高中物理奥赛讲座第11部分:电磁感应
11电磁感应现象法拉第电磁感应定律要点

L
f L f // f e0 f f L eV B eu B fL f //对电子做正功,f 反抗外力做功 f L 洛仑兹力对电子做功的代数和为零。
每个电子受的洛仑兹力
B V
f //
u
u V
2
2
m2
t1
1 ( m1 m 2 ) R
R
1
dt
R
m1
感应电量只与回路中磁通量的变化量有关,与磁 通量变化的快慢无关。
应用法拉第电磁感应定律解题的方法
1.选择回路的绕行方向,确定回路中的磁感应强度 B; 2.由 m B dS 求回路中的磁通量m ;
d m 3 .由 i N 求出 i ; 4.由 i 的正负判定其方向 dt
〔配以某些约定 两定律综合〕 约定
d i dt
① 选定回路的绕行方向(计算正方向) ② 当磁力线方向与所套链绕行方向成右手螺 旋时磁通量为正;反之为负。
③ 当计算所得ε
>0 时,其方向与绕行
方向一致;ε <0,与绕行方向相反。
如均匀磁场 B
dB 0 dt
均匀磁场B . . . . . . .
a
0 Iy 0 Iy a L dx ln 2x 2 a
B
回路中的感应电动势为:
d m I dy a L 0 i ln dt 2 dt a
N
L
S
图中L若是导线, 则有 ,也有i ; 图中L若是空气, 则有 ,没有i ; 法拉第抓住感应电动势, 而不是感应电流, ……感应电动势更本质。
dq 因为感应电流又可表示为: I感 dt 感应电量为: t 1 t d m 1 dt d m q I 感dt t
高中物理竞赛讲座15(电磁感应word)

a
BIL B 2l 2v ,加速度减小,最后停止。 m mR 1 2 产生的内能 mv0 2 安培力的冲量 mv0
B 2l 2 v dv B 2l 2 ds B 2l 2 ds ,即 ,得 dv dt mR dt mR mR 2 2 0 s B l mRv ds 得 s 2 20 两边积分 dv v0 0 mR Bl 应用动量定理 mv0 BILt BL t Rt BL( BLS ) / R mRv 2 20 B L mv0 通过 R 的电量 q It BL R
csg.竞赛.电磁感应. 3 / 25
荷做的功不为零(它等于感应电动势乘上电荷所带的电荷量) ,所以涡旋电场对电荷的作 用力不是保守力。
B 的速率增强,半径为 r 的固定光滑圆环上套有一质量为 m、带电 t r B 1 量为 q 的小环,由静止释放,经时间 t,小环的速率为 v ( q) t 2 t m
且
U MO B
1 B R 2 2
2、感生电动势 (1) 、感生电动势 由于磁场发生变化产生的电磁感应称为感生感应。 由于空间磁场随着时间的变化而形成的电场称之为感应电场。感应电场的电场线为 闭合曲线,无头无尾,像旋涡一样,所以也称涡旋电场。涡旋电场强度方向同感应电流 方向相同。 例:圆环中的磁场变化,引起磁通量的变化,产生电动势。电动势分布于圆环上。 圆环是电源也是用电器。圆环中有电流。电热由磁能转化而来。 棒、导线、电阻围成的闭合回路。磁场变化引起磁通量变化产生电动势。整个回路 均是电源。 (棒不动)
由a 2、电阻和恒力
3、电源和电阻
4、双杆切割
csg.竞赛.电磁感应. 5 / 25
5、电容和恒力
如图装置,金属杆由静止释放,不计摩擦,电路中无电阻。杆切割磁感线,产生感 应电动势,随速度增大,电动势增大,一直给电容器充电。
高中物理奥林匹克竞赛专题-电磁感应(共47张)PPT课件

f e e E , f m e ( v B )
Ee
Ek
dB
1. 麦克斯韦对电磁感应定律的解释:
dt
dB dt
Ei
变化的磁场产生感应电场!
2. 感应电场
Ei
与变化磁场
dB dt
的关系
(1)方向关系(轴对称的变化磁场)
B
感应电场的电力线是一些
向右滑动。
d
l
求任意 时刻感应电动势 的大小和方向。
Bkt
解:设任意时刻穿过回路
的磁通量为 ( t )
(t )BScos
3
1B 2
l
x
i
d
dt
1l(xdB Bdx ) 2 dt dt
1l(kxkt)v 2
lkvt
(0,d d t0,i 0)
d
l
i 与绕行方向相反
Bkt
§16 —3 感生电动势 感 应电场
d
dt
d ( BS ) dt
B
a
L
bV
dx
B dS dt
B L dx BLv
dt
方向:
ba
2. (1) 电源电动势的定义:
把单位正电荷从负极通过电源内部
移到正极,非静电力所做的功。
i
A Ek
dl
( i L E k d l)
E k 称为非静电场强(由静电场力 feeE得来)
讨论: (1) 磁通量的增量是导线切割的
B
a
(2) 磁力线数,只有导体切割磁 L
力线时才有动生电动势.
(2) 回路中的电动势落在运动导
体上,运动导体可视作电源.
