17学年上学期高二第二次月考数学(文)试题(附答案)

合集下载

福建省上杭县第一中学2017-2018学年高二下学期第二次月考(6月)数学(文)试题(解析版)

福建省上杭县第一中学2017-2018学年高二下学期第二次月考(6月)数学(文)试题(解析版)

2017-2018学年度上杭一中6月月考高二(文)数学试卷第Ⅰ卷一、选择题(共12题,每题5分,共60分.)1. 已知命题:,,则为()A. ,B. ,C. ,D. ,【答案】B【解析】分析:根据全称命题的否定的原则::换量词,否结论,不变条件,写出否定形式即可.详解:根据全称命题的否定原则得到为,.故答案为:B.点睛:全称命题的否定式特称命题,原则是:换量词,否结论,不变条件,特称命题的否定式全称命题,否定形式如上.2. 若为实数,且,则()A. B. C. D.【答案】B【解析】由已知得,所以,解得,故选B.考点:复数的运算.视频3. 若全集,,则()A. B. C. D.【答案】A【解析】分析:根据集合的补集运算得到结果即可.详解:全集,=,.故答案为:A.点睛:这个题目考查的是集合的补集运算,也考查到了二次不等式的计算,较为简单.4. 下列三句话按“三段论”模式排列顺序正确的是()①是三角函数;②三角函数是周期函数;③是周期函数.A. ①②③B. ②①③C. ②③①D. ③②①【答案】B【解析】试题分析:②是一个一般性的结论,是大前提;①说明是一个三角函数,是一个特殊性的结论,是小前提;③即是结论.故选B.考点:三段论.5. 已知定义在上的奇函数,当时,恒有,且当时,,则()A. B. C. D.【答案】D【解析】分析:求出函数的周期,利用函数的奇偶性以及已知函数的解析式,转化求解即可.详解:当x≥0时,恒有f(x+2)=f(x),可知函数f(x)的周期为2.所以f(2017)=f(1),f(2018)=f(0)又f(x)为奇函数,所以f(﹣2017)=﹣f(2017)而当x∈[0,1]时f(x)=e x﹣1,所以f(﹣2017)+f(2018)=﹣f(2017)+f(2018)=﹣f(1)+f(0)=﹣(e1﹣1)+(e0﹣1)=1﹣e,故选:D.点睛:此题考察了函数的周期性、奇偶性及其运用,对于抽象函数,且要求函数值的题目,一般是研究函数的单调性和奇偶性,通过这些性质将要求的函数值转化为已知表达式的区间上,将转化后的自变量代入解析式即可.6. ①已知,是实数,若,则且,用反证法证明时,可假设且;②设为实数,,求证与中至少有一个不少于,用反证法证明时,可假设,且.则()A. ①的假设正确,②的假设错误B. ①的假设错误,②的假设正确C. ①与②的假设都错误D. ①与②的假设都正确【答案】B【解析】分析:根据反证法的概念判断正误即可.详解:已知,是实数,若,则且,用反证法证明时,可假设或,故选项不合题意;②设为实数,,求证与中至少有一个不少于,用反证法证明时,可假设,且,是正确的.故答案为:B.点睛:这个题目考查了反证法的原理,反证法即将原命题的结论完全推翻,假设时取原命题结论的补集即可,注意在假设时将或变为且,且变为或,不都变为全都.7. 已知条件::,条件:直线与圆相切,则是的()A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A【解析】分析:由题意求得直线与圆相切时的k值,据此可得是的充分不必要条件详解:圆的标准方程为:,直线与圆相切,则圆心到直线的距离为1,即:,解得:,据此可得:是的充分不必要条件.本题选择A选项.点睛:处理直线与圆的位置关系时,若两方程已知或圆心到直线的距离易表达,则用几何法;若方程中含有参数,或圆心到直线的距离的表达较繁琐,则用代数法.8. 下列函数中,既是偶函数又是上的增函数的是()A. B. C. D.【答案】B【解析】分析:根据奇偶性的定义和单调性的定义可判断选项,进行排除得到结果.详解:根据题意,依次分析选项:对于A,y=x3为幂函数,为奇函数,不符合题意,对于B,y=2|x|,有f(﹣x)=2|﹣x|=2|x|=f(x),为偶函数,且当x∈(0,+∞),f(x)=2|x|=2x,在(0,+∞)上为增函数,符合题意;对于C,函数的定义域为[0,+∞),定义域关于原点不对称,故得到函数非奇非偶,不合题意;D,是偶函数,但是是周期函数在上不单调.故答案为:B.点睛:这个题目考查了函数奇偶性和单调性的判断,函数奇偶性的判断,先要看定义域是否关于原点对称,接着再按照定义域验证和的关系,函数的单调性,一般小题直接判断函数在所给区间内是否连续,接着再判断当x变大时y的变化趋势,从而得到单调性.9. 执行如图所示的程序框图,为使输出的值大于,则输入正整数的最小值为()A. B. C. D.【答案】D【解析】分析:由题意结合流程图试运行所给的程序框图,结合S值的变化即可求得最终结果.详解:结合所给的流程图执行程序:首先初始化数据:,第一次循环,应满足,执行,,;第二次循环,应满足,执行,,;第三次循环,,此时之后程序即可跳出循环,据此可得输入正整数的最小值为.本题选择D选项.点睛:识别、运行程序框图和完善程序框图的思路:(1)要明确程序框图的顺序结构、条件结构和循环结构.(2)要识别、运行程序框图,理解框图所解决的实际问题.(3)按照题目的要求完成解答并验证.10. 函数的大致图象为()A. B. C. D.【答案】B【解析】分析:根据f(0),f(2)和f(x)在(0,+∞)上是否单调结合选项得出答案.详解:∵f(0)=1,故A错误;当x>0时,f(x)=-e x+2x2,f′(x)=-e x+4x.∴f′(1)=-e+4>0,f′(3)=-e3+12<0,∴f(x)在(0,+∞)上不单调,故C,D错误;故选:B.点睛:本题考查函数的图象的判断与应用,考查转化思想以及数形结合思想的应用.对于已知函数表达式选图像的题目,可以通过表达式的定义域和值域进行排除选项,可以通过表达式的奇偶性排除选项;也可以通过极限来排除选项.11. 我国古代著名的数学著作有《周髀算经》、《九章算术》、《孙子算经》、《五曹算经》、《夏侯阳算经》、《孙丘建算经》、《海岛算经》、《五经算术》、《缀术》、《缉古算机》等部算书,被称为“算经十字”.某校数学兴趣小组甲、乙、丙、丁四名同学对古代著名的数学著作产生深厚的兴趣.一天,他们根据最近对这十部书的阅读本数情况说了这些话,甲:“乙比丁少”;乙:“甲比丙多”;丙:“我比丁多”;丁:“丙比乙多”,有趣的是,他们说的这些话中,只有一个人说的是真实的,而这个人正是他们四个人中读书本数最少的一个(他们四个人对这十部书阅读本数各不相同).甲、乙、丙、丁按各人读书本数由少到多的排列是()A. 乙甲丙丁B. 甲丁乙丙C. 丙甲丁乙D. 甲丙乙丁【答案】D【解析】分析:由四人所说话列出表格,再由四个选项依次分析是否满足只有一人说话为真且此人阅读数最少。

山西省部分学校2024-2025学年高二上学期10月月考数学试题(含答案)

山西省部分学校2024-2025学年高二上学期10月月考数学试题(含答案)

2024~2025学年高二10月质量检测卷数学(A 卷)考生注意:1.本试卷分选择题和非选择题两部分。

满分150分,考试时间120分钟。

2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚。

3.考生作答时,请将答案答在答题卡上。

选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效。

4.本卷命题范围:人教A 版选择性必修第一册第一章~第二章。

一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知直线经过,两点,则的倾斜角为()A.B.C.D.2.已知圆的方程是,则圆心的坐标是( )A. B. C. D.3.在长方体中,为棱的中点.若,,,则()A. B. C. D.4.两平行直线,之间的距离为( )B.3D.5.曲线轴围成区域的面积为( )l (A (B l 6π3π23π56πC 2242110x y x y ++--=C ()2,1-()2,1-()4,2-()4,2-1111ABCD A B C D -M 1CC AB a = AD b =1AA c = AM =111222a b c -+ 111222a b c ++12a b c-+12a b c++ 1:20l x y --=2:240l x y -+=y =xA. B. C. D.6.已知平面的一个法向量,是平面内一点,是平面外一点,则点到平面的距离是( )A. B.D.37.在平面直角坐标系中,圆的方程为,若直线上存在点,使以点为圆心,1为半径的圆与圆有公共点,则实数的取值范围是( )A. B.C. D.8.在正三棱柱中,,,为棱上的动点,为线段上的动点,且,则线段长度的最小值为( )A.2二、选择题:本题共3小题,每小题6分,共18分。

数学-高二年级第二次月考数学试题

数学-高二年级第二次月考数学试题

王淦昌高级中学2022-2023学年第二学期高二年级第二次月考数学试题2023.5(考试时间:120分钟分值:150分)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设,a b 均为非零实数且a b <,则下列结论正确的是()A .11a b > B .22a b < C .2211a b<D .33a b <2.25()x x -的展开式中含5x 项的系数为 () A . 1-B . 5-C . 1D . 53.命题“2[1,2],0x x a ∀∈-≤”为真命题的一个充分不必要条件是 ( )A . 4a ≥B .4a ≤C . 5a ≥D . 5a ≤4.袁隆平院士是我国的杂交水稻之父,他一生致力于杂交水稻的研究,为解决中国人民的温饱和保障国家粮食安全作出了重大贡献.某杂交水稻研究小组先培育出第一代杂交水稻,再由第一代培育出第二代,带二代培育出第三代,以此类推,且亲代与子代的每穗总粒数之间的关系如下表示:(注:亲代是产生后一代生物的生物,对后代生物来说是亲代,所产生的后一代交子代)通过上面四组数据得到了x 与y 之间的线性回归方程是ˆˆ4.4yx a =+,预测第五代杂交水稻每穗的总粒数为 ( ) A .211 B .212C .213D .2145. 某班50名同学参加体能测试,经统计成绩c 近似服从2(90,)N σ,()90950.3P c ≤≤=,则可估计该班体能测试成绩低于85分的人数为 ( ) A . 5B . 10C . 15D . 306. 某校拟从5名班主任及5名班长(3男2女)中选派1名班主任和3名班长去参加“党史主题活动”, 要求2名女班长中至少有1人参加,则不同的安排方案有( )种. A . 9B . 15C . 60D . 457. 现行排球比赛规则为五局三胜制,前四局每局先得25分者为胜,第五局先得15分者为胜,并且每赢1球得1分,每次得分者发球;当出现24平或14平时,要继续比赛至领先2分才能取胜.在一局比赛中,甲队发球赢球的概率为12,甲队接发球赢球的概率为35,在比分为24∶24平且甲队发球的情况下,甲队以27∶25赢下比赛的概率为( )A .18B .320C .310D .7208. 设函数,(),x xx af x e x x a ⎧≥⎪=⎨⎪<⎩,若函数存在最大值,则实数a 的取值范围是( )A . 1a ≤B . 1a <C . 1a e ≤D . 1a e<二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,选对但不全的得2分,有选错的得0分. 9. 已知a ,b ∈R ,0,0a b >>,且2a b +=,则下列说法正确的为 ( ) A .ab 的最小值为1 B .22log log 0a b +≤C . 224a b +≥D . 1222a b+≥10. 甲、乙、丙、丁、戊五人并排站成一排,下列说法正确的是 ( ) A . 如果甲,乙必须相邻,那么不同的排法有24种B . 最左端只能排甲或乙,最右端不能排甲,则不同的排法共有42种C . 甲乙不相邻的排法种数为72种D . 甲乙丙按从左到右的顺序排列的排法有20种11. 某车间加工同一型号零件,第一、二台车床加工的零件分别占总数的40%,60%,各自产品中的次品率分别为6%,5%.记“任取一个零件为第i 台车床加工(1,2)i =”为事件i A ,“任取一个零件是次品”为事件B ,则 ( ) A .()0.054P B = B .()20.03P A B = C .()10.06P B A = D .()259P A B = 12.已知函数()()2ln f x x ax x a R =--∈,则下列说法正确的是( )A .若1a =-,则()f x 是1(0,)2上的减函数 B .若01a ≤≤,则()f x 有两个零点 C .若1a =,则()0f x ≥D .若1a >,则曲线()y f x =上存在相异两点M ,N 处的切线平行 三、填空题:本题共4小题,每小题5分,20分.把答案填在题中的横线上. 13.已知关于x 的一元二次不等式20ax bx c ++<的解集为{}3|1x x <<,则20cx bx a -+>的解集是___________.14.命题“x ∃∈R ,()()22210a x a x +++-≥”为假命题,则实数a 的取值范围为______.15.某学校有一块绿化用地,其形状如图所示.为了让效果更美观,要求在四个区域内种植花卉,且相邻区域颜色不同.现有五种不同颜色的花卉可供选择,则不同的种植方案共有________种.(用数字作答) 16.已知x >1,y <0,且3y (1-x )=x +8,则x -3y 的最小值为 .四、解答题:本大题共6小题,共70分,解答须写出必要的文字说明、证明过程或演算步骤. 17. (本小题满分10分)已知集合{}|132A x m x m =-≤≤-,不等式411x ≥+的解集为B . (1)当3m =时,求AB ;(2)若x A ∈是x B ∈的充分不必要条件,求实数m 的取值范围.18.(本小题满分12分)已知在n的展开式中,第5项的系数与第3项的系数之比是14:3.(1)求展开式中二项式系数最大的项; (2)求展开式中含5x 的项.19.(本小题满分12分)从装有2只红球,2只白球和1只黑球的袋中逐一取球,已知每只球被抽取的可能性相同. (1)若抽取后又放回,抽3次.①分别求恰2次为红球的概率及抽全三种颜色球的概率; ②求抽到红球次数η的数学期望及方差.(2)若抽取后不放回,写出抽完红球所需次数ξ的分布列.20.(本小题满分12分)某校成立了生物兴趣小组,该兴趣小组为了探究一定范围内的温度x 与豇豆种子发芽数y该兴趣小组确定的研究方案是:先从这7组数据中任选5组数据建立y 关于x 的线性回归方程,并用该方程对剩下的2组数据进行检验.(1)若选取的是星期一、二、三、六、日这5天的数据,求出y 关于x 的线性回归方程; (2)若由线性回归方程得到的估计数据与选出的检验数据的误差均不超过2个,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠?附:回归直线的斜率和截距的最小二乘估计公式分别为121()()ˆ()niii nii x x yy bx x ==--=-∑∑,ˆˆay b x =-⋅.21.(本小题满分12分)疫情过后,百业复苏,某餐饮店推出了“三红免单”系列促销活动,为了增加活动的趣味性与挑战性,顾客可以从装有3个红球、7个白球的袋子中摸球参与活动,商家提供A 、B 两种活动规则:规则A :顾客一次性从袋子中摸出3个球,如果3个球都是红球,则本次消费免单;如果摸出的3个球中有2个红球,则获得价值200元的优惠券;如果摸出的3个球中有1个红球,则获得价值100元的优惠券;如果摸出的3个球中没有红球,则不享受优惠.规则B :顾客分3次从袋子中摸球,每次摸出1只球记下颜色后放回,按照3次摸出的球的颜色计算中奖,中奖优惠方案和规则A 相同.(1)某顾客计划消费300元,若选择规则A 参与活动,求该顾客参加活动后的消费期望; (2)若顾客计划消费300元,则选择哪种规则参与活动更加划算?试说明理由.22.(本小题满分12分)已知函数2()ln (12)1f x x mx m x =-+-+. (1)若1m =,求()f x 的极值;(2)若对任意0x >,()0f x ≤恒成立,求整数m 的最小值.。

