各多少次?
解:设收到支付宝支付x次。 x+1.6x=195 x=75 1.6×75=120(次) 答:收到支付宝支付75次,收到微信支付120次。
解:设松树有 x 棵。 x-15x=360 x=450
答:松树有 450 棵。( 改正:
解:设松树有 x 棵。
1-15x+x=360 x=200
) 答:松树有 200 棵。
辨析:没有注意量率对应导致解题错误
提分点 列方程解稍复杂的百分数实际问题
4.甲、乙两筐苹果共有320kg,从甲筐取出80%,从 乙筐取出75%,这时甲、乙两筐苹果共有70kg, 甲、乙两筐原有苹果各多少千克?
第11课时
总复习1数与代数
《式与方程》列方程解 决问题
BS六年级下册
习题课件
提示:点击 进入习题
1
2
3
4
5
考点 列方程解决问题
1.果园里有桃树和苹果树共 368 棵,其中桃树比苹果 树的35多 8 棵,果园里苹果树有多少棵?假设果园 里苹果树有 x 棵。下列方程正确的是( C )。

式与方程(试题)

式与方程(试题)

六下专项复习三——式与方程一、填一填1、已知A=6n,B=9n(n为大于0的自然数),则A与B的最大公因数是(),最小公倍数是()。

2、一张长方形纸,剪去一个长a厘米、宽3厘米的长方形后变成一个正方形(如图,单位:厘米)。

则原来长方形的周长是()厘米,面积是()厘米。

3、2m-1表示五个连续奇数中间的那个数,在这五个奇数中,最大的一个数是(),最小的一个数是()。

4、六年级一班有a盒粉笔,每盒20根,用去80根后,此时粉笔还剩()根,也可以说还剩()盒。

5、鞋的尺码通常用“码”和“厘米”作单位,它们之间的换算关系是b=2a-10(b 表示码数,a表示厘米数).乐乐的鞋长23.5厘米,则他要穿()码的鞋;若乐乐的爸爸穿42码的鞋,则他的爸爸鞋长()厘米。

6、每年的4月23日是“世界读书日”,学校开展了“读书漂流”活动。

小力看一本书,看了a天,平均每天看25页,还剩21页没看,这本书的总页数用含有书名《寓言故事》《历史故事》《童话故事》页数286 175 1967、某电影院的后一排比前一排多2个座位,如果m表示第1排的座位数,那么m+12表示第()排的座位数。

8、如果n是一个质数,那么以n为分母的真分数有()个。

9、如果x=5是方程ax-3=17的解,那么方程ay+8=30的解是()。

10、如图,用火柴棒摆正方形。

照这样摆下去,摆n个正方形要()根火柴棒。

当n=50时,要()根火柴棒;现在有400根火柴棒,一共可以摆()个正方形。

11、x=()。

12、甲仓库的存粮量是乙仓库的4倍,若从甲仓库运36吨粮食到乙仓库,则两个仓库的存粮量正好相等。

原来甲仓库存粮()吨,乙仓库存粮()吨。

13、现在有若干个圆环,它们的外直径都是5厘米,环宽都是5毫米,将它们扣在一起(如图)拉紧后测量总长度,并记录如下:像这样,10个圆环拉紧后的总长度是()厘米,n个圆环拉紧后的总长度是()厘米。

14、张老师去买体育器材,带去的钱如果买5个同样的足球,那么还剩下180元;如果买8个同样的足球,那么还差15元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

②工地上有 a 吨水泥,每天用去2.5吨, 用了b天,用式子表示剩下的吨数。
已知a=100吨 b=10 利用上面的式子求还 剩多少吨水泥。
等式与方程有什么关系? 哪些是方程?哪些是等式?
6x+8=11 √ 7x-6<36
8x-5x=15×0.2 √
30a+5b
55x=y (2.4+a) ÷ 2.4=5 √ √ 1÷8=0.125 2.5X-7=13 √
复习用字母表示数
1.弟弟今年 a岁,姐姐比弟弟大3岁,姐姐 今年( )岁? 2.姐姐今年 a岁,姐姐比弟弟大3岁,弟弟 今年( )岁? 3.一本练习本x 元,小明买了5本,一共要 付( )元? 4.一辆汽车每小时行v千米,t 小时可行 ( )千米?
象这样用字母表示数可以简明地表达数量 关系、运算律和计算公式。 数量关系 公式 运算律
你会解这些方程吗?解方程的根据是什么? 如何判断方程解的是否正确?在解方程时 要注意一些什么?
列方程解应用题可以帮助我们很容易的解 决许多实际问题,怎样列方程解答应用题? 关键是什么?
(找等量关系,设未知数,列方程)
1.判断下面各题,哪些适合用算术方法解, 哪些适合列方程解,为什么? ①一个三角形的面积是45平方厘米,底是 12厘米,高多少厘米?
S=vt
V=s/t T=s/v …
V=st
S=ab v=sh …ab来自baa + b=b+ a (a+b)+c=a+ (b+c) …
用字母表示数时应注意什么? (1)字母与字母相乘时“×”写作“· ”或 不写。 (2)数字与字母相乘时通常把数字放在 字母前面。 (3)除法运算一般写成分数形式。
1.基本练习: ①课本第 页应用与反思 ②观察下面的图形并填表,你有什么发现? 用字母表示数能概括地表达数量间的关系。
②在学校组织的数学竞赛中,六年级得一 等奖的有56人,得二等奖的人数比一等奖 的人数的2倍还多8人,得二等奖的有多少 人?
(如果知道二等奖的人数,求一等奖的人 数用哪种方法合适?)
2.综合练习 用线段把左右两边相等的数连接起来。 3 比 a 多3的数 a 比 a 少3的数 3a 3个 a 相加的和 a+3 3个 a 相乘的积 a-3 a a 的3倍 3 a的1/3
3.拓展练习 ①学校买来9个足球,每个 a元,又买来 b 个篮球,每个46.5元。 9a表示( ) 46.5b表示( ) 46.5- a表示( ) 9 a+46.5 b表示( )
相关文档
最新文档