bV
dx
高中物理-第一篇 专题四 第11讲 电磁感应

第11讲 电磁感应 命题规律 1.命题角度:(1)楞次定律与法拉第电磁感应定律的应用;(2)电磁感应中的图象问题;(3)电磁感应中的动力学与能量问题.2.常用方法:排除法、函数法.3.常考题型:选择题、计算题.考点一 楞次定律与法拉第电磁感应定律的应用1.感应电流方向的判断(1)楞次定律:线圈面积不变,磁感应强度发生变化的情形,往往用楞次定律.(2)右手定则:导体棒切割磁感线的情形往往用右手定则.2.楞次定律中“阻碍”的主要表现形式(1)阻碍原磁通量的变化——“增反减同”;(2)阻碍物体间的相对运动——“来拒去留”;(3)使线圈面积有扩大或缩小的趋势——一般情况下为“增缩减扩”;(4)阻碍原电流的变化(自感现象)——一般情况下为“增反减同”.3.求感应电动势的方法(1)法拉第电磁感应定律:E =n ΔΦΔt ⎩⎨⎧ S 不变时,E =nS ΔB Δt B 不变时,E =nB ΔS Δt(2)导体棒垂直切割磁感线:E =Bl v .(3)导体棒以一端为圆心在垂直匀强磁场的平面内匀速转动:E =12Bl 2ω. (4)线圈绕与磁场垂直的轴匀速转动(从线圈位于中性面开始计时):e =nBSωsin ωt .4.通过回路截面的电荷量q =I Δt =n ΔΦR 总Δt Δt =n ΔΦR 总.q 仅与n 、ΔΦ和回路总电阻R 总有关,与时间长短无关,与Φ是否均匀变化无关.例1 (多选)(2022·广东卷·10)如图所示,水平地面(Oxy 平面)下有一根平行于y 轴且通有恒定电流I 的长直导线.P 、M 和N 为地面上的三点,P 点位于导线正上方,MN 平行于y 轴,PN 平行于x 轴.一闭合的圆形金属线圈,圆心在P 点,可沿不同方向以相同的速率做匀速直线运动,运动过程中线圈平面始终与地面平行.下列说法正确的有( )A .N 点与M 点的磁感应强度大小相等,方向相同B .线圈沿PN 方向运动时,穿过线圈的磁通量不变C .线圈从P 点开始竖直向上运动时,线圈中无感应电流D .线圈从P 到M 过程的感应电动势与从P 到N 过程的感应电动势相等答案 AC解析 依题意,M 、N 两点连线与长直导线平行,两点与长直导线的距离相等,根据右手螺旋定则可知,通电长直导线在M 、N 两点产生的磁感应强度大小相等、方向相同,故A 正确;根据右手螺旋定则,线圈在P 点时,穿进线圈中的磁感线与穿出线圈中的磁感线相等,磁通量为零,在向N 点平移过程中,穿进线圈中的磁感线与穿出线圈中的磁感线不再相等,穿过线圈的磁通量发生变化,故B 错误;根据右手螺旋定则,线圈从P 点竖直向上运动过程中,穿进线圈中的磁感线与穿出线圈中的磁感线始终相等,穿过线圈的磁通量始终为零,没有发生变化,线圈中无感应电流,故C 正确;线圈从P 点到M 点与从P 点到N 点,穿过线圈的磁通量变化量相同,依题意从P 点到M 点所用时间较从P 点到N 点的时间长,根据法拉第电磁感应定律,可知两次的感应电动势不相等,故D 错误.例2 (多选)(2021·辽宁卷·9)如图(a)所示,两根间距为L 、足够长的光滑平行金属导轨竖直放置并固定,顶端接有阻值为R 的电阻,垂直导轨平面存在变化规律如图(b)所示的匀强磁场,t =0时磁场方向垂直纸面向里.在t =0到t =2t 0的时间内,金属棒水平固定在距导轨顶端L 处;t =2t 0时,释放金属棒.整个过程中金属棒与导轨接触良好,导轨与金属棒的电阻不计,则( )A .在t =t 02时,金属棒受到安培力的大小为B 02L 3t 0RB .在t =t 0时,金属棒中电流的大小为B 0L 2t 0RC .在t =3t 02时,金属棒受到安培力的方向竖直向上 D .在t =3t 0时,金属棒中电流的方向向右答案 BC解析 由题图(b)可知在0~t 0时间段内闭合回路产生的感应电动势为E =ΔΦΔt =B 0L 2t 0,根据闭合电路欧姆定律有,此时间段内的电流为I =E R =B 0L 2Rt 0,在t 02时磁感应强度大小为B 02,此时安培力大小为F =B 02IL =B 02L 32Rt 0,故A 错误,B 正确;由题图(b)可知,在t =3t 02时,磁场方向垂直纸面向外并逐渐增大,根据楞次定律可知产生顺时针方向的电流,再由左手定则可知金属棒受到的安培力方向竖直向上,故C 正确;由题图(b)可知,在t =3t 0时,磁场方向垂直纸面向外,金属棒向下掉的过程中穿过回路的磁通量增加,根据楞次定律可知金属棒中的感应电流方向向左,故D 错误.考点二 电磁感应中的图象问题1.电磁感应中常见的图象常见的有磁感应强度、磁通量、感应电动势、感应电流、速度、安培力等随时间或位移的变化图象.2.解答此类问题的两个常用方法(1)排除法:定性分析电磁感应过程中某个物理量的变化情况,把握三个关注,快速排除错误的选项.这种方法能快速解决问题,但不一定对所有问题都适用.(2)函数关系法:根据题目所给的条件写出物理量之间的函数关系,再对图象作出判断,这种方法得到的结果准确、详细,但不够简捷.例3 (多选)(2022·河北卷·8)如图,两光滑导轨水平放置在竖直向下的匀强磁场中,一根导轨位于x 轴上,另一根由ab 、bc 、cd 三段直导轨组成,其中bc 段与x 轴平行,导轨左端接入一电阻R .导轨上一金属棒MN 沿x 轴正向以速度v 0保持匀速运动,t =0时刻通过坐标原点O ,金属棒始终与x 轴垂直.设运动过程中通过电阻的电流强度为i ,金属棒受到安培力的大小为F ,金属棒克服安培力做功的功率为P ,电阻两端的电压为U ,导轨与金属棒接触良好,忽略导轨与金属棒的电阻.