高中高二数学上学期第二次月考试卷 文(含解析)-人教版高二全册数学试题

高中高二数学上学期第二次月考试卷 文(含解析)-人教版高二全册数学试题

2014-2015学年某某省某某市安吉县上墅私立高中高二(上)第二次月考数学试卷(文科)一、选择题:(本大题共10小题,每小题3分,共30分.)1.在△ABC中,“A=”是“cosA=”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件2.已知命题p:∃x∈R,x﹣2>0,命题q:∀x∈R,>x,则下列说法中正确的是() A.命题p∨q是假命题 B.命题p∧q是真命题C.命题p∨(¬q)是假命题 D.命题p∧(¬q)是真命题3.直线x﹣2y+2=0经过椭圆的一个焦点和一个顶点,则该椭圆的离心率为()A. B. C. D.4.若直线(m+2)x+3y+3=0与直线x+(2m﹣1)y+m=0平行,则实数m=() A.﹣或1 B. 1 C. 1或2 D.﹣5.直线2x+3y+1=0与直线4x+my+7=0平行,则它们之间的距离为() A. 4 B. C. D.6.设l,m是不同的直线,α,β,γ是不同的平面()A.若l⊥α,l⊥m,则m∥α B.若l⊂α,m⊂β,α∥β,则l∥mC.若l∥α,m⊥α,则l⊥m D.若α∩β=l,l⊥γ,m⊥β,则m∥γ7.过P(2,0)的直线被圆(x﹣2)2+(y﹣3)2=9截得的线段长为2时,直线l的斜率为()A. B. C.±1 D.8.若双曲线的离心率为,则其渐近线方程为()A. y=±2x B. C. D.9.直线l:x+y﹣4=0与圆C:x2+y2=4的位置关系是()A.相交过圆心 B.相交不过圆心 C.相切 D.相离10.下列结论正确的是()A.命题“若a>b>0,则a2>b2”的逆命题是假命题B.若函数f(x)=sinx,则函数f(x)为周期函数的逆命题是真命题C.向量,的夹角为钝角的充要条件是•<0D.“x2>2”是“x2﹣3x+2≥0”的充分不必要条件二、填空题:(本大题共7小题,每小题3分,共21分.)11.由命题“存在x∈R,使x2+2x+m≤0”是假命题,则实数m的取值X围为.12.已知命题p:m<0,命题q:∀x∈R,x2+mx+1>0成立,若“p∧q”为真命题,则实数m 的取值X围是.13.两直线l1:ax+2y﹣1=0,l2:(a﹣1)x+ay+1=0垂直,则a=.14.两圆x2+y2﹣4x+6y=0和x2+y2﹣6x=0的连心线方程为.15.已知动圆M与圆C1:(x+3)2+y2=9外切且与圆C2:(x﹣3)2+y2=1内切,则动圆圆心M的轨迹方程是.16.一个几何体的三视图如图所示(单位:m),则该几何体的体积为m3.17.下列四个命题:①“∃x∈R,x2﹣x+1≤0”的否定;②“若x2+x﹣6≥0,则x>2”的否命题;③在△ABC中,“A>30°”是“sinA>”的充分不必要条件④“函数f(x)=tan(x+φ)为奇函数”的充要条件是“φ=kπ.(k∈Z)”,其中真命题的序号是.三、解答题:(本大题共5小题,共49分.)18.设p:实数x满足x2+2ax﹣3a2<0(a>0),q:实数x满足x2+2x﹣8<0,且q是p的必要不充分条件,求a的取值X围.19.求满足下列条件的椭圆方程:(1)长轴在x轴上,长轴长等于12,离心率等于;(2)椭圆经过点(﹣6,0)和(0,8);(3)椭圆的一个焦点到长轴两端点的距离分别为10和4.20.如图,正方形ACDE所在的平面与平面ABC垂直,M是CE和AD的交点,AC⊥BC,且AC=BC.(1)求证:AM⊥平面EBC;(2)求直线AB与平面EBC所成角的大小.21.已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,且过点D(2,0).(1)求该椭圆的标准方程;(2)设点,若P是椭圆上的动点,求线段PA的中点M的轨迹方程.22.已知圆C:x2+y2=4和直线l:3x+4y+12=0,点P是圆C上的一动点,直线与坐标轴的交点分别为点A、B,(1)求与圆C相切且平行直线l的直线方程;(2)求△PAB面积的最大值.2014-2015学年某某省某某市安吉县上墅私立高中高二(上)第二次月考数学试卷(文科)参考答案与试题解析一、选择题:(本大题共10小题,每小题3分,共30分.)1.在△ABC中,“A=”是“cosA=”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:根据充分必要条件的定义结合三角形的性质,分别证明充分性和必要性,从而得到答案.解答:解:在△ABC中,若A=,则cosA=,是充分条件,在△ABC中,若cosA=,则A=或A=,不是必要条件,故选:A.点评:本题考查了充分必要条件,考查了三角形中的三角函数值问题,是一道基础题.2.已知命题p:∃x∈R,x﹣2>0,命题q:∀x∈R,>x,则下列说法中正确的是() A.命题p∨q是假命题 B.命题p∧q是真命题C.命题p∨(¬q)是假命题 D.命题p∧(¬q)是真命题考点:复合命题的真假.专题:简易逻辑.分析:容易判断命题p是真命题,q是假命题,所以根据p∨q,p∧q,¬q的真假和p,q的关系即可找出正确选项.解答:解:∃x∈R,x﹣2>0,即不等式x﹣2>0有解,∴命题p是真命题;x<0时,无解,∴命题q是假命题;∴p∨q为真命题,p∧q是假命题,¬q是真命题,p∨(¬q)是真命题,p∧(¬q)是真命题;∴D正确.故选D.点评:考查真命题,假命题的概念,以及p∨q,p∧q,¬q的真假和p,q真假的关系.3.直线x﹣2y+2=0经过椭圆的一个焦点和一个顶点,则该椭圆的离心率为()A. B. C. D.考点:椭圆的简单性质.专题:计算题.分析:直线x﹣2y+2=0与坐标轴的交点为(﹣2,0),(0,1),依题意得.解答:直线x﹣2y+2=0与坐标轴的交点为(﹣2,0),(0,1),直线x﹣2y+2=0经过椭圆的一个焦点和一个顶点;故.故选A.点评:本题考查了椭圆的基本性质,只需根据已知条件求出a,b,c即可,属于基础题型.4.若直线(m+2)x+3y+3=0与直线x+(2m﹣1)y+m=0平行,则实数m=() A.﹣或1 B. 1 C. 1或2 D.﹣考点:直线的一般式方程与直线的平行关系.专题:直线与圆.分析:由直线的平行可得m的方程,解得m代回验证可得.解答:解:∵直线(m+2)x+3y+3=0与直线x+(2m﹣1)y+m=0平行,∴(m+2)(2m﹣1)﹣3×1=0,解得m=﹣或1经验证当m=1时,两直线重合,应舍去,故选:D点评:本题考查直线的一般式方程和平行关系,属基础题.5.直线2x+3y+1=0与直线4x+my+7=0平行,则它们之间的距离为() A. 4 B. C. D.考点:两条平行直线间的距离.专题:直线与圆.分析:通过直线的平行求出m,然后利用平行线之间的距离求解即可.解答:解:直线2x+3y+1=0与直线4x+my+7=0平行,所以m=6,直线4x+my+7=0化为直线4x+6y+7=0即2x+3y+3.5=0,它们之间的距离为:d==.故选:C.点评:本题考查两条平行线之间是距离的求法,基本知识的考查.6.设l,m是不同的直线,α,β,γ是不同的平面()A.若l⊥α,l⊥m,则m∥α B.若l⊂α,m⊂β,α∥β,则l∥mC.若l∥α,m⊥α,则l⊥m D.若α∩β=l,l⊥γ,m⊥β,则m∥γ考点:空间中直线与平面之间的位置关系.专题:空间位置关系与距离.分析:利用空间中线线、线面、面面间的位置关系求解.解答:解:若l⊥α,l⊥m,则m∥α或m⊂α,故A错误;若l⊂α,m⊂β,α∥β,则l与m平行或异面,故B错误;若l∥α,m⊥α,则由直线与平面平行的性质得l⊥m,故C正确;若α∩β=l,l⊥γ,m⊥β,则m∥γ或m⊂γ,故D错误.故选:C.点评:本题考查命题真假的判断,是基础题,解题时要注意空间思维能力的培养.7.过P(2,0)的直线被圆(x﹣2)2+(y﹣3)2=9截得的线段长为2时,直线l的斜率为() A. B. C.±1 D.考点:直线与圆的位置关系.专题:直线与圆.分析:设直线l的方程为:y=kx﹣2k,由已知条件结合圆的性质和点到直线的距离公式推导出=2,由此能求出直线的斜率.解答:解:设直线l的斜率为k,则直线l的方程为:y=kx﹣2k,(x﹣2)2+(y﹣3)2=9的圆心C(2,3),半径r=3,∵过P(2,0)的直线被圆(x﹣2)2+(y﹣3)2=9截得的线段长为2,∴圆心C(2,3)到直线AB的距离d==2,∵点C(2,3)到直线y=kx﹣2k的距离d==2,∴•2=3,解得k=±.故选:A.点评:本题考查直线的斜率的求法,是中档题,解题时要认真审题,注意点到直线的距离公式的合理运用.8.若双曲线的离心率为,则其渐近线方程为()A. y=±2x B. C. D.考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:通过双曲线的离心率,推出a、b关系,然后直接求出双曲线的渐近线方程.解答:解:由双曲线的离心率,可知c=a,又a2+b2=c2,所以b=a,所以双曲线的渐近线方程为:y==±x.故选B.点评:本题考查双曲线的基本性质,渐近线方程的求法,考查计算能力.9.直线l:x+y﹣4=0与圆C:x2+y2=4的位置关系是()A.相交过圆心 B.相交不过圆心 C.相切 D.相离考点:直线与圆的位置关系.专题:直线与圆.分析:求出圆心(0,0)到直线l:x+y﹣4=0的距离d正好等于半径,可得直线和圆相切.解答:解:由于圆心(0,0)到直线l:x+y﹣4=0的距离为d==2=r(半径),故直线和圆相切,故选:C.点评:本题主要考查直线和圆的位置关系,点到直线的距离公式的应用,属于基础题.10.下列结论正确的是()A.命题“若a>b>0,则a2>b2”的逆命题是假命题B.若函数f(x)=sinx,则函数f(x)为周期函数的逆命题是真命题C.向量,的夹角为钝角的充要条件是•<0D.“x2>2”是“x2﹣3x+2≥0”的充分不必要条件考点:命题的真假判断与应用.专题:简易逻辑.分析: A.“若a>b>0,则a2>b2”的逆命题为“若a2>b2,则a>b>0”是假命题;B.函数f(x)=sinx,则函数f(x)为周期函数的逆命题为“函数f(x)为周期函数,则f (x)=sinx”,显然不正确;C.向量,的夹角为钝角⇒•<0,反之不成立,由于非零向量反向共线时,满足<0;D.“x2>2”⇒或x,而x2﹣3x+2=﹣≥﹣,反之也不成立.解答:解:A.“若a>b>0,则a2>b2”的逆命题为“若a2>b2,则a>b>0”是假命题,正确;B.函数f(x)=sinx,则函数f(x)为周期函数的逆命题为“函数f(x)为周期函数,则f (x)=sinx”是假命题,不正确;C.向量,的夹角为钝角⇒•<0,反之不成立,由于向量反向共线时,其<0,因此不正确;D.“x2>2”⇒或x,此时x2﹣3x+2=﹣≥﹣,反之也不成立,因此“x2>2”是“x2﹣3x+2≥0”的既不充分也不必要条件,不正确.综上可得:只有A.故选:A.点评:本题考查了函数的性质、简易逻辑的判定、向量的数量积及其夹角公式,考查了推理能力,属于基础题.二、填空题:(本大题共7小题,每小题3分,共21分.)11.