下列图象可能正确的是( )答案 AC解析 在0~L v 0时间内,在某时刻金属棒切割磁感线的长度L =l 0+v 0t tan θ(θ为ab 与ad 的夹角),则根据E =BL v 0,可得I =BL v 0R =B v 0R(l 0+v 0t tan θ),可知回路电流均匀增加;安培力F =B 2L 2v 0R =B 2v 0R (l 0+v 0t tan θ)2,则F -t 关系为二次函数关系,但是不过原点;安培力做功的功率P =F v 0=B 2L 2v 02R =B 2v 02R (l 0+v 0t tan θ)2,则P -t 关系为二次函数关系,但是不过原点;电阻两端的电压等于金属棒产生的感应电动势,即U =E =BL v 0=B v 0(l 0+v 0t tan θ),即U -t 图象是不过原点的直线;根据以上分析,可排除B 、D 选项;在L v 0~2L v 0时间内,金属棒切割磁感线的长度不变,感应电动势E 不变,感应电流I 不变,安培力F 大小不变,安培力的功率P 不变,电阻两端电压U 保持不变;同理可判断,在2L v 0~3L v 0时间内,金属棒切割磁感线长度逐渐减小,金属棒切割磁感线的感应电动势E 均匀减小,感应电流I 均匀减小,安培力F 大小按照二次函数关系减小,但是不能减小到零,与0~L v 0内是对称的关系,安培力的功率P 按照二次函数关系减小,但是不能减小到零,与0~L v 0内是对称的关系,电阻两端电压U 按线性均匀减小,综上所述选项A 、C 可能正确,B 、D 错误.例4 (多选)(2022·安徽省六校第二次联考)如图所示,水平面内有一足够长平行金属导轨,导轨光滑且电阻不计.匀强磁场与导轨平面垂直.阻值为R的导体棒垂直于导轨静止放置,且与导轨接触良好.开关S由1掷到2时开始计时,q、i、v和a分别表示电容器所带的电荷量、棒中的电流、棒的速度和加速度.下列图象可能正确的是()答案ACD解析开关S由1掷到2,电容器放电后会在电路中产生电流且此刻电流最大,导体棒通有电流后会受到安培力的作用产生加速度而加速运动,导体棒切割磁感线产生感应电动势,导体棒速度增大,则感应电动势E=Bl v增大,则实际电流减小,安培力F=BIL减小,加速度a=Fm即减小,因导轨光滑,所以在有电流通过棒的过程中,棒是一直做加速度减小的加速运动(变加速),故a-t图象即选项D是正确的;导体棒运动产生感应电动势会给电容器充电,当充电和放电达到一种平衡时,导体棒做匀速运动,因此最终电容器两端的电压能稳定在某个不为0的数值,即电容器的电荷量应稳定在某个不为0的数值(不会减少到0),电路中无电流,故B错误,A、C正确.考点三电磁感应中的动力学与能量问题1.电磁感应综合问题的解题思路2.求解焦耳热Q的三种方法(1)焦耳定律:Q=I2Rt,适用于电流恒定的情况;(2)功能关系:Q=W克安(W克安为克服安培力做的功);(3)能量转化:Q =ΔE (其他能的减少量).例5 (多选)(2022·全国甲卷·20)如图,两根相互平行的光滑长直金属导轨固定在水平绝缘桌面上,在导轨的左端接入电容为C 的电容器和阻值为R 的电阻.质量为m 、阻值也为R 的导体棒MN 静止于导轨上,与导轨垂直,且接触良好,导轨电阻忽略不计,整个系统处于方向竖直向下的匀强磁场中.开始时,电容器所带的电荷量为Q ,合上开关S 后( )A .通过导体棒MN 电流的最大值为Q RCB .导体棒MN 向右先加速、后匀速运动C .导体棒MN 速度最大时所受的安培力也最大D .电阻R 上产生的焦耳热大于导体棒MN 上产生的焦耳热答案 AD解析 开始时电容器两极板间的电压U =Q C ,合上开关瞬间,通过导体棒的电流I =U R =Q CR ,随着电容器放电,通过电阻、导体棒的电流不断减小,所以在开关闭合瞬间,导体棒所受安培力最大,此时速度为零,A 项正确,C 项错误;由于回路中有电阻与导体棒,最终电能完全转化为焦耳热,故导体棒最终必定静止,B 项错误;由于导体棒切割磁感线,产生感应电动势,所以通过导体棒的电流始终小于通过电阻的电流,由焦耳定律可知,电阻R 上产生的焦耳热大于导体棒MN 上产生的焦耳热,D 项正确.例6 (2022·山东济南市一模)如图所示,在水平虚线下方存在方向垂直纸面向外的匀强磁场,磁感应强度大小为B .磁场上方某高度处有一个正方形金属线框,线框质量为m ,电阻为R ,边长为L .某时刻将线框以初速度v 0水平抛出,线框进入磁场过程中速度不变,运动过程中线框始终竖直且底边保持水平.磁场区域足够大,忽略空气阻力,重力加速度为g ,求:(1)线框进入磁场时的速度v ;(2)线框进入磁场过程中产生的热量Q .答案 (1)v 02+m 2g 2R 2B 4L 4,速度方向与水平方向夹角的正切值为mgRB 2L 2v 0(2)mgL 解析 (1)当线框下边界刚进入磁场时,由于线框速度不变,对线框进行受力分析有BIL=mg由欧姆定律可得I=ER线框切割磁感线,由法拉第电磁感应定律可得E=BL v y由速度的合成与分解可得v=v02+v y2联立求解可得v=v02+m2g2R2B4L4设此时速度方向与水平面的夹角为θ,则tan θ=v yv0=mgR B2L2v0即此时速度方向与水平方向夹角的正切值为mgRB2L2v0.(2)线框进入磁场过程中速度不变,则从进入磁场开始到完全进入磁场,由能量守恒定律得Q=mgL.例7(2022·河南洛阳市模拟)如图甲所示,金属导轨MN和PQ平行,间距L=1 m,与水平面之间的夹角α=37°,匀强磁场磁感应强度大小B=2.0 T,方向垂直于导轨平面向上,MP 间接有阻值R=1.5 Ω的电阻,质量m=0.5 kg,接入电路中电阻r=0.5 Ω的金属杆ab垂直导轨放置,金属杆与导轨间的动摩擦因数为μ=0.2.现用恒力F沿导轨平面向上拉金属杆ab,使其由静止开始运动,当金属杆上滑的位移x=3.8 m时达到稳定状态,金属杆始终与导轨接触良好,对应过程的v-t图象如图乙所示.取g=10 m/s2,sin 37°=0.6,cos 37°=0.8,导轨足够长且电阻不计.求:(1)恒力F的大小及金属杆的速度为0.4 m/s时的加速度大小;(2)从金属杆开始运动到刚达到稳定状态,通过电阻R的电荷量;(3)从金属杆开始运动到刚达到稳定状态,金属杆上产生的焦耳热.答案(1)5.8 N 2.4 m/s2(2)3.8 C(3)1.837 5 J解析(1)当金属杆匀速运动时,由平衡条件得F=μmg cos 37°+mg sin 37°+F安由题图乙知v =1 m/s ,则F 安=BIL =B 2L 2v R +r =2 N 解得F =5.8 N当金属杆的速度为0.4 m/s 时F 安1=BI 1L =B 2L 2v 1R +r=0.8 N 由牛顿第二定律有F -μmg cos 37°-mg sin 37°-F 安1=ma解得a =2.4 m/s 2.(2)由q =I ·ΔtI =E R +rE =ΔΦΔt 得q =ΔΦR +r =BLx R +r=3.8 C. (3)从金属杆开始运动到刚到达稳定状态,由动能定理得(F -μmg cos 37°-mg sin 37°)x +W 安=12m v 2-0 又Q =|W 安|=7.35 J ,所以解得Q r =r R +rQ =1.837 5 J.1.