由命题“存在x∈R,使x2+2x+m≤0”是假命题,则实数m的取值X围为(1,+∞).考点:特称命题.专题:计算题.分析:原命题为假命题,则其否命题为真命题,得出∀x∈R,都有x2+2x+m>0,再由△<0,求得m.解答:解:∵“存在x∈R,使x2+2x+m≤0”,∴其否命题为真命题,即是说“∀x∈R,都有x2+2x+m>0”,∴△=4﹣4m<0,解得m>1.∴m的取值X围为(1,+∞).故答案为:(1,+∞)点评:本题考查了存在命题的否定,不等式恒成立问题.考查转化、计算能力.12.已知命题p:m<0,命题q:∀x∈R,x2+mx+1>0成立,若“p∧q”为真命题,则实数m 的取值X围是﹣2<m<0 .考点:复合命题的真假.专题:简易逻辑.分析:根据复合命题的真假性判断出命题p、q都是真命题,再逐一求出m的X围,最后求它们的交集.解答:解:因为“p∧q”为真命题,所以命题p、q都是真命题,若命题q是真命题,则∀x∈R,x2+mx+1>0横成立,所以△=m2﹣4<0,解得﹣2<m<2,又命题p:m<0,也是真命题,所以实数m的取值X围是:﹣2<m<0,故答案为:﹣2<m<0.点评:本题考查了复合命题的真假性,以及二次函数的性质,属于基础题.13.两直线l1:ax+2y﹣1=0,l2:(a﹣1)x+ay+1=0垂直,则a= 0或﹣1 .考点:直线的一般式方程与直线的垂直关系.专题:直线与圆.分析:由已知得a(a﹣1)+2a=0,由此能求出a.解答:解:∵两直线l1:ax+2y﹣1=0,l2:(a﹣1)x+ay+1=0垂直,∴a(a﹣1)+2a=0,解得a=0或a=﹣1.故答案为:0或﹣1.点评:本题考查实数值的求法,是基础题,解题时要认真审题,注意直线与直线垂直的性质的合理运用.14.两圆x2+y2﹣4x+6y=0和x2+y2﹣6x=0的连心线方程为3x﹣y﹣9=0 .考点:圆与圆的位置关系及其判定.专题:计算题;直线与圆.分析:求出圆心坐标,利用点斜式,可得方程.解答:解:两圆x2+y2﹣4x+6y=0和x2+y2﹣6x=0的圆心坐标分别为(2,﹣3),(3,0),∴连心线方程为y﹣0=(x﹣3),即3x﹣y﹣9=0.故答案为:3x﹣y﹣9=0.点评:本题考查圆与圆的位置关系及其判定,考查直线方程,比较基础.15.已知动圆M与圆C1:(x+3)2+y2=9外切且与圆C2:(x﹣3)2+y2=1内切,则动圆圆心M的轨迹方程是﹣=1(x≥2).考点:直线与圆的位置关系.专题:直线与圆.分析:找出两圆圆心坐标与半径,设设动圆圆心M(x,y),半径为r,根据动圆M与圆C1外切且与圆C2内切,即可确定出M轨迹方程.解答:解:由圆C1:(x+3)2+y2=9,圆心C1(﹣3,0),半径r1=3,圆C2:(x﹣3)2+y2=1,圆心C2(3,0),r2=1,设动圆圆心M(x,y),半径为r,根据题意得:,整理得:|MC1|﹣|MC2|=4,则动点M轨迹为双曲线,a=2,b=,c=3,其方程为﹣=1(x≥2).故答案为:﹣=1(x≥2)点评:此题考查了直线与圆的位置关系,以及动点轨迹方程,熟练掌握双曲线定义是解本题的关键.16.一个几何体的三视图如图所示(单位:m),则该几何体的体积为m3.考点:由三视图求面积、体积.专题:立体几何.分析:几何体是圆锥与圆柱的组合体,判断圆柱与圆锥的高及底面半径,代入圆锥与圆柱的体积公式计算.解答:解:由三视图知:几何体是圆锥与圆柱的组合体,其中圆柱的高为4,底面直径为2,圆锥的高为2,底面直径为4,∴几何体的体积V=π×12×4+×π×22×2=4π+π=π.故答案为:.点评:本题考查了由三视图求几何体的体积,根据三视图判断几何体的形状及数据所对应的几何量是解题的关键.17.下列四个命题:①“∃x∈R,x2﹣x+1≤0”的否定;②“若x2+x﹣6≥0,则x>2”的否命题;③在△ABC中,“A>30°”是“sinA>”的充分不必要条件④“函数f(x)=tan(x+φ)为奇函数”的充要条件是“φ=kπ.(k∈Z)”,其中真命题的序号是①②.考点:命题的真假判断与应用.专题:简易逻辑.分析:①按照特称命题的否定要求改写,然后判断真假;②先写出原命题,然后再按照否条件、否结论进行改写;③双向推理,然后进行判断,此例可以举反例;④结合奇函数的性质进行推导,从左推右,然后反推化简.解答:解:①原命题的否定是:∀x∈R,x2﹣x+1>0;因为,故①为真命题;②原命题的否命题是:若x2+x﹣6<0,则x≤2.由x2+x﹣6<0,得(x+3)(x﹣2)<0,所以﹣3<x<2,故②为真命题;③当A=150°时,.所以故在△ABC中,“A>30°”是“sinA>”的不充分条件.故③是假命题;④若函数f(x)为奇函数,则f(0)=tanφ=0,或y轴为图象的渐近线,所以φ=kπ(k∈Z);或tanφ不存在,则φ=,(k∈Z)所以前者是后者的不充分条件.故④为假命题.故答案为:①,②点评:本题以简易逻辑为载体,考查了命题的否定及否命题的写法以及真假判断,充分必要性的判断方法,属于基础题,难度不大.三、解答题:(本大题共5小题,共49分.)18.设p:实数x满足x2+2ax﹣3a2<0(a>0),q:实数x满足x2+2x﹣8<0,且q是p的必要不充分条件,求a的取值X围.考点:必要条件、充分条件与充要条件的判断.专题:不等式的解法及应用.分析:先分别化简两个不等式,再利用q是p的必要不充分条件,转化为,然后某某数a的取值X围.解答:解:由x2+2ax﹣3a2<0得(x+3a)(x﹣a)<0,又a>0,所以﹣3a<x<a,(2分)x2+2x﹣8<0,∴﹣4<x<2,p为真时,实数x的取值X围是:﹣3a<x<a;q为真时,实数x的取值X围是:﹣4<x<2(6分)因为q是p的必要不充分条件,所以有(10分)所以实数a的取值X围是≤a≤2.(14分)点评:本题考查一元二次不等式的解法,必要条件、充分条件与充要条件的判断,考查计算能力,转化思想,是中档题.19.求满足下列条件的椭圆方程:(1)长轴在x轴上,长轴长等于12,离心率等于;(2)椭圆经过点(﹣6,0)和(0,8);(3)椭圆的一个焦点到长轴两端点的距离分别为10和4.考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:(1)设椭圆方程为+=1(a>b>0),运用离心率公式和a,b,c的关系,解得a,b,即可得到椭圆方程;(2)设椭圆方程为mx2+ny2=1,(m,n>0),由题意代入点(﹣6,0)和(0,8),解方程即可得到椭圆方程;(3)讨论椭圆的焦点的位置,由题意可得a﹣c=4,a+c=10,解方程可得a,c,再由a,b,c 的关系解得b,即可得到椭圆方程.解答:解:(1)设椭圆方程为+=1(a>b>0),由题意可得,2a=12,e=,即有a=6,=,即有c=4,b===2,即有椭圆方程为+=1;(2)设椭圆方程为mx2+ny2=1,(m,n>0),由题意代入点(﹣6,0)和(0,8),可得36m+0=1,且0+64n=1,解得m=,n=,即有椭圆方程为+=1;(3)当焦点在x轴上时,可设椭圆方程为+=1(a>b>0),由题意可得a﹣c=4,a+c=10,解得a=7,c=3,b==2,即有椭圆方程为+=1;同理,当焦点在y轴上时,可得椭圆方程为+=1.即有椭圆方程为+=1或+=1.点评:本题考查椭圆的方程和性质,主要考查椭圆的方程的求法,注意运用椭圆的方程的正确设法,以及椭圆性质的运用,属于基础题.20.如图,正方形ACDE所在的平面与平面ABC垂直,M是CE和AD的交点,AC⊥BC,且AC=BC.(1)求证:AM⊥平面EBC;(2)求直线AB与平面EBC所成角的大小.考点:直线与平面所成的角;平面与平面垂直的判定.专题:空间位置关系与距离;空间角;空间向量及应用.分析:(1)建立空间直角坐标,利用向量法证明线面垂直.(2)利用向量法求线面角的大小.解答:解:∵四边形ACDE是正方形,所以EA⊥AC,AM⊥EC,∵平面ACDE⊥平ABC,∴EA⊥平面ABC,∴可以以点A为原点,以过A点平行于BC的直线为x轴,分别以直线AC和AE为y轴和z轴,建立如图所示的空间直角坐标系A﹣xyz.设EA=AC=BC=2,则A(0,0,0),B(2,2,0),C(0,2,0),E(0,0,2),∵M是正方形ACDE的对角线的交点,∴M(0,1,1) (3)=(0,1,1),=(0,2,0)﹣(0,0,2)=(0,2,﹣2),=(2,2,0)﹣(0,2,0)=(2,0,0),∴,,∴AM⊥EC,AM⊥CB,∴AM⊥平面EBC.…(5分)(2)∵AM⊥平面EBC,∴为平面EBC的一个法向量,∵=(0,1,1),=(2,2,0),∴cos.∴=60°.∴直线AB与平面EBC所成的角为30°.…(12分)点评:本题主要考查向量法证明线面垂直以及利用向量法求线面角的大小,运算量较大.21.已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,且过点D(2,0).(1)求该椭圆的标准方程;(2)设点,若P是椭圆上的动点,求线段PA的中点M的轨迹方程.考点:轨迹方程;椭圆的标准方程.专题:计算题;圆锥曲线的定义、性质与方程.分析:(1)设椭圆方程为,根据题意可得a=2且c=,从而b==1,得到椭圆的标准方程;(2)设点P(x0,y0),线段PA的中点为M(x,y),根据中点坐标公式将x0、y0表示成关于x、y的式子,将P(x0,y0)关于x、y的坐标形式代入已知椭圆的方程,化简整理即可得到线段PA的中点M的轨迹方程.解答:解:(1)由题意知椭圆的焦点在x轴上,设椭圆的标准方程是∵椭圆经过点D(2,0),左焦点为,∴a=2,,可得b==1因此,椭圆的标准方程为.(2)设点P的坐标是(x0,y0),线段PA的中点为M(x,y),由根据中点坐标公式,可得,整理得,∵点P(x0,y0)在椭圆上,∴可得,化简整理得,由此可得线段PA中点M的轨迹方程是.点评:本题给出椭圆满足的条件,求椭圆方程并求与之有关的一个轨迹方程,着重考查了椭圆的标准方程、简单几何性质和轨迹方程的求法等知识点,属于中档题.22.已知圆C:x2+y2=4和直线l:3x+4y+12=0,点P是圆C上的一动点,直线与坐标轴的交点分别为点A、B,(1)求与圆C相切且平行直线l的直线方程;(2)求△PAB面积的最大值.考点:直线和圆的方程的应用.专题:直线与圆.分析:(1)根据题意设所求方程为3x+4y+a=0,根据直线与圆相切时,圆心到直线的距离d=r求出a的值,即可确定出所求直线方程;(2)当直线与AB平行,且与圆相切时,△PAB面积的最大值,如图所示,求出|AB|与|MN|的长,即可确定出△PAB面积的最大值.解答:解:(1)设所求直线方程为3x+4y+a=0,由题意得:圆心(0,0)到直线的距离d=r,即=2,解得:a=±10,则所求直线方程为3x+4y±10=0;(2)当直线与AB平行,且与圆相切时,△PAB面积的最大值,此时直线方程为3x+4y﹣10=0,∵点C到直线AB的距离||=,CM=2,∴|MN|=+2=,∵A(﹣4,0),B(0,3),即OA=4,OB=3,∴|AB|=5,则△PAB面积最大值为×5×=11.点评:此题考查了直线与圆的方程的应用,涉及的知识有:点到直线的距离公式,两直线平行时斜率的关系,以及直线与圆相切的性质,熟练掌握公式及性质是解本题的关键.。