(多选)(2022·河南郑州市二模)在甲、乙、丙图中,MN 、PQ 是固定在同一水平面内足够长的平行金属导轨.导体棒ab 垂直放在导轨上,导轨都处于垂直水平面向下的匀强磁场中,导体棒和导轨间的摩擦不计,导体棒、导轨和直流电源的电阻均可忽略,甲图中的电容器C 原来不带电.现给导体棒ab 一个向右的初速度v 0,对甲、乙、丙图中导体棒ab 在磁场中的运动状态描述正确的是( )A .甲图中,棒ab 最终做匀速运动B .乙图中,棒ab 做匀减速运动直到最终静止C .丙图中,棒ab 最终做匀速运动D .甲、乙、丙中,棒ab 最终都静止答案 AC解析 题图甲中,导体棒向右运动切割磁感线产生感应电流而使电容器充电,当电容器C 极板间电压与导体棒产生的感应电动势相等时,电路中没有电流,此时ab 棒不受安培力作用,向右做匀速运动,故A 正确;题图乙中,导体棒向右运动切割磁感线产生感应电流,通过电阻R 转化为内能,ab 棒速度减小,当ab 棒的动能全部转化为内能时,ab 棒静止,又由I =BL v R,F =BIL ,由于速度减小,则产生的感应电流减小,导体棒所受安培力减小,根据牛顿第二定律可知导体棒的加速度减小,所以题图乙中,棒ab 做加速度减小的减速运动直到最终静止,故B 错误;题图丙中,导体棒先受到向左的安培力作用向右做减速运动,速度减为零后在安培力作用下向左做加速运动,当导体棒产生的感应电动势与电源的电动势相等时,电路中没有电流,此时ab 棒向左做匀速运动,故C 正确;由以上分析可知,甲、乙、丙中,只有题图乙中棒ab 最终静止,故D 错误.2.(2022·山东泰安市高三期末)如图所示,间距为L 的平行光滑足够长的金属导轨固定倾斜放置,倾角θ=30°,虚线ab 、cd 垂直于导轨,在ab 、cd 间有垂直于导轨平面向上、磁感应强度大小为B 的匀强磁场.质量均为m 、阻值均为R 的金属棒PQ 、MN 并靠在一起垂直导轨放在导轨上.释放金属棒PQ ,当PQ 到达ab 瞬间,再释放金属棒MN ;PQ 进入磁场后做匀速运动,当PQ 到达cd 时,MN 刚好到达ab .不计导轨电阻,两金属棒与导轨始终接触良好,重力加速度为g .则MN 通过磁场过程中,PQ 上产生的焦耳热为( )A.2m 3g 2R 2B 4L4 B.m 3g 2R 2B 4L 4 C.m 3g 2R 24B 4L4 D.m 3g 2R 22B 4L4 答案 D解析 由题意知PQ 进入磁场后做匀速运动,则由平衡条件得安培力为F =mg sin θ,又因为F =BIL =B 2L 2v 2R ,解得金属棒速度为v =mgR B 2L 2,电流为I =mg 2BL ,因为金属棒从释放到刚进入磁场时做匀加速直线运动,由牛顿第二定律知mg sin θ=ma,所以加速时间为t=va,由题意知当PQ到达cd时,MN刚好到达ab,即金属棒穿过磁场的时间等于进入磁场前的加速时间,且MN在磁场中的运动情况和PQ一致,故MN通过磁场过程中,PQ上产生的焦耳热为Q焦耳=I2Rt,解得Q焦耳=m3g2R22B4L4,故选D.专题强化练[保分基础练]1.(2022·上海市二模)如图,某教室墙上有一朝南的钢窗,将钢窗右侧向外打开,以推窗人的视角来看,窗框中产生()A.顺时针电流,且有收缩趋势B.顺时针电流,且有扩张趋势C.逆时针电流,且有收缩趋势D.逆时针电流,且有扩张趋势答案 D解析磁场方向由南指向北,将钢窗右侧向外打开,则向北穿过窗户的磁通量减少,根据楞次定律,以推窗人的视角来看,感应电流为逆时针电流,同时根据“增缩减扩”可知,窗框有扩张趋势,故选D.2.(2022·广东肇庆市二模)如图所示,开口极小的金属环P、Q用不计电阻的导线相连组成闭合回路,金属环P内存在垂直圆环平面向里的匀强磁场,匀强磁场的磁感应强度随时间的变化率为k,若使金属环Q中产生逆时针方向逐渐增大的感应电流,则()A.k>0且k值保持恒定B.k>0且k值逐渐增大C.k<0且k值逐渐增大D.k<0且k值逐渐减小答案 B解析若使金属环Q中产生逆时针方向逐渐增大的感应电流,则金属环P中也有逆时针方向逐渐增大的感应电流,根据楞次定律和安培定则可知,金属环P中向里的磁感应强度增加,且增加得越来越快,即k>0且k值逐渐增大,故选B.3.(2022·陕西宝鸡市模拟)如图所示,两根电阻不计的平行光滑长直金属导轨水平放置,导体棒a和b垂直跨在导轨上且与导轨接触良好,导体棒a的电阻大于b的电阻,匀强磁场方向竖直向下.当导体棒b在大小为F2的水平拉力作用下匀速向右运动时,导体棒a在大小为F1的水平拉力作用下保持静止状态.若U1、U2分别表示导体棒a和b与导轨两个接触点间的电压,那么它们的大小关系为()A.F1=F2,U1> U2B.F1< F2,U1< U2C.F1 > F2,U1< U2D.F1=F2,U1=U2答案 D解析导体棒a、b与导轨构成了闭合回路,流过a、b的电流是相等的;a静止不动,b匀速运动,都处于平衡状态,即拉力等于安培力,所以F1=F2=BIL,导体棒b相当于电源,导体棒a相当于用电器,由于电路是闭合的,所以导体棒a两端的电压U1=IR a,导体棒b切割磁感线产生的电动势E=BL v b=I(R a+R b),所以其输出的路端电压U2=E-IR b=IR a=U1,故选D.4.(2022·广东省模拟)如图所示,水平面内光滑的平行长直金属导轨间距为L,左端接电阻R,导轨上静止放有一导体棒.正方形虚线框内有方向竖直向下、磁感应强度大小为B的匀强磁场,该磁场正以速度v匀速向右移动,则()A.电阻R两端的电压恒为BL vB .电阻R 中有从a 到b 的电流C .导体棒以速度v 向左运动D .导体棒也向右运动,只是速度比v 小 答案 D解析 根据楞次定律,磁场正以速度v 匀速向右移动,磁通量减小,则导体棒也向右运动,阻碍磁通量的减小,但由于要产生感应电流,棒的速度比v 小,C 错误,D 正确;由此可认为磁场不动,棒向左切割,感应电流方向从b 到a 流过R ,B 错误;产生感应电动势的大小看棒与磁场的相对速度,故电阻R 两端的电压不恒定且小于或等于BL v ,A 错误. 5.(2022·全国甲卷·16)三个用同样的细导线做成的刚性闭合线框,正方形线框的边长与圆线框的直径相等,圆线框的半径与正六边形线框的边长相等,如图所示.