河北省鸡泽县第一中学2024-2025学年高二上学期10月月考数学试题 (含答案)

河北省鸡泽县第一中学2024-2025学年高二上学期10月月考数学试题  (含答案)

2024~2025学年度高二上学期10月月考数学全卷满分150分,考试时间120分钟.注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将条形码粘贴在答题卡上的指定位置.2.请按题号顺序在答题卡上各题目的答题区战内作答,写在试卷、草稿纸和答题卡上的非答题区域均无效.3.选择题用2B 铅笔在答题卡上把所选答案的标号涂黑;非选择题用黑色签字笔在答题卡上作答;字体工整,笔迹清楚.4.考试结束后,请将试卷和答题卡一并上交.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设直线的倾斜角为,则( )A.B.C.D.2.已知平面的一个法向量为,直线的一个方向向量为,若,则( )A.B.C.1D.23.已知直线与平行,且过点,则( )A.B.3C.D.24.如图,在正三棱锥中,点为的重心,点是线段上的一点,且,记,则( )A. B.:80l x +=αα=30 60 120 150α()4,2,n m =- l ()1,3,2u =--l ∥αm =2-1-1:250l x y ++=2:30l x ay b ++=2l ()3,1-ab=3-2-P ABC -G ABC V M PG 3PM MG =,,PA a PB b PC c === AM =311444a b c -++ 311434a b c-++C. D.5.已知从点发出的一束光线,经过直线反射,反射光线恰好过点,则反射光线所在的直线方程为()A. B.C. D.6.如图,在直三棱柱中,是等边三角形,,,则点到直线的距离为()7.已知实数满足,且,则的取值范围为()A. B.C. D.8.在正三棱锥中,,点满足,则的最小值为()D.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知空间向量,且,则下列说法正确的是()111444a b c-++111434a b c-++()1,5-220x y-+=()2,72110x y+-=410x y--=4150x y+-=90x y+-=111ABC A B C-ABCV1AA=2AB=C1AB ,x y21y x=-12x-……63yx--[)9,3,4∞∞⎛⎤--⋃+⎥⎝⎦93,4⎡⎤-⎢⎥⎣⎦[)9,3,4∞∞⎛⎤-⋃+⎥⎝⎦9,34⎡⎤⎢⎥⎣⎦P ABC-3PA AB==M()2PM xPA yPB x y PC=++--AM ()()()1,2,3,23,0,5,2,4,a abc m=+=-=a ∥cA.B.C. D.10.已知直线和直线,下列说法正确的是( )A.始终过定点B.若,则或C.若,则或2D.当时,始终不过第三象限11.如图,在棱长为2的正方体中,点是底面内的一点(包括边界),且,则下列说法正确的是()A.点的轨迹长度为B.点到平面的距离是定值C.直线与平面D.三、填空题:本题共3小题,每小题5分,共15分.12.已知过点的直线在轴上的截距是其在轴上截距的3倍,则满足条件的一条直线的方程为__________.13.已知向量,若共面,则__________.14.如图,在正三棱柱中,为棱上的动点(包括端点),为b = 6m =()2b c a +⊥cos ,b c <>= 1:0l x ay a +-=()2:2310l ax a y ---=2l 21,33⎛⎫⎪⎝⎭1l ∥2l 1a =3-12l l ⊥0a =0a >1l 1111ABCD A B C D -,P M 1111A B C D AP BM AC =⊥P πM 1A BD CP ABCD PM 1()3,1P l x y l ()()()3,2,3,1,3,2,7,0,a b c λ=-=--= ,,a b cλ=111ABC A B C -12,AB AA M ==11B C N的中点,则直线与平面所成角的正弦值的取值范围为__________.四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程及演算步骤.15.(本小题满分13分)已知的顶点坐标为.(1)若点是边上的中点,求直线的方程;(2)求边上的高所在的直线方程.16.(本小题满分15分)如图,在直三棱柱中,,点分别为棱的中点.(1)求证:平面;(2)求直线与直线的夹角的余弦值.17.(本小题满分15分)如图,在直四棱柱中,四边形是矩形,,点是棱上的一点,且.AM CN 11ABB A ABC V ()()()1,6,3,1,4,2A B C ---D AC BD AB 111ABC A B C -1,AB AC AB AC AA ⊥==,E F 11,AB A B AF ∥1B CE 1C E AF 1111ABCD A B C D -ABCD 11,2AC DB AA ⊥==P 1DD 12DP PD =(1)求证:四边形为正方形;(2)求直线与平面所成角的正弦值.18.(本小题满分17分)已知直线过定点.(1)求过点且在两坐标轴上截距的绝对值相等的直线的方程;(2)若直线交轴正半轴于点,交轴负半轴于点的面积为(为坐标原点),求的最小值,并求此时直线的方程.19.(本小题满分17分)如图,在四棱锥中,底面为直角梯形,,且平面平面,在平面内过作,交于,连接.(1)求证:平面;(2)求二面角的正弦值;(3)在线段上存在一点,使直线与平面,求的长.ABCD 1AD PAC ()1:340l kx y k k ---=∈R P P 2l 1l x A y ,B ABO V S O S 1l P ABCD -ABCD 90,1,2,60,30ADC BCD BC CD PD PDA PAD ∠∠∠∠======= PAD ⊥ABCD ABCD B BO AD ⊥AD O PO PO ⊥ABCD A PB C --PA M BM PAD PM2024~2025学年度高二上学期10月月考·数学参考答案、提示及评分细则1.A 因为直线的斜率为,又,.故选A.2.B 因为,所以,所以,解得.故选B.3.D 因为直线与直线平行,,解得,直线过,则得,经验证与不重合,.故选D.4.A 因为为的重心,所以,又点是线段上的一点,且,所以.故选A.5.C 点关于对称的点设为,则,反射光线经过点,则反射光线所在的直线方程为,即,故选C.6.C 取的中点,则,建立如图所示的空间直角坐标系,所以,所以,所以在上的投影的长度为,:80l x +=k =tan α=0180α< …30α= l ∥αn u ⊥ 4620n u m ⋅=-++= 1m =-1:250l x y ++=2:30l x ay b ++=12121313,,22k k k k a a=-=-=⇒-=-6a =2:l ()3,1-960b -++=3b =1l 2l 2ab∴=G ABC V ()()()1112333AG AB AC PB PA PC PA b c a =+=-+-=+-M PG 3PM MG =()()1131311132444443444AM AG GM AG GA AP PA AG a b c a b c a =+=++=-+=-+⨯+-=+-()1,5-220x y -+=(),x y ()51312351202y x x y y x -⎧=-⎪=⎧⎪+⇒⎨⎨=+⎩⎪--+=⎪⎩()()733,3,2,7,423k -==--()433y x =--+4150x y +-=AC O ,BO AC BO ⊥=O xyz -()()10,1,0,,0,1,0A B C -()1,0,2,0AB CA ==-CA 1AB11CA AB AB ⋅==故点到直线的距离为.故选C.7.D 由于点满足关系式,且,可知在线段上移动,且,,设,则,因为点在线段上,所以的取值范围是,故选D.8.B 延长至点,使得,所以,又由,所以四点共面,所以的最小值为点到平面的距离,又点是的中点,所以点到平面的距离是点到平面的距离的一半,又,易得点到平面的距离为,所以.故选B.9.ABD ,故A 正确;,设,故B 正确;,故C 错误;,故D正确.故选ABD.10.ACD11.BCD 因为,所以,即点在底面C 1AB d ==(),x y 21y x =-12x -……(),x y AB ()1,3A --()2,3B ()3,6Q ()()63963,331432QA QB k k ---====---(),x y AB 63y x --9,34⎡⎤⎢⎥⎣⎦,,PA PB PC ,,D E F 2,2,2PD PA PE PB PF PC ===()()22222x y x y PM xPA yPB x y PC PD PE PF --=++--=++ ()21222x y x y --++=,,,M D E F AM A DEF A PD A DEF P DEF 6PD PE PF DE DF EF ======P DEF AM ()()()1,2,3,23,0,5,2,1,1,a a b b b =+=-∴=--∴== ()2,4,,c m a = ∥c 121,24263a c m m λλλλλ=⎧⎧=⎪⎪=∴=⇒⎨⎨⎪⎪==⎩⎩()()22,2,8,2212283260b c a b c +=-⋅+=-⨯+⨯+⨯=≠cos ,b c b c b c⋅<>===⋅AP ===11A P =E内是以为圆心、半径为1的圆上,所以点的轨迹长度为,故A 错误;在正方体中,,又平面,所以平面,所以点的轨迹为线段,又平面,所以点到平面的距离是定值,故B 正确;因为点到的距离为定值2,记点在平面的投影为,所以当取得最小值时,直线与平面所成角的正切值最大,又,所以直线与平面所成角的正切,故C 正确;到直线的距离为落在上时,,故D 正确.故选BCD.12.答案见错题集13.5 因为共面,所以存在实数,使得,即,即14. 取中点,以为原点,建立如图所示的空间直角坐标系,则,,设,且,因为为的中点,故,于是,平面的一个法向量为,1111A B C D 1A 14P π21111ABCD A B C D -AC BD ⊥,,,AC BM BD BM B BD BM ⊥⋂=⊂DBM AC ⊥DBM M 11B D 11B D ∥1A BD M 1A BD P ABCD P ABCD P 'P C 'CP ABCD min 1P C ='CP ABCD 1A 11B D d =,P M 11A C min 1PM =-,,a b c ,x y c xa yb =+ ()()()7,0,3,2,31,3,2x y λ=-+--73023,3,2, 5.32x yx y x y x y λλ=-⎧⎪=-+===⎨⎪=-⎩解得AB O O ()0,1,0A )CM a a ⎛- ⎝a ⎡∈⎣N AM 2a N ⎛ ⎝2a CN a ⎛= ⎝ 11ABB A )OC =cos ,OC CN OC CN OC CN⋅<>==⋅设,则,,故.15.(1)因为点是边上的中点,则,所以,所以直线的方程为,即;(2)因为,所以边上的高所在的直线的斜率为,所以边上的高所在的直线方程为,即.16.(1)证明:由于三棱柱是直三棱柱,所以,因为点分别为棱的中点,所以,则四边形是平行四边形,所以,又因为平面平面,所以平面(2)解:因为直三棱柱,所以以为原点,所在直线为轴,轴,轴建立如图所示的空间直角坐标系,不妨设,则,于是,设直线与直线的夹角为,则2a t t ⎡=∈⎢⎣cos ,OC CN <>==1t ⎡∈⎢⎣cos ,OC CN <>∈ D AC 3,42D ⎛⎫⎪⎝⎭14103932BD k --==--BD ()10139y x +=+109210x y -+=167312AB k --==-+AB 27-AB ()2247y x -=--27220x y +-=111ABC A B C -11AB A B ∥,E F 11,AB A B 1AE B F ∥1AEB F AF ∥1B E AF ⊄11,B CE B E ⊂1B CE AF ∥1;B CE 111,ABC A B C AB AC -⊥A 1,,AB AC AA x y z 12AA =()()()10,2,2,1,0,0,1,0,2C E F ()()11,2,2,1,0,2C E AF =--=1C E AF θ11cos C E AF C E AFθ⋅==⋅所以直线与直线17.(1)证明:连接,如图所示,在直四棱柱中,平面,又平面,所以,又平面,所以平面,又平面,所以,又四边形是矩形,所以四边形为正方形;(2)解:以为坐标原点,所在的直线分别为轴,轴,轴,建立空间直角坐标系,如图所示,所以,所以,设平面的一个法向量为,所以,令,解得,所以平面的一个法向量为,设直线与平面所成角的大小为,1C E AF DB 1111ABCD A B C D -1BB ⊥ABCD AC ⊂ABCD 1BB AC ⊥111111,,,AC DB BB DB B BB DB ⊥⋂=⊂1BDB AC ⊥1BDB BD ⊂1BDB AC BD ⊥ABCDABCD D 1,,DA DCDD x y z )()()14,,0,0,2,0,0,3AC D P ⎛⎫ ⎪⎝⎭()144,,233PA PC AD ⎫⎛⎫=-=-=⎪ ⎪⎭⎝⎭PAC (),,n xy z =403403n EA z n EC z ⎧⋅=-=⎪⎪⎨⎪⋅=-=⎪⎩3z =x y ==PAC ()n =1AD PAC θ所以,即直线与平面.18.答案见错题集19.答案见错题集111sin cos ,||n AD n AD n AD θ⋅==== 1AD PAC。

2022-2023学年内蒙古赤峰市高二下学期第二次月考数学(文)试题【含答案】

2022-2023学年内蒙古赤峰市高二下学期第二次月考数学(文)试题【含答案】

2022-2023学年内蒙古赤峰市高二下学期第二次月考数学(文)试题一、单选题1.已知i 是实数集,复数z 满足3z z i i +⋅=+,则复数z 的共轭..复数为A .12i +B .12i-C .2i+D .2i-【答案】C【分析】将3z z i i +⋅=+化为31iz i +=+,对其进行化简得到2z i =-,利用共轭复数的性质得到2z i =+.【详解】3z z i i +⋅=+可化为31i z i+=+3(3)(1)42=21(1)(1)2i i i iz i i i i ++--===-++- ∴z 的共轭复数为2z i=+故选C .【点睛】在对复数的除法进行化简时,要采用分子分母同时乘以分母的共轭复数,使分母“实数化”.2.方程22122x y m m-=+-表示双曲线,则m 的取值范围是()A .22m -<<B .0m >C .0m ≥D .2m ≥【答案】A【分析】根据双曲线的定义以及双曲线方程的标准形式可知2m +与2m -同号列不等式即可求解.【详解】因为方程22122x y m m-=+-表示双曲线,所以()()220m m +->,即()()220m m +-<,解得:22m -<<.故选:A.3.已知数据1x ,2x ,3x ,4x ,5x 的方差为5,则数据123x -,223x -,323x -,423x -,523x -的方差为()A .10B .15C .17D .20【答案】D【分析】利用数据线性变换前后方差的关系,求得所求的方差.【详解】因为数据1x ,2x ,3x ,4x ,5x 的方差为5,所以数据123x -,223x -,323x -,423x -,523x -的方差为25220⨯=.故选:D【点睛】本小题主要考查数据线性变换前后方差的关系,属于基础题.4.具有线性相关关系的变量x ,y ,满足一组数据如表所示,y 与x 的回归直线方程为3 1.5y x =-,则m 的值为x123y1-m4m 8A .1B .1.5C .2D .2.5【答案】A【分析】将数据的中心点计算出来,代入回归方程,计算得到答案.【详解】 1.5x =574m y +=中心点为:57(1.5,)4m +代入回归方程4.5157.541m m +=-⇒=故答案选A【点睛】本题考查了回归方程过中心点的知识,意在考查学生的计算能力.5.魏晋时期,数学家刘徽首创割圆术,他在《九章算注》方田章圆田术中指出:“割之弥细,所失弥少.割之又割,以至于不可割,则与圆周合体而无所失矣.”这是一种无限与有限的转化过程,比如在正数121211++中的“…”代表无限次重复,设121211x =++ ,则可利用方程121x x =+求得x ,类似地可得正数555 等于()A .3B .5C .7D .9【答案】B【分析】设555x = ,然后解方程5x x =即可得.【详解】设555x = ,则5x x =,解得5x =.故选:B .6.已知双曲线C :22221(0,0)x y a b a b-=>>的焦点F 到渐近线的距离与顶点A 到渐近线的距离之比为3:1,则双曲线C 的渐近线方程为()A .22y x =±B .2y x=±C .22y x =±D .24y x =±【答案】A【分析】根据相似三角形,直接得到3ca=,计算渐近线的斜率.【详解】如图,可知焦点F 到渐近线的距离与顶点A 到渐近线的距离之比为3:1,即3c a =,22122b c a a =-=,所以双曲线的渐近线方程为22y x =±.故选:A.7.阅读如图所示的程序框图,运行相应的程序,若输出的S 为1112,则判断框中填写的内容可以是()A .5n <B .6n <C .6n ≤D .9n <【答案】C【分析】模拟执行程序框图,依次写出每次循环得到的S ,n 的值,当8n =时,1112S =,此时应该不满足条件,退出循环,输出S 的值,由此得出判断框中填写的内容是什么.【详解】解:模拟执行程序框图,可得0S =,2n =;满足条件,12S =,4n =;满足条件,113244S =+=,6n =;满足条件,1111124612S =++=,8n =;由题意,此时应该不满足条件,退出循环,输出S 的值为1112;故判断框中填写的内容可以是6n ≤.故选:C.【点睛】本题主要考查了程序框图和算法,正确写出每次循环得到的S 值是解题的关键,属于基础题.8.已知直线:40l x y -+=与圆12cos :12sin x C y θθ=+⎧⎨=+⎩,则C 上各点到l 的距离的最小值为A .222-B .2C .22D .25【答案】A【分析】将圆的参数方程化为直角坐标系方程,计算圆心到直线的距离,判断直线与圆的位置关系为相离,最近距离为d r -.【详解】将圆12cos :12sin x C y θθ=+⎧⎨=+⎩化成在平面直角坐标系下的形式,圆22:(1)(1)4C x y -+-=,圆心C为(1,1),半径2r =.已知直线:40l x y -+=,那么,圆心C 到直线l 的距离为22|114|221(1)d r -+==>+-,故直线l 与圆C 相离,所以C 上各点到l 的距离的最小值为222d r -=-.故答案为A.【点睛】本题考查了参数方程,直线与圆的位置关系,综合性较强,是常考题型.9.定义在()0,∞+上的可导函数()f x 满足()()'f x x f x ⋅<,且()20f =,则()0f x x>的解集为()A .()0,2B .()()0,22,+∞U C .()2,∞+D .φ【答案】A【分析】通过构造函数,利用导数判断函数的单调性,利用函数单调性求解不等式,可得结果.【详解】令()()f x F x x =,则()()()2''xf x f x F x x -=由()()'f x x f x ⋅<,即()()'0xf x f x -<所以当()0,x ∈+∞时,()F'0x <可知函数()F x 在()0,x ∈+∞单调递减又()20f =若()()0f x F x x=>,则02x <<则()0f x x>的解集为()0,2故选:A【点睛】本题主要通过构造函数,利用函数的单调性求解不等式,属中档题.10.如图过抛物线24y x =焦点的直线依次交抛物线与圆()2211x y -+=于A 、B 、C 、D ,则AB CD ⋅=A .4B .2C .1D .12【答案】C【分析】根据抛物线的几何意义转化1=A AB AF x =-,1D CD DF x =-=,再通过直线过焦点可知24A D p x x ⋅=,即可得到答案.【详解】抛物线焦点为()1,0F ,1=A AB AF x =-,1D CD DF x =-=,,于是214A D p AB CD x x ⋅=⋅==,故选C.【点睛】本题主要考查抛物线的几何意义,直线与抛物线的关系,意在考查学生的转化能力,计算能力及分析能力.11.四张卡片的正面分别写上cos y x =,tan 2sin y x x =+,sin sin y x x =+,sin cos sin cos y x x x x =++-,现将这四张卡片反过来,小明从中任意抽取两张,则所抽到的两张卡片所书写函数周期相同的概率为()A .23B .16C .13D .12【答案】B【分析】确定各个函数的周期,cos y x =的周期为π,tan 2sin y x x =+的周期为2π,sin sin y x x =+不是周期函数,sin cos sin cos y x x x x =++-周期为2π,再计算概率得到答案.【详解】cos y x =的图像是由cos y x =的图像x 轴下方的部分向上翻折形成,故周期为π;tan y x =的周期为π,2sin y x =的周期为2π,故tan 2sin y x x =+的周期为2π;sin y x =不是周期函数,故sin sin y x x =+不是周期函数,2sin ,sin cos sin cos sin cos 2cos ,sin cos x x xy x x x x x x x≥⎧=++-=⎨<⎩,画出函数图像,如图所示:根据图像知函数周期为2π.设四张卡片分别为1,2,3,4,则共有()()()()()()1,2,1,3,1,4,2,3,2,4,3,46种选择,满足条件的只有1种,故所抽到的两张卡片所书写函数周期相同的概率为16.故选:B12.若0,2x π⎡⎤∀∈⎢⎥⎣⎦,不等式sin cos x x mx x +≥恒成立,则正实数m 的取值范围是()A .(0,1]B .(0,2]C .3,22⎡⎤⎢⎥⎣⎦D .(3,+∞)【答案】B【分析】当0x =和2x π=时结论显然成立,当0,2x π⎛⎫∈ ⎪⎝⎭,分离参数m ,sin cos x x mx x +≥恒成立等价于sin cos x x m x x +≤,令函数sin ()cos x x f x x x +=,0,2x π⎛⎫∈ ⎪⎝⎭,利用导数研究函数()f x 在0,2x π⎛⎫∈ ⎪⎝⎭上的单调性,进而求出函数()f x 在0,2x π⎛⎫∈ ⎪⎝⎭上的最小值,即可求出m .【详解】当0x =时,显然不等式sin cos x x mx x +≥恒成立,当2x π=时,显然不等式sin cos x x mx x +≥恒成立当0,2x π⎛⎫∈ ⎪⎝⎭,由不等式sin cos x x mx x +≥恒成立,有sin cos x x m x x +≤,0,2x π⎛⎫∈ ⎪⎝⎭在恒成立,令sin ()cos x x f x x x +=,0,2x π⎛⎫∈ ⎪⎝⎭,则22sin sin cos ()(cos )x x x x x f x x x '+-=,令2sin sin c )s (o x x x x g x x +-=,0,2x π⎛⎫∈ ⎪⎝⎭,则22sin cos cos )120(x x x x x g x ++-'>=,∴()g x 在0,2x π⎛⎫∈ ⎪⎝⎭上单调递增,∴()(0)0g x g >=,即()0f x '>,∴()f x 在0,2x π⎛⎫∈ ⎪⎝⎭上单调递增,∵当0x →时,()2f x →,∴当0,2x π⎛⎫∈ ⎪⎝⎭时,()2f x >恒成立,∵sin cos x x m x x +≤,在0,2x π⎛⎫∈ ⎪⎝⎭恒成立,∴2m ≤,因此正实数m 的取值范围为(]0,2.故选B .【点睛】本题主要考查利用导数研究不等式恒成立的问题,解题的关键是分离参数,得到新函数,利用导数研究函数的单调性以及最值,有一定综合性,属于基础题.二、填空题13.已知复数21iz i=-,则复数z 的实部和虚部之和为______.【答案】0【分析】先化简求得z 再计算实部和虚部的和即可.【详解】()()()2121111i i iz i i i i +===-+--+,故实部和虚部之和为110-=.故答案为:0【点睛】本题主要考查复数的基本运算与实部虚部的概念,属于基础题型.14.对某同学的7次数学测试成绩进行统计,作出的茎叶图如图所示,给出关于该同学数学成绩的以下说法:①中位数为84;②众数为83;③平均数为85;④极差为16;其中,正确说法的序号是__________.【答案】②④【分析】先根据茎叶图将各数据从小到大排列,再利用中位数、众数、平均数与极差的定义求解即可.【详解】将各数据按从小到大排列为:76,78,83,83,85,91,92.易得中位数是83,故①错误;众数是83,故②正确;平均数为76788383859192847++++++=,故③错误.极差是927616-=,故④正确.故答案为:②④.15.已知双曲线22214x y b -=的左、右焦点分别为1F 、2F ,过2F 且与x 轴垂直的直线l 与双曲线的两条渐近线分别交于A 、B 两点,||35AB =,1(4)M ,,动点()P x y ,在双曲线上,则2PM PF +的最小值为__________.【答案】524-【分析】设出双曲线的焦点和渐近线方程,令x c =,解得y ,可得AB ,由双曲线的基本量的关系,解得,,a b c ,可得双曲线的方程,讨论P 在左支和右支上,运用双曲线的定义,结合三点共线的性质,结合两点的距离公式,即可得到所求最小值.【详解】由题意知:双曲线的左、右焦点分别为()1,0F c -,()2,0F c ,渐近线方程为:by x a=±令x c =,解得:bc y a =±,可得:235bcAB a==由2a =,222c a b =+,解得:5b =,3c =则双曲线的方程为:22145x y -=,则()13,0F -,()23,0F 若P 在左支上,由双曲线的定义可得:212PF a PF =+221124(43)14524PM PF PM PF a MF +=++≥+=+++=+当且仅当1M P F ,,共线时,取得最小值452+若P 在右支上,由双曲线的定义可得:212PF PF a =-21124524PM PF PM PF a MF +=+-≥-=-当且仅当1M P F ,,共线时,取得最小值524-综上可得,所求最小值为:524-本题正确结果:524-【点睛】本题考查双曲线的定义、方程和性质,主要是渐近线方程的运用,以及定义法,考查转化思想和三点共线取得最小值的性质,考查运算能力,属于中档题.16.若函数2ln (),()1,(0,),x a xf xg x e x x+==-∃∈+∞使得()()f x g x ≥成立,则实数a 的最小值是_____.【答案】12【分析】根据题意,(0,)x ∃∈+∞使得()()f x g x ≥成立,分类参数a ,可转化为(0,)x ∃∈+∞,使得ln x a xe x x ≥--成立,构造函数()ln ,0xh x xe x x x =-->,利用导数法求得()min h x ,即可求解.【详解】由题意,函数2ln (),()1,(0,),x a xf xg x e x x+==-∃∈+∞使得()()f x g x ≥成立,即(0,)x ∃∈+∞,使得2ln 1x a xe x+≥-成立,即(0,)x ∃∈+∞,使得2ln x a xe x x ≥--成立,令()ln ,0xh x xe x x x =-->,则()min a h x ≥,因为()1(1)1,0x h x x e x x '=+-->,则()21(2)0xh x x e x''=++>,所以()1(1)1xh x x e x'=+--在(0,)+∞上单调递增,又由1314()40,(1)22033h e h e ''=-<=->,所以01(,1)3x ∃∈使得()0h x '=,此时()ln xh x xe x x =--取得极小值,也是最小值,令()0h x '=,则0001(1)10x x e x +--=,即001x e x =,所以()0000000ln 1ln 1x xh x x e x x x e -=--=--=,即()min 1h x =,所以21a ≥,即实数a 的最小值为12.