把它们放入磁感应强度随时间线性变化的同一匀强磁场中,线框所在平面均与磁场方向垂直,正方形、圆形和正六边形线框中感应电流的大小分别为I 1、I 2和I 3.则( )A .I 1<I 3<I 2B .I 1>I 3>I 2C .I 1=I 2>I 3D .I 1=I 2=I 3答案 C解析 设圆线框的半径为r ,则由题意可知正方形线框的边长为2r ,正六边形线框的边长为r ;所以圆线框的周长为C 2=2πr ,面积为S 2=πr 2,同理可知正方形线框的周长和面积分别为C 1=8r ,S 1=4r 2,正六边形线框的周长和面积分别为C 3=6r ,S 3=33r 22,三个线框材料粗细相同,根据电阻定律R =ρL S 横截面,可知三个线框电阻之比为R 1∶R 2∶R 3=C 1∶C 2∶C 3=8∶2π∶6,根据法拉第电磁感应定律有I =E R =ΔB Δt ·SR ,可得电流之比为I 1∶I 2∶I 3=2∶2∶3,即I 1=I 2>I 3,故选C.6.(2022·黑龙江哈师大附中高三期末)如图,一线圈匝数为n ,横截面积为S ,总电阻为r ,处于一个均匀增强的磁场中,磁感应强度随时间的变化率为k (k >0且为常量),磁场方向水平向右且与线圈平面垂直,电容器的电容为C ,两个电阻的阻值分别为r 和2r .下列说法正确的是( )A .电容器下极板带正电B .此线圈的热功率为(nkS )2rC .电容器所带电荷量为3nSkC5D .电容器所带电荷量为nSkC2答案 D解析 根据楞次定律可以判断通过电阻r 的电流方向为从左往右,所以电容器上极板带正电,故A 错误;根据法拉第电磁感应定律可得线圈产生的感应电动势为E =n ΔΦΔt =nS ΔBΔt =nkS ,根据焦耳定律可得此线圈的热功率为P =(E 2r )2r =(nkS )24r ,故B 错误;电容器两端电压等于r两端电压,电容器所带电荷量为Q =CU =C ·rE 2r =nSkC2,故C 错误,D 正确.7.(2022·江苏盐城市二模)如图所示,三条平行虚线L 1、L 2、L 3之间有宽度为L 的两个匀强磁场区域Ⅰ、Ⅱ,两区域内的磁感应强度大小相等、方向相反,正方形金属线框MNPQ 的质量为m 、边长为L ,开始时MN 边与边界L 1重合,对线框施加拉力F 使其以加速度a 匀加速通过磁场区,以顺时针方向电流为正方向,下列关于感应电流i 和拉力F 随时间变化的图象可能正确的是( )答案 B解析 当MN 边向右运动0~L 的过程中,用时t 1=2L a ,则E 1=BLat ,电流I 1=E 1R =BLa Rt ,方向为正方向;拉力F 1=ma +F 安1=ma +B 2L 2aR t ;当MN 边向右运动L ~2L 的过程中,用时t 2=4L a-2La=(2-1)2L a =(2-1)t 1,E 2=2BLat ,电流I 2=E 2R =2BLa Rt ,方向为负方向,拉力F 2=ma +F 安2=ma +4B 2L 2aR t ;当MN 边向右运动2L ~3L 的过程中,用时t 3=6La-4La=(3-2)2L a =(3-2)t 1,E 3=BLat ,电流I 3=E 3R =BLa Rt ,方向为正方向,拉力F 3=ma +F 安3=ma +B 2L 2aRt ,对比四个选项可知,只有B 正确.[争分提能练]8.(多选)(2021·广东卷·10)如图所示,水平放置足够长光滑金属导轨abc 和de ,ab 与de 平行,bc 是以O 为圆心的圆弧导轨,圆弧be 左侧和扇形Obc 内有方向如图的匀强磁场,金属杆OP 的O 端与e 点用导线相接,P 端与圆弧bc 接触良好,初始时,可滑动的金属杆MN 静止在平行导轨上,若杆OP 绕O 点在匀强磁场区内从b 到c 匀速转动时,回路中始终有电流,则此过程中,下列说法正确的有( )A .杆OP 产生的感应电动势恒定B .杆OP 受到的安培力不变C .杆MN 做匀加速直线运动D .杆MN 中的电流逐渐减小 答案 AD解析 杆OP 匀速转动切割磁感线产生的感应电动势为E =12Br 2ω,因为OP 匀速转动,所以杆OP 产生的感应电动势恒定,故A 正确;杆OP 转动过程中产生的感应电流由M 到N 通过杆MN ,由左手定则可知,杆MN 会向左运动,杆MN 运动会切割磁感线,产生电动势,感应电流方向与原来电流方向相反,使回路电流减小,杆MN 所受合力为安培力,电流减小,安培力会减小,加速度减小,故D 正确,B 、C 错误.9.(多选)(2021·全国甲卷·21)由相同材料的导线绕成边长相同的甲、乙两个正方形闭合线圈,两线圈的质量相等,但所用导线的横截面积不同,甲线圈的匝数是乙的2倍.现两线圈在竖直平面内从同一高度同时由静止开始下落,一段时间后进入一方向垂直于纸面的匀强磁场区域,磁场的上边界水平,如图所示.不计空气阻力,已知下落过程中线圈始终平行于纸面,上、下边保持水平.在线圈下边进入磁场后且上边进入磁场前,可能出现的是( )A .甲和乙都加速运动B .甲和乙都减速运动C .甲加速运动,乙减速运动D .甲减速运动,乙加速运动 答案 AB解析 设线圈下边到磁场上边界的高度为h ,线圈的边长为l ,则线圈下边刚进入磁场时,有v =2gh ,感应电动势为E =nBl v ,两线圈材料相同(设密度为ρ0),质量相等(设为m ), 则m =ρ0·4nl ·S ,设材料的电阻率为ρ,则线圈电阻 R =ρ4nl S =16n 2l 2ρρ0m感应电流为I =E R =mB v 16nlρρ0所受安培力为F =nBIl =mB 2v16ρρ0由牛顿第二定律有mg -F =ma 联立解得a =g -Fm =g -B 2v 16ρρ0加速度与线圈的匝数、横截面积无关,则甲和乙进入磁场时,具有相同的加速度. 当g >B 2v16ρρ0时,甲和乙都加速运动,当g <B 2v 16ρρ0时,甲和乙都减速运动,当g =B 2v16ρρ0时,甲和乙都匀速运动,故选A 、B.10.(2022·山东省第二次模拟)如图所示,“凹”字形硬质金属线框质量为m ,相邻各边互相垂直,且处于同一平面内,ab 、bc 边长均为2l ,gf 边长为l .匀强磁场区域的上下边界均水平,磁场方向垂直于线框所在平面.开始时,bc 边离磁场上边界的距离为l ,线框由静止释放,从bc 边进入磁场直到gf 边进入磁场前,线框做匀速运动.