【点睛】本题主要考查了利用导数研究函数的极值与最值,其中解答中合理利用分离参数,结合函数的单调性与最值求解是解答的关键,着重考查转化思想,以及推理与运算能力,属于中档试题.三、解答题17.已知函数2()ln f x a x x =-(0a ≥).(Ⅰ)当1a =时,求曲线()y f x =在1x =处的切线方程;(Ⅱ)若对任意(0,)x ∈+∞,()0f x <恒成立,求实数a 的取值范围.【答案】(Ⅰ)0x y +=(Ⅱ)[0,2e)【分析】(Ⅰ)对函数进行求导,然后求出1x =处的切线的斜率,再利用直线的点斜式方程求出切线方程,最后化为一般式方程;(Ⅱ)先证明当0a =时,对任意(0,)x ∈+∞,()0f x <恒成立,然后再证明当0a >时,对任意(0,)x ∈+∞,()0f x <恒成立时,实数a 的取值范围.法一:对函数求导,然后判断出单调性,求出函数的最大值,只要最大值小于零即可,这样可以求出实数a 的取值范围;法二:原不等式恒成立可以转化为21ln xa x>恒成立问题.2ln ()x g x x =,求导,判断出函数的单调性,求出函数的最大值,只要1a大于最大值即可,解出不等式,最后求出实数a 的取值范围.【详解】解:(Ⅰ)当1a =时,2()ln f x x x =-,1()2f x x x∴'=-,(1)1f ∴'=-,(1)1f =-∴曲线()y f x =在点1x =处的切线方程为1(1)y x +=--,即0x y +=(Ⅱ)当0a =时,2()f x x =-(0x >),对任意(0,)x ∈+∞,()0f x <恒成立,符合题意法一:当0a >时,22()2a a x f x x x x-'=-=,()002a f x x '>⇔<<;()02a f x x '<⇔>()f x ∴在(0,)2a上单调递增,在(,)2a +∞上单调递减∴只需max (())()ln 02222a a a a f x f ==-<即可,解得02ea <<故实数a 的取值范围是[0,2e)法二:当0a >时,()0f x <恒成立⇔21ln xa x >恒成立,令2ln ()x g x x =,则312ln ()xg x x -'=,()00e g x x '>⇔<<;()0e g x x '<⇔>,()g x ∴在(0,e)上单调递增,在(e,)+∞上单调递减∴只需max 11(())(e)2eg x g a >==即可,解得02ea <<故实数a的取值范围是[0,2e)【点睛】本题考查了求曲线的切线方程,考查了不等式恒成立时,求参数问题,利用导数求出函数的最值是解题的关键.18.每天锻炼一小时,健康生活一辈子,现在很多年轻人由于诸多原因身体都是处于“亚·健康”状态,为了了解现在的年轻人运动锻炼的状况,某社会机构做了一次调查,随机采访了100位年轻人,并对其完成的调查结果进行了统计,将他们分为男生组、女生组,把每周锻炼的时间不低于5小时的年轻人归为“健康生活”,低于5小时的年轻人归为“亚健康生活”,并绘制了如下2×2列联表.健康生活亚健康生活合计男304575女151025合计4555100附:()()()()()22n ad bcKa b c d a c b d-=++++()2P K k≥0.0500.0100.001k 3.841 6.63510.828(1)能否有95%的把握认为是否为“健康生活”与年轻人的性别有关?(运算结果保留三位小数)(2)用分层抽样的方法在健康生活的45名受采访的年轻人中选取6人参加一次公益活动,需要在这6名年轻人中随机选取两人作为这次活动的联络员,求两名联络员均为男性的概率.【答案】(1)没有95%的把握认为是否为“健康生活”与年轻人的性别有关(2)2 5【分析】(1)计算2K,并与表中3.841比较大小得出结果;(2)列出6名年轻人中随机选取两人的所有基本事件,再找到两名均为男性的事件个数,求其概率即可.【详解】(1)由()22100301015453.03045557525K⨯⨯-⨯=≈⨯⨯⨯,∵3.030<3.841,∴没有95%的把握认为是否为“健康生活”与年轻人的性别有关;(2)易得选取参加公益活动的6人为4男2女,用a ,b ,c ,d ,1,2表示此4男2女,则基本事件:(),a b ,(),a c ,(),a d ,(),1a ,(),2a ,(),b c ,(),b d ,(),1b ,(),2b ,(),c d ,(),1c ,(),2c ,(),1d ,(),2d ,()1,2共15个基本事件,记两名联络员均为男性为事件A ,事件A 包含6个基本事件,()62155P A ==,∴两名联络员均为男性的概率为25.19.2023年,国家不断加大对科技创新的支持力度,极大鼓舞了企业投入研发的信心,增强了企业的创新动能.某企业在国家一系列优惠政策的大力扶持下,通过技术革新和能力提升,极大提升了企业的影响力和市场知名度,订单数量节节攀升,右表为该企业今年1~4月份接到的订单数量.月份t 1234订单数量y (万件) 5.2 5.3 5.7 5.8附:相关系数,12211()()()()n i i i nn i i i i x x y y r x x y y ===--=--∑∑∑回归方程ˆˆy abx =+中斜率和截距的最小二乘法估计公式分别为121()()ˆ()n i i i ni i x x yy b x x ==--=-∑∑,ˆay bx =- , 1.3 1.14≈.(1)试根据样本相关系数r 的值判断订单数量y 与月份t 的线性相关性强弱(0.75||1r ≤≤,则认为y 与t 的线性相关性较强,||0.75r <,则认为y 与t 的线性相关性较弱).(结果保留两位小数)(2)建立y 关于t 的线性回归方程,并预测该企业5月份接到的订单数量.【答案】(1)0.96,订单数量y 与月份t 的线性相关性较强(2) 0.22 4.95y t =+,6.05万件【分析】(1)根据公式求出r ,即可得出结论;(2)利用最小二乘法求出回归方程,再令5t =,即可得解.【详解】(1)1234 2.54t +++==,1(5.2 5.3 5.7 5.8) 5.54y =+++=,41()()(1.5)(0.3)(0.5)(0.2)0.50.2 1.50.3 1.1i i i tt y y =--=-⨯-+-⨯-+⨯+⨯=∑,4222221()(1.5)(0.5)0.5 1.55i i t t =-=-+-++=∑,4222221()(0.3)(0.2)0.20.30.26i i y y =-=-+-++=∑,∴41442211()()1.1 1.10.960.751.141.3()()i i i i i i i t t y y r tt yy ===--==≈≈>--∑∑∑,∴订单数量y 与月份t 的线性相关性较强;(2) 41421()()1.1ˆ0.225()i i i i i t t y y b t t ==--===-∑∑,∴ˆˆ 5.50.22 2.5 4.95a y bt=-=-⨯=,∴线性回归方程为 0.22 4.95y t =+,令5t =, 0.225 4.95 6.05y =⨯+=(万件),即该企业5月份接到的订单数量预计为6.05万件.20.已知椭圆2222:1(0)x y C a b a b+=>>的离心率与双曲线22:2E x y -=的离心率互为倒数,且椭圆C 的焦距、双曲线E 的实轴长、双曲线E 的焦距依次构成等比数列.(1)求椭圆C 的标准方程;(2)若双曲线E 的虚轴的上端点为2B ,问是否存在过点2B 的直线l 交椭圆C 于,M N 两点,使得以MN 为直径的圆过原点?若存在,求出此时直线l 的方程;若不存在,请说明理由.【答案】(1)2212x y +=;(2)存在,22y x =+或22y x =-+.【分析】(1)将已知双曲线的方程化为标准形式求得离心率,结合椭圆中的基本量关系和已知条件,求得椭圆的半长轴和半短轴,得到椭圆的标准方程;(2)先排除直线l 斜率不存在的情形,然后设出直线的斜率,写出方程,联立直线与椭圆方程,利用判别式求得k 的取值范围,利用韦达定理和向量的垂直的条件得到关于k 的方程,求解并验证是否满足上面求出的范围即可.【详解】解:(1)双曲线22:2E x y -=,即为22122x y -=,其离心率为2222+=,则椭圆2222:1(0)x y C a b a b+=>>的离心率为12e =.因为双曲线E 的实轴长为22、焦距为4,设椭圆C 的焦距为2c ,则2,22,4c 成等比数列,所以2(22)8c =,解得1c =.又12c e a ==,及222a b c =+,解得2,1a b ==.所以椭圆C 的标准方程为2212x y +=;(2)双曲线E 的虚轴上端点为2(0,2)B .当直线l 的斜率不存在时,:0l x =,点,M N 为椭圆的上、下两顶点,显然不符合题意;故直线l 的斜率存在,设斜率为k ,则直线l 的方程为2y kx =+,联立方程组221,22,x y y kx ⎧+=⎪⎨⎪=+⎩消去y ,得()22124220k x kx +++=.显然()22(42)41220k k ∆=-+⨯>,解得22k >或22k <-()*.设点()()1122,,,M x y N x y ,则121222422,1212k x x x x k k+=-=++,所以()()()2121212122222y y kx kx k x x k x x =++=+++222222222228282422212121212k k k k k k k k k k -++-=-+==++++,若以MN 为直径的圆过原点,则OM ON ⊥ ,所以0OM ON ⋅= ,所以12120x x y y +=,即22222201212k k k -+=++,所以2242012k k-=+,解得2k =±,符合()*式,所以直线l 的方程为22y x =+或22y x =-+.21.已知函数f (x )=()1xx a x be e -+(a ≠0).(1)当a =-1,b =0时,求函数f (x )的极值;(2)当b =1时,若函数f (x )没有零点,求实数a 的取值范围.【答案】(1)极小值为21e-,无极大值;(2)2(,0)e -.【分析】(1)当1,0a b =-=时,求得函数的导数,利用导数求得函数的单调性,结合函数极值的定义,即可求解;(2)把函数()f x 没有零点,转化为方程ax -a +ex =0无实根,令()x h x ax a e =-+,利用导数求得函数()h x 的单调性与最值,列出不等式,即可求解.【详解】(1)当1,0a b =-=时,函数()1x x f x e -+=,则()2x x f x e -'=,当(,2)x ∈-∞时,()()0,f x f x '<单调递减;当(2,)x ∈+∞时,()()0,f x f x '>单调递增.所以()f x 的极小值为()212f e =-,无极大值.(2)当1b =时,函数()xxax a e f x e -+=,因为函数()f x 没有零点,即方程0x x ax a e e-+=无实根,即ax -a +ex =0无实根,令()x h x ax a e =-+,则()x h x a e '=+,若0a >时,则()()0,h x h x '>在R 上单调递增,()(),;,;x h x x h x →+∞→+∞→-∞→-∞此时存在0x ,使得0()0h x =,不合题意;若a<0时,令()0h x '>,即0x a e +>,得ln()x a >-;令()0h x '<,得ln()x a <-,所以当ln()x a =-,函数()h x 取得最小值,最小值为()min (ln())ln()2h x h a a a a =-=--,()(),;,;x h x x h x →+∞→+∞→-∞→+∞要使得函数()f x 没有零点,则满足()min 0h x >,即ln()20a a a -->,解得20e a -<<,综上所述,实数的取值范围为()2,0e -.【点睛】本题主要考查了利用导数求解函数的极值,以及利用导数研究函数的零点问题,其中解答中把函数的零点问题转化为方程根的个数,应用导数求得函数的单调性与最值,列出不等式是解答的关键,着重考查了转化思想,以及推理与计算能力.22.在平面直角坐标系xOy 中,直线l 的参数方程为12x t y t =-+⎧⎨=-⎩(t 为参数),以原点O 为极点、x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为243cos 2ρθ=-.(1)求直线l 的普通方程和曲线C 的直角坐标方程;(2)已知点(1,2)P -,直线l 与曲线C 相交于AB 两点,求||||PA PB +的值.【答案】(1)22:12x C y +=,:10l x y +-=;(2)102||||3PA PB +=【解析】(1)消去参数t 求解直线l 的普通方程,再利用极坐标与直角坐标的对应关系与二倍角公式求解曲线C 的直角坐标方程.(2)利用参数t 的几何意义,联立直线与圆C 的方程,利用韦达定理求解即可.【详解】(1)由12x t y t =-+⎧⎨=-⎩,两式相加可得:1l x y +=,即:10l x y +-=.又22443cos 222sin ρθθ==-+,即22222+22sin 4244x y ρρθ=⇒+=即22:12x C y +=.(2)将:10l x y +-=化简成关于点(1,2)P -的参数方程有:212222x t y t ⎧=--⎪⎪⎨⎪=+⎪⎩,(t 为参数),代入22:12x C y +=有222221222310214022t t t t ⎛⎫⎛⎫+++=⇒++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,则12102||||3PA PB t t +=+=.【点睛】本题主要考查了参数方程与极坐标化成直角坐标的方法,同时也考查了直线参数方程的几何意义.属于中等题型.。