在gf 边离开磁场后,ah 、ed 边离开磁场之前,线框又做匀速运动.线框在下落过程中始终处于竖直平面内,且bc 、gf 边保持水平,重力加速度为g .(1)线框ah 、ed 边将要离开磁场时做匀速运动的速度大小是bc 边刚进入磁场时的几倍? (2)若磁场上下边界间的距离为H ,则线框完全穿过磁场过程中产生的热量为多少? 答案 (1)4 (2)mg (H -13l )解析 (1)设bc 边刚入磁场时速度为v 1,bc 边刚进入时, 有E 1=2Bl v 1,I 1=E 1R ,F 1=2BI 1l线框匀速运动,有F 1=mg 联立可得v 1=mgR4B 2l2设ah 、ed 边将离开磁场时速度为v 2,ah 、ed 边将离开磁场时,有E 2=Bl v 2,I 2=E 2R ,F 2=BI 2l ,线框匀速运动,有F 2=mg 联立可得v 2=mgRB 2l 2,综上所述v 2v 1=4即线框ah 、ed 边将要离开磁场时做匀速运动的速度大小是bc 边刚进入磁场时的4倍. (2)bc 边进入磁场前,根据动能定理, 有mgl =12m v 12穿过磁场过程中能量守恒,。
高中物理竞赛《电磁感应》内容讲解

电磁感应全国物理竞赛知识要点:法拉第电磁感应定律。
楞次定律。
自感系数。
互感和变压器。
交流发电机原理。
交流电的最大值和有效值。
纯电阻、纯电感、纯电容电路。
整流和滤波。
一、感应电动势、感应电流的计算基本原理:法拉第电磁感应定律、麦克斯韦电磁场理论、电路分析的原理1、如图OC为一绝缘杆,C端固定着一金属杆ab,已知ac=cb,ab=oc=R,∠aco=600,此结构整体可绕O 点在纸面内沿顺时针方向以角速度ω匀速转动,设有磁感应强度为B,方向垂直于纸面向里的匀强磁场存在,则a、b间的电势差U ab是多少?2、如图所示,六根长度均为a的导线组成一个正三棱锥形,绕过O点且垂直于OBC所在平面的轴,以角速度ω匀速转动,匀强磁场B垂直于OBC平面向下,求导线AC中产生的电动势大小。
3、如图所示,在垂直与纸面向里磁感应强度为B的匀强磁场中,有一细金属丝环,环上A点有长度为L的很小缺口,环面与磁场垂直,当环作无滑动地滚动时,环心以速度v匀速向右运动,半径OA与竖直方向成的角θ不断增大,试求缺口处感应电动势与θ的关系。
(A即为缺口)4、如图所示,匀强磁场分布在半径为R 的圆形区域中,磁场以k tB=∆∆均匀增加,AC=CD=R ,如何求A 、C 间、A 、D 间的电压?5、圆abcd 的半径为圆形磁场区域的2倍,磁场以k tB=∆∆(常数)均匀增加,已知bad 、bd 、bcd 及电流计电阻均为R ,其余电阻不计磁场区域的直径为D ,。
求电流计中的感应电流(RkD 162π)将右半回路(bcd)以bd 为轴转900(与上述相同)、将右半回路以bd 为轴转1800(RkD 82π)6、一横截面积为矩形的水平金属板,宽为d,两侧由滑动接头e和f通过细金属杆与小伏特表相连,金属杆ab长为2d,位于水平位置,整个装置处在方向竖直向上、磁感应强度为B的匀强磁场中,不计金属板和金属杆的电阻,在下列情况下,问伏特表的读数为多少?a点的电势比b点高多少?b点的电势比e点高多少?(1)若金属板以恒定的速度v向右运动,但伏特表和金属杆保持静止;(2)若金属杆和伏特表一起以恒定的水平速度v向左运动,但金属板保持静止;(3)若整个装置一起以恒定的水平速度v向右运动。
高二物理11第三章电磁感应知识点梳理

高二物理11第三章电磁感应知识点梳理电磁感应现象是指放在变化磁通量中的导体,会产生电动势。
以下是查字典物理网为大伙儿整理的高二物理选修1-1第三章电磁感应知识点,期望能够解决您所遇到的相关问题,加油,查字典物理网一直陪伴您。
1.★电磁感应现象:利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流。
(1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即0。
(2)产生感应电动势的条件:不管回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势。
产生感应电动势的那部分导体相当于电源。
(2)电磁感应现象的实质是产生感应电动势,假如回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流。
2.磁通量(1)定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过那个面的磁通量,定义式:=BS。
假如面积S与B不垂直,应以B乘以在垂直于磁场方向上的投影面积S,即=BS,国际单位:Wb 求磁通量时应该是穿过某一面积的磁感线的净条数。
任何一个面都有正、反两个面;磁感线从面的正方向穿入时,穿过该面的磁通量为正。
反之,磁通量为负。
所求磁通量为正、反两面穿入的磁感线的代数和。
3.★楞次定律(1)楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化。
楞次定律适用于一样情形的感应电流方向的判定,而右手定则只适用于导线切割磁感线运动的情形,此种情形用右手定则判定比用楞次定律判定简便。
(2)对楞次定律的明白得①谁阻碍谁---感应电流的磁通量阻碍产生感应电流的磁通量。
②阻碍什么---阻碍的是穿过回路的磁通量的变化,而不是磁通量本身。
③如何阻碍---原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即增反减同。
④阻碍的结果---阻碍并不是阻止,结果是增加的还增加,减少的还减少。
(3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个缘故,表现形式有三种:①阻碍原磁通量的变化;②阻碍物体间的相对运动;③阻碍原电流的变化(自感)。
第十一章电磁感应

S
d 2 r
0I0l1 ln d l2 sin t
2
d
d 0 I0l1 ln d l2 cost
dt
2
d
方向随时间变化,若ε>0,则为顺时针; 若ε<0,则为逆时针;
首页 上页 下页退出
§11-2 动生电动势 感生电动势
感应电动势的非静电力实质?