河南省郑州市河南省实验中学2023-2024学年高二上学期第二次月考数学试题

河南省郑州市河南省实验中学2023-2024学年高二上学期第二次月考数学试题

2
),
C
(0,1,
2)
,
D
(1,
2,
2
)
,
uuur AF
=
(0,1,1)
,
uuur BC
=
(
-1,1,
0
)
.

uuur BE
=
l
uuur BC
=
(-l
,
l,
0)
,
l
Î[0,1]
,则
E
(1
-
l,
l,
2)
,
uuur DE
=
(
-l,
l
-
2,
0)
.
答案第21 页,共22 页
所以 cos
uuur uuur AF, DE
=
3 2
相切,与椭圆
E
交于不同的两点
A,
B
,求 VOAB
的面积的最
大值.
试卷第61 页,共33 页
1.C
参考答案:
【分析】根据直线方向向量与平面法向量垂直数量积为 0 可得.
【详解】由题知,
r l
^
r n
,故
r l
×
r n
=
2
+
1 2
m
+
2
=
0
,解得
m
=
-8
.
故选:C 2.D
【解析】根据 a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8 = a1 + a2 + a3 + a4 + (a1 + a2 + a3 + a4 ) q4 ,代入

福建省龙岩第一中学2022-2023学年高二上学期第二次月考数学试题(含答案)

福建省龙岩第一中学2022-2023学年高二上学期第二次月考数学试题(含答案)

龙岩一中2022-2023学年第一学期高二第二次月考数学试题(考试时间:120分钟 满分:150分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1()320y m m --=∈R 的倾斜角为A .120B .60C .30D .1502.已知n S 是等差数列{}n a 的前n 项和,若378a a +=,则9S = A .24B .36C .48D .723.直线250x y ++=与直线20kx y +=互相垂直,则它们的交点坐标为 A .(1,3)--B .(2,1)--C .1,12⎛⎫-- ⎪⎝⎭D .(1,2)--4.数列1,12+,2122++,⋯ ,23112222n -+++++,的前n 项和为A .21n n --B .122n n +--C .2nD .12n n +-5.直线20x y +-=分别与x 轴,y 轴交于,A B 两点,点P 在圆22420x y x +++=,则PAB △面积的取值范围是A .B .C .[2,6]D .[4,12]6.数列122022n ⎧⎫⎨⎬-⎩⎭A .既有最大项,又有最小项B .有最大项,无最小项C .无最大项,有最小项D .既无最大项,又无最小项7.几何学史上有一个著名的米勒问题:“设点M ,N 是锐角AQB ∠的一边QA 上的两点,试在QB 边上找一点P ,使得MPN ∠最大.”如图,其结论是:点P 为过M ,N 两点且和射线QB 相切的圆与射线QB 的切点.根据以上结论解决以下问题:在平面直角坐标系xOy 中,给定两点M (-1,2),N (1,4),点P 在x 轴上移动,当MPN ∠取最大值时,点P 的横坐标是 A .1B .-7C .1或-1D .2或-78.已知数列{}n a 满足12a =,26a =,且2122n n n a a a ++-+=,若[]x 表示不超过x 的最大整数(例如[]1.61=,[]1.62-=-).则222122020232021a a a ⎡⎤⎡⎤⎡⎤++⋅⋅⋅+=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦A .2018B .2019C .2020D .2021二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.若两平行线分别经过点A (5,0),B (0,12),则它们之间的距离d 可能等于 A .14B .5C .12D .1310.等差数列{}n a 中,10a >,公差0d <,n S 为其前n 项和,对任意正整数n ,若点(),n n S 在以下4条曲线中的某一条上,则这条曲线不可能是A .B .C .D .11.下列说法正确的是A .过点()1,2P 且在x 、y 轴截距相等的直线方程为30x y +-=B .过点()1,2-且垂直于直线230x y -+=的直线方程为20x y +=C .圆的一般方程为D .直线()24y k x =-+与曲线1y =k 的取值范围12220x y Dx Ey F ++++=53,124⎛⎤⎥⎝⎦.某县位于沙漠边缘,当地居民与风沙进行着艰苦的斗争,到2020年底全县的绿地占全县总面积的70%.从2021年起,市政府决定加大植树造林、开辟绿地的力度,预计每年能将前一年沙漠的18%变成绿地,同时,前一年绿地的2%又被侵蚀变成沙漠.则下列说法正确的是A .2021年底,该县的绿地面积占全县总面积的74%B .2023年底,该县的绿地面积将超过全县总面积的80%C .在这种政策之下,将来的任意一年,全县绿地面积都不能超过90%D .在这种政策之下,将来的某一年,绿地面积将达到100%全覆盖三、填空题:本题共4小题,每小题5分,共20分.13.数列{}n a 中,1111,,21n n n a a a a --==+则n a =_____________.14.设是公差为的等差数列,是公比为的等比数列.已知数列的前项和,则的值是_______.15.在直角坐标系xOy 中,已知直线:cos sin 1l x y θθ⋅+⋅=,当θ变化时,动直线始终没有经过点P ,定点Q 的坐标()2,0-,则PQ 的取值范围为 . 16.已知动点(,)P m n 在圆22 1O x y +=:上,则31n m --的取值范围是____________,若点1,02A ⎛⎫- ⎪⎝⎭,点,则2||||PA PB +的最小值为____________. 四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知等比数列 的首项,公比,数列. (1)证明:数列 为等差数列;(2)设数列{}n b 前n 项和为n S ,求使 的所有正整数 的值的和. 18. (12分)已知圆C 的方程为:2224690()x y mx y m m R +--+-=∈. (1)试求m 的值,使圆C 的周长最小;{}n a d {}n b q {}n n a b +n 2*21()nn S n n n N =-+-∈d q +()1,1B 181a =19q =3log n n b a ={}n a {}n b n 36n S >-(2)求与满足(1)中条件的圆C 相切,且过点()1,2-的直线方程. 19.(12分)记为数列的前项和,已知是公差为的等差数列.(1)求的通项公式;(2)记,试判断与2的大小并证明. 20. (12分)已知圆()22:15C x y +-=,直线:10l mx y m -+-=. (1)求证:对m R ∈ ,直线l 与圆C 总有两个不同的交点;(2)若直线l 与圆C 交于,A B 两点,当AB =l 的倾斜角. 21.(12分)已知数列{}n a 满足11a =,()*1121n n a a n N n +⎛⎫=+∈ ⎪⎝⎭.(1)求证:数列n a n ⎧⎫⎨⎬⎩⎭是等比数列,并求数列{}n a 的通项公式;(2)记数列{}n a 的前n 项中最大值为n M ,最小值为n m ,令2n nn M m b +=,称数列{}n b 是数列{}n a 的“中程数数列”.(i )求“中程数数列”{}n b 的前n 项和n S ; (ii )若m k b a =(*,m k N ∈且m k >),求所有满足条件的实数对(),m k .22.(12分)平面直角坐标系中,圆M 经过点A ,(0,4)B ,(2,2)C -. (1)求圆M 的标准方程;(2)设(0,1)D ,过点D 作直线1l ,交圆M 于PQ 两点,PQ 不在y 轴上.(i )过点D 作与直线1l 垂直的直线2l ,交圆M 于EF 两点,记四边形EPFQ 的面积为S ,求S 的最大值;(ii )设直线OP ,BQ 相交于点N ,试讨论点N 是否在定直线上,若是,求出该直线方程;若不是,说明理由.n S {}n a n 11,n n S a a ⎧⎫=⎨⎬⎩⎭13{}n a n T 12111n nT a a a =+++龙岩一中2022-2023学年第一学期高二第二次月考数学试题参考答案13.121n - 14.4 15.()1,3 16.4,3⎡⎫+∞⎪⎢⎣⎭17.(1)证明:因为等比数列{}n a 的首项181a =,公比19q =, 所以1162118139n n n n a a q---⎛⎫==⨯= ⎪⎝⎭,...................2分所以6233log log 362n n n n b a -==-=,............................3分 所以()()1621622n n n b n b +--+-=-=-,14b =,所以{}n b 是首项为4,公差为2-的等差数列;.................5分 (2)解:由(1)可得62n b n =-,所以()()46252n n nn n S +-==-,....................6分令36nS >-,解得49n -<<,........................8分又N*n ∈,所以1n =、2、3、4、5、6、7、8,.........................9分 ∴1+2+3+4+5+6+7+8=36∴所有正整数n 的值的和为36..............................10分 18.(1)2224690x y mx y m +--+-=,配方得:222()(2)(3)4x m y m -+-=-+,................2分 当3m =时,圆C 的半径有最小值2,此时圆的周长最小...................4分 (2)由(1)得,3m =,圆的方程为:22(3)(2)4x y -+-=.当直线与x 轴垂直时,1x =,此时直线与圆相切,符合条件;..............6分 当直线与x 轴不垂直时,设()12y k x =--,............7分2=,解得34k =,..............10分 所以切线方程为31144y x =-,即34110x y --=..................................11分 综上,直线方程为1x =或34110x y --=......................12分19.(1)∵ ,∴ ,∴,又∵是公差为的等差数列,∴,∴,...............3分∴当 时,,........................4分∴,......................5分整理得: , 即,..........................6分∴,显然对于 也成立, ∴ 的通项公式;...........................8分(2)....................10分∴∴...................12分20.(1)证明:直线 的方程可化为,令1010x y -=⎧⎨-=⎩,解得11x y =⎧⎨=⎩.∴直线l 恒过定点()1,1P ...............3分∵||1PC =<3451(1)1123212n n n n n n ++=⨯⨯⨯⨯⋅⋅⋅⨯⨯=--2n T <l ()11y m x -=-∴点P 在圆C 内,∴直线l 与圆C 总有两个不同的交点. ...............6分(2)由()2215,10,x y mx y m ⎧+-=⎪⎨-+-=⎪⎩消去y 整理得()22221250mx m x m +-+-=,显然()22222(2)41(5)4(45)0m m m m ∆=--+-=+>. ....................8分 设()()1122,,,A x y B x y ,12,x x 则是一元二次方程的两个实根,∴2212122225,11m m x x x x m m -+==++,....................9分∵12AB x =-=....................10分=,解得23,m =∴m =l的斜率为分∴直线l 的倾斜角为3π或23π....................12分21.解:(1)证明:依题意,()*1121n n a a n N n +⎛⎫=+∈ ⎪⎝⎭,即11111122n n n n a a a n n ++⎛⎫==+⋅⎪⎝⎭, 故1112n n a a n n +=⋅+,故数列n a n ⎧⎫⎨⎬⎩⎭是等比数列,首项为111a =,公比为12的等比数列, 故1112n n a n -⎛⎫=⨯ ⎪⎝⎭,即112n n a n -⎛⎫=⋅ ⎪⎝⎭;....................4分(2)因为11112n n a a n +⎛⎫=+ ⎪⎝⎭,即11112n n n a a +⎛=⎫+ ⎪⎝⎭, 故1n =时11n na a +=,即12a a =,1n >时,11n n aa +<,即1n n a a +<, 故1234...a a a a =>>>,故11n M a ==,112n n n m a n -⎛⎫=⋅ ⎪⎝⎭=,所以1111122222n nn n n n M m b n -⎛⎫+⋅ ⎪+⎛⎫⎝⎭===+⋅ ⎪⎝⎭.......................6分①设数列12n n ⎧⎫⎪⎪⎛⎫⋅⎨⎬ ⎪⎝⎭⎪⎪⎩⎭的前n 项和为n T ,则1231111123...2222nn T n ⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⋅++⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,234111111123...22222n n T n +⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⋅++⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,两式作差得,1231111111...222222n n n T n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++-⋅ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,即01211111111122...21222222212nn n nn n n T n n -⎛⎫- ⎪+⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎝⎭=++++-⋅=-⋅=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭-,故123112 (2222)n n n n n b b b b T n S n +=++++=+=+-;....................8分 ②因为1122mm b m ⎛⎫=+⋅ ⎪⎝⎭,1102k k a k -⎛⎫=⋅> ⎪⎝⎭,m k b a =,所以1111111222222m m m k b m a a -⎛⎫=+⋅=+=> ⎪⎝⎭,即1122k m a a -=, 又因为3411422a ⎛⎫=⨯= ⎪⎝⎭,2313324a ⎛⎫=⨯= ⎪⎝⎭,121a a ==,且1234...a a a a =>>>,可知4k <且k *∈N ,即1,2,3k =,由1122k m a a -=知,1k =时,11111222m m a a a -=-=,故1m a =,即1,2m =,但m k >,故2m =符合题意;2k =时,21111222m m a a a -=-=,故1m a =,即1,2m =,但m k >,故无解; 3k =时,313112422m m a a a -=-=,故12m a =,即4m =,又m k >,故4m =符合题意;综上,所有满足条件的实数对(),m k 有()()2,1,4,3....................12分 22.(1)解:设圆M 的方程为()()222x a y b r -+-=,则)()()()()()22222222210422a b r a b r a b r ⎧+-=⎪⎪-+-=⎨⎪--+-=⎪⎩,解得2024a b r =⎧⎪=⎨⎪=⎩, 所以圆M 的标准方程为()2224x y +-=;....................4分 (2)解:设直线1l 的方程为1y kx =+,即10kx y -+=, 则圆心()0,2到直线1l的距离1d ==所以PQ == (i )若0k =,则直线2l 斜率不存在,则PQ =4EF =,则12S EF PQ =⋅= 若0k ≠,则直线2l 得方程为11y x k =-+,即0x ky k +-=,则圆心()0,2到直线1l的距离2d =所以EF = 则12S EF PQ =⋅=7===, 当且仅当221k k =,即1k =±时,取等号,综上所述,因为7 所以S 的最大值为7;.................8分 (ii )设()()1122,,,P x y Q x y ,10 联立()22241x y y kx ⎧+-=⎪⎨=+⎪⎩,消y 得()221230k x kx +--=, 则12122223,11k x x x x k k -+==++, 直线OP 的方程为11y y x x =, 直线BQ 的方程为2244y y x x -=+, 联立112244y y x x y y x x ⎧=⎪⎪⎨-⎪=+⎪⎩,解得121243x x x x x =+, 则()121121211212124144333kx x y x x y x y x x x x x x x +=⋅==+++ 1221212124462233kx x x x x x x x x +--===-++, 所以12124,23x x N x x ⎛⎫- ⎪+⎝⎭, 所以点N 在定直线2y =-上...................12分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学试卷(文科)一、选择题本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题“0,>∈∀x e R x ”的否定是( )A .x ∀∈R ,e 0x ≤B .x ∃∈R ,e 0x ≤C .x ∃∈R ,e 0x >D .x ∀∈R ,e 0x <2.若椭圆22221x y a b+=过抛物线28y x =的焦点, 且与双曲线221x y -=有相同的焦点,则该椭圆的方程是( )A .22142x y += B .2213x y += C .22124x y += D .2213y x += 3.下列命题中的说法正确的是( )A .命题“若21x =,则1x =”的否命题为“若21x =,则1x ≠”B .“1x =-”是“2560x x --=”的必要不充分条件C .命题“0x R ∃∈,使得20010x x ++<”的否定是:“x R ∀∈,均有210x x ++>”D .命题“在ABC ∆中,若A B >,则sin sin A B >”的逆否命题为真命题 4.已知命题:,2lg P x R x x ∃∈->,命题2:,0q x R x ∀∈>,则( ) A .命题p q ∨是假命题 B .命题p q ∧是真命题 C .命题()p q ∧⌝是真命题 D .命题()p q ∨⌝是假命题5.以坐标轴为对称轴,以原点为顶点且过圆222690x y x y +-++=的圆心的抛物线的方程是( )A .23y x =或23y x=-B .23y x=C .29y x =-或23y x=D .23y x =-或29y x =6.下列有关命题的说法错误..的是 ( ) A.对于命题p :x R ∃∈,使得210x x ++<. 则⌝p :x R ∀∈, 均有210x x ++≥.B.“1=x ”是“0232=+-x x ”的充分不必要条件.C.命题“若12=x ,则1=x ”的否命题为:“若12≠x ,则1≠x ”.D.命题“若5≠+y x ,则32≠≠y x 或”是假命题.7.已知双曲线方程为1422=-y x ,过10P (,)的直线l 与双曲线只有一个公共点,则l 的条数共有( )A .4条B .3条C .2条D .1条8.中心在坐标原点,焦点在x 轴上的双曲线的一条渐近线方程为 430x y +=,则该双曲线的离心率为( ) A.14 B. 43 C.54 D.539.设函数2()()f x g x x =+,曲线()y g x =在点(1,(1))g 处的切线方程为21y x =+,则曲线()y f x =在点(1,(1))f 处切线的斜率为( ) A .2 B .4 C .14-D .12- 10.设()f x 是定义在R 上的奇函数,且(2)0f =,当0x >时,有2'()()0xf x f x x -<恒成立,则不等式2()0x f x >的解集为 ( ) A .(2,0)(2,)-+∞ B .(2,0)(0,2)- C .(,2)(2,)-∞-+∞ D .(,2)(0,2)-∞-11.已知动点),(y x P 满足5|1243|)2()1(22++=-+-y x y x ,则点P 的轨迹是 ( )A .两条相交直线B .抛物线C .双曲线D .椭圆12.一个圆的圆心为椭圆的右焦点F ,且该圆过椭圆的中心交椭圆于点P, 直线PF 1(F 1为椭圆的左焦点)是该圆的切线,则椭圆的离心率为( ) A .21 B .22 C .23 D .13- 第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知函数()()34f x x ax a R =-+-∈,若函数()y f x =的图象在点()()1,1P f 处的切线的倾斜角为4a π=,则_______.14.双曲线22221x y a b-=(0,0)a b >>的离心率是2,则213b a +的最小值是 .15.若双曲线22221x y a b-= (0,0)a b >>上存在一点P 满足以||OP 为边长的正方形的面积等于2ab (其中O 为坐标原点),则双曲线的离心率的取值范围是________.16.已知命题p:“[]21,2,0x x a ∀∈-≥”,命题q:“2,220x R x ax a ∃∈++-=”若命题“p且q”是真命题,则实数a 的取值范围是__________________.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(10分)已知命题P :不等式2240x ax ++>对一切x R ∈恒成立;命题q :函数()(32)x f x a =-是增函数.若p 或q 为真,p 且q 为假,求实数a 的取值范围.18.(12分)已知函数()()()2,f x xax b a b R =+∈在2x =处取得极值,且()f x 的图象在点()()1,1f 处的切线与直线30x y -=垂直. 求:(Ⅰ),a b 的值; (Ⅱ)函数()f x 的单调区间.19.(12分)已知双曲线2222:1(0,0)x y C a b a b-=>>2。

(1)求双曲线C 的方程;(2)若直线m x y +=被双曲线C 截得的弦长为24,求m 的值。

20.(12分)已知函数),1[,2)(2+∞∈++=x xax x x f . (1)当21=a 时,求函数)(x f 的最小值; (2)若对任意的),1[+∞∈x ,0)(>x f 恒成立,试求实数a 的取值范围.21.(12分)已知椭圆)0(1:2222>>=+b a b y a x C 经过点)221(,M ,其离心率为22,设直线m kx y l +=:与椭圆C 相交于B A 、两点.(Ⅰ)求椭圆C 的方程;(Ⅱ)已知直线l 与圆3222=+y x 相切,求证:OB OA ⊥(O 为坐标原点);22.(12分)已知椭圆C 方程为 22221(0)x y a b a b+=>>,左、右焦点分别是 12,F F ,若椭圆C 上的点 (1,2P 到12,F F 的距离和等于4 (Ⅰ)写出椭圆C 的方程和焦点坐标;(Ⅱ)直线l 过定点M (0,2),且与椭圆C 交于不同的两点A ,B , (ⅰ)若直线l 倾斜角为3π,求 AB 的值. (ⅱ)若0>⋅,求直线l 的斜率k 的取值范围.测试卷一、选择题本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题“0,>∈∀x e R x ”的否定是( )A .x ∀∈R ,e 0x ≤B .x ∃∈R ,e 0x ≤C .x ∃∈R ,e 0x >D .x ∀∈R ,e 0x <【答案】B2.若椭圆22221x y a b+=过抛物线28y x =的焦点, 且与双曲线221x y -=有相同的焦点,则该椭圆的方程是( )A .22142x y += B .2213x y += C .22124x y += D .2213y x +=【答案】A 3.下列命题中的说法正确的是( )A .命题“若21x =,则1x =”的否命题为“若21x =,则1x ≠”B .“1x =-”是“2560x x --=”的必要不充分条件C .命题“0x R ∃∈,使得20010x x ++<”的否定是:“x R ∀∈,均有210x x ++>”D .命题“在ABC ∆中,若A B >,则sin sin A B >”的逆否命题为真命题【答案】D 4.已知命题:,2lg P x R x x ∃∈->,命题2:,0q x R x ∀∈>,则( ) A .命题p q ∨是假命题 B .命题p q ∧是真命题C .命题()p q ∧⌝是真命题D .命题()p q ∨⌝是假命题【答案】C5.以坐标轴为对称轴,以原点为顶点且过圆222690x y x y +-++=的圆心的抛物线的方程是( )A .23y x =或23y x=-B .23y x=C .29y x =-或23y x=D .23y x =-或29y x =【答案】D6.下列有关命题的说法错误..的是 ( ) A.对于命题p :x R ∃∈,使得210x x ++<. 则⌝p :x R ∀∈, 均有210x x ++≥.B.“1=x ”是“0232=+-x x ”的充分不必要条件.C.命题“若12=x ,则1=x ”的否命题为:“若12≠x ,则1≠x ”.D.命题“若5≠+y x ,则32≠≠y x 或”是假命题.【答案】D7.已知双曲线方程为1422=-y x ,过10P (,)的直线l 与双曲线只有一个公共点,则l 的条数共有( )A .4条B .3条C .2条D .1条【答案】B8.中心在坐标原点,焦点在x 轴上的双曲线的一条渐近线方程为 430x y +=,则该双曲线的离心率为( ) A.14 B. 43 C.54 D.53【答案】D 9.设函数2()()f x g x x =+,曲线()y g x =在点(1,(1))g 处的切线方程为21y x =+,则曲线()y f x =在点(1,(1))f 处切线的斜率为( ) A .2 B .4 C .14-D .12-【答案】B 10.设()f x 是定义在R 上的奇函数,且(2)0f =,当0x >时,有2'()()0xf x f x x -<恒成立,则不等式2()0x f x >的解集为 ( ) A .(2,0)(2,)-+∞ B .(2,0)(0,2)- C .(,2)(2,)-∞-+∞ D .(,2)(0,2)-∞-【答案】D .11.已知动点),(y x P 满足5|1243|)2()1(22++=-+-y x y x ,则点P 的轨迹是 ( )A .两条相交直线B .抛物线C .双曲线D .椭圆【答案】B 12.一个圆的圆心为椭圆的右焦点F ,且该圆过椭圆的中心交椭圆于点P, 直线PF 1(F 1为椭圆的左焦点)是该圆的切线,则椭圆的离心率为( ) A .21 B .22 C .23 D .13- 【答案】D 第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知函数()()34f x x ax a R =-+-∈,若函数()y f x =的图象在点()()1,1P f 处的切线的倾斜角为4a π=,则_______.【答案】414.双曲线22221x y a b-=(0,0)a b >>的离心率是2,则213b a +的最小值是 .【答15.若双曲线22221x y a b-= (0,0)a b >>上存在一点P 满足以||OP 为边长的正方形的面积等于2ab (其中O 为坐标原点),则双曲线的离心率的取值范围是________.【答案】)+∞16.已知命题p:“[]21,2,0x x a ∀∈-≥”,命题q:“2,220x R x ax a ∃∈++-=”若命题“p且q”是真命题,则实数a 的取值范围是__________________. 【答案】21-≤=a a 或三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.】已知命题P :不等式2240x ax ++>对一切x R ∈恒成立;命题q :函数()(32)xf x a =-是增函数.若p 或q 为真,p 且q 为假,求实数a 的取值范围. 【答案】[1,2)(,2]-∞-试题分析: p 为真:2416022a a ∆=-<⇒-<<, q 为真:3211a a ->⇒<因为p 或q 为真, p 且q 为假, p,q 一真一假当p 真q 假时,22121a a a -<<⎧⇒≤<⎨≥⎩,当p 假q 真时,2221a a a a ≥≤-⎧⇒≤-⎨<⎩或∴a 的取值范围为[1,2)(,2]-∞-18.已知函数()()()2,f x xax b a b R =+∈在2x =处取得极值,且()f x 的图象在点()()1,1f 处的切线与直线30x y -=垂直.求:(Ⅰ),a b 的值; (Ⅱ)函数()f x 的单调区间.【答案】(Ⅰ)1,3a b ==-;(Ⅱ)函数()f x 的递增区间为(),0-∞和()2,+∞,递减区间是()0,219.已知双曲线2222:1(0,0)x y C a b a b-=>>2。

相关文档
最新文档