=-d (m )
d(BS)
(S
(a)反抗线圈内磁通量的增加 (b)补偿线圈内磁通量的减少
2、楞次定律是能量守恒定律在电 磁感应现象上体现。
(a)磁棒靠近,外力克服斥 力做功,所做的功转化为电 能,再转化为焦耳热;
(b)磁棒远离,外力克服引 力做功,所做的功转化为电 能,再转化为焦耳热;
S
v
N
I
S
v
N
I
首页 上页 下页退出
三、电动势
16 首页 上页 下页退出
即,总的洛仑兹力不对电子作功,而只是传递能量。在 这里,洛仑兹力起到了能量转化的传递作用
17 首页 上页 下页退出
例11-2长为L的金属棒oa在与B的均匀磁场中以匀角速绕o 点转动,求棒中的动生电动势的大小和方向。
解:在 oa 棒上离o点l处取微元dl
L dl a
l
o•
例11-1:一长直导线中通有电流I,在其旁边平行的放置一矩形线圈 abcd ,已知线圈长度为l1宽度为l2 ,初始时刻,线圈近直线一边离直导 线的距离为d 。求:(1)导线中电流为交变电流I=I0sinωt ,线圈静止 时线圈中的感应电动势的大小和方向
(1)选取顺时针方向为绕行方向
d dl2 0Il1 dr
电动势为
L (v B) dl
高考物理一轮总复习第11章电磁感应第2节法拉第电磁感应定律及其应用课件

q=It= t=
t=
Δ
,因在 0~0.2 s 与 0.2~0.6 s 的
时间内,磁感应强度随时间的变化量的绝对值 ΔB 相同,故通过金属框的电荷
量之比为 1∶1,A 错误;金属框中电流的电功率
1
2
=
2 2
1 2
=
4
,B
1
正确;金属框中产生的焦耳热
2
P=
=
1
Q=Pt,得
2
Δ 2
=
1 1
2 2
=
(Δ)2
,所以
2
=
2
,C
1
错误;在
0~0.2 s 与 0.2~0.6 s 时间内,通过金属框的电流方向相反,所以金属框 ab 边受
到安培力方向相反,D 错误。
2.(2022全国甲卷)三个用同样的细导线做成的刚性闭合线框,正方形线框
的边长与圆线框的直径相等,圆线框的半径与正六边形线框的边长相等,如
。
2
2
64
1 1
Q= ×( 0 2 +mgh)
4 2
增素能 精准突破
考点一
法拉第电磁感应定律的应用[师生共研]
1.磁通量Φ、磁通量的变化量ΔΦ、磁通量的变化率
的比较
物理量
磁通量Φ
磁通量的变化量 ΔΦ
Φ
磁通量的变化率 t
意义
某时刻穿过某
个面的磁感线
的条数
某段时间内穿过某个
面的磁通量变化多少
Δ
Δ
Δ 2
Δ
E=n =n S=n πr ,因
Δ
Δ
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十一部分电磁感应在第十部分,我们将对感应电动势进行更加深刻的分析,告诉大家什么是动生电动势,什么是感生电动势。
在自感和互感的方面,也会分析得更全面。
至于其它,如楞次定律、电磁感应的能量实质等等,则和高考考纲差别不大。
第一讲、基本定律一、楞次定律1、定律:感应电流的磁场总是阻碍引起感应电流的磁通量的变化。
注意点:阻碍“变化”而非阻碍原磁场本身;两个磁场的存在。
2、能量实质:发电结果总是阻碍发电过程本身——能量守恒决定了楞次定律的必然结果。
左移动,判断移动过程中线圈的感应电流的方向。
【解说】法一:按部就班应用楞次定律;法二:应用“发电结果总是阻碍发电过程本身”。
由“反抗磁通增大”→线圈必然逆时针转动→力矩方向反推感应电流方向。
【答案】上边的电流方向出来(下边进去)。
〖学员思考〗如果穿过线圈的磁场是一对可以旋转的永磁铁造成的,当永磁铁逆时针旋转时,线圈会怎样转动?〖解〗略。
〖答〗逆时针。
——事实上,这就感应电动机的基本模型,只不过感应电动机的旋转磁场是由三相交流电造就的。
3、问题佯谬:在电磁感应问题中,可能会遇到沿不同途径时得出完全相悖结论的情形,这时,应注意什么抓住什么是矛盾的主要方面。
圈。
试问:当磁感应强度逐渐减小时,线圈会扩张还是会收缩?【解说】解题途径一:根据楞次定律之“发电结果总是阻碍发电过程本身”,可以判断线圈应该“反抗磁通的减小”,故应该扩张。
解题途径二:不论感应电流方向若何,弹簧每两圈都是“同向平行电流”,根据安培力的常识,它们应该相互吸引,故线圈应该收缩。
这两个途径得出的结论虽然是矛盾的,但途径二有不严谨的地方,因为导线除了受彼此间的安培力之外,还受到外磁场的安培力作用,而外磁场的安培力是促使线圈扩张的,所以定性得出结论事实上是困难的。
但是,途径一源于能量守恒定律,站的角度更高,没有漏洞存在。
【答案】扩张。
〖学员思考〗如图10-3所示,在平行、水平的金属导轨上有两根可以自由滚动的金属棒,当它们构成闭合回路正上方有一根条形磁铁向下运动时,两根金属棒会相互靠拢还是相互远离?〖解〗同上。
〖答〗靠拢。
二、法拉第电磁感应定律1、定律:闭合线圈的感应电动势和穿过此线圈的磁通量的变化率成正比。
即ε= Nt∆φ∆物理意义:N 为线圈匝数;t∆φ∆有瞬时变化率和平均变化率之分,在定律中的ε分别对应瞬时电动势和平均电动势。
图象意义:在φ-t 图象中,瞬时变化率t∆φ∆对应图线切线的斜率。
【例题3】面积为S 的圆形(或任何形)线圈绕平行环面且垂直磁场的轴匀速转动。
已知匀强磁场的磁感应强度为B ,线圈转速为ω,试求:线圈转至图19-4所示位置的瞬时电动势和从图示位置开始转过90°过程的平均电动势。
【解说】本题是法拉第电磁感应定律的基本应用。
求瞬时电动势时用到极限x x sin limx →= 1 ;求平均电动势比较容易。
【答案】BS ω ;π2 BS ω 。
2、动生电动势a 、磁感应强度不变而因闭合回路的整体或局部运动形成的电动势成为动生电动势。
b 、动生电动势的计算在磁感应强度为B 的匀强磁场中,当长为L 的导体棒一速度v 平动切割磁感线,且B 、L 、v 两两垂直时,ε= BLv ,电势的高低由“右手定则”判断。
这个结论的推导有两种途径——①设置辅助回路,应用法拉第电磁感应定律;②导体内部洛仑兹力与电场力平衡。
导体两端形成固定电势差后,导体内部将形成电场,且自由电子不在移动,此时,对于不在定向移动的电子而言,洛仑兹力f 和电场力F 平衡,即F = f 即 qE = qvB而导体内部可以看成匀强电场,即Lε= E所以ε= BLv当导体有转动,或B 、L 、v 并不两两垂直时,我们可以分以下四种情况讨论(结论推导时建议使用法拉第电磁感应定律)——①直导体平动,L ⊥B ,L ⊥v ,但v 与B 夹α角(如图10-5所示),则ε= BLvsin α; ②直导体平动,v ⊥B ,L ⊥B ,但v 与L 夹β角(如图10-6所示),则ε= BLvsin β; 推论:弯曲导体平动,端点始末连线为L ,v ⊥B ,L ⊥B ,但v 与L 夹γ角(如图10-7所示),则ε= BLvsin γ;③直导体转动,转轴平行B 、垂直L 、且过导体的端点,角速度为ω(如图10-8所示),则ε=21B ωL 2 ;推论:直导体转动,转轴平行B 、垂直L 、但不过导体的端点(和导体一端相距s ),角速度为ω(如图10-9所示),则ε1 = BL ω(s + 2L )(轴在导体外部)、ε2 =21B ω(L 2-2s) = B(L -2s) ω(s +2s 2L )(轴在导体内部);☆这两个结论由学员自己推导 (教师配合草稿板图) …④直导体转动,转轴平行B 、和L 成一般夹角θ、且过导体的端点,角速度为ω(如图10-9所示),则ε=21B ωL 2sin 2θ ;推论:弯曲导体(始末端连线为L )转动,转轴转轴平行B 、和L 成一般夹角θ、且过导体的端点,角速度为ω(如图10-10所示),则ε=21B ωL 2sin 2θ。
统一的结论:种种事实表明,动生电动势可以这样寻求——即ε= BLv ,而B 、L 、v 应彼此垂直的(分)量。
【例题4】一根长为 L 的直导体,绕过端点的、垂直匀强磁场的转轴匀角速转动,而导体和转轴夹θ角,已知磁感应强度B 和导体的角速度ω ,试求导体在图10-11所示瞬间的动生电动势。
【解说】略。
(这个导体产生的感应电动势不是恒定不变的,而是一个交变电动势。
)【答案】ε=41B ωL 2sin2θ 。
第二讲 感生电动势一、感生电动势造成回路磁通量改变的情形有两种:磁感应强度B 不变回路面积S 改变(部分导体切割磁感线);回路面积S 不变而磁感应强度B 改变。
对于这两种情形,法拉第电磁感应定律都能够求出(整个回路的)感应电动势的大小(前一种情形甚至还可以从洛仑兹力的角度解释)。
但是,在解决感应电动势的归属..问题上,法拉第电磁感应定律面临这前所未有的困难(而且洛仑兹力角度也不能解释其大小)。
因此,我们还是将两种情形加以区别,前一种叫动生电动势,后一种叫感生电动势。
感生电动势的形成通常是用麦克斯韦的涡旋电磁理论解释的。
1、概念与意义根据麦克斯韦电磁场的理论,变化的磁场激发(涡旋)电场。
涡旋电场力作用于单位电荷,使之运动一周所做的功,叫感生电动势,即ε感=qW 涡*值得注意的是,这里的涡旋电场力是一种比较特殊的力,它和库仑电场力、洛仑兹力并称为驱动电荷运动的三大作用力,但是,它和库仑电场力有重大的区别,特别是:库仑电场力可以引入电位、电场线有始有终,而涡旋电场不能引入电位、电场线是闭合的(用数学语言讲,前者是有源无旋场,后者是有旋无源场)。
2、感生电动势的求法感生电动势的严谨求法是求法拉第电磁感应定律的微分方程(*即⎰∙Lld E感= -⎰⎰∙∂∂SSd tB )。
在一般的情形下,解这个方程有一定的难度。
但是,tB ∂∂具有相对涡旋中心的轴对称性,根据这种对称性解体则可以是问题简化。
【例题5】半径为R 的无限长螺线管,其电流随时间均匀增加时,其内部的磁感应强度也随时间均匀增加,由于“无限长”的原因,其外部的有限空间内可以认为磁感应强度恒为零。
设内部tB ∆∆=k ,试求解管内、外部空间的感生电场。
【解说】将B 值变化等效为磁感线变密或变疏,并假定B 线不能凭空产生和消失。
在将B 值增加等效为B 线向“中心”会聚(运动)、B 值减小等效为B 线背离“中心”扩散(运动)。
(1)内部情形求解。
设想一个以“中心”为圆心且垂直B 线的圆形回路,半径为r ,根据运动的相对性,B 线的会聚运动和导体向外“切割”B 线是一样的。
而且,导体的每一段切割的“速度”都相同,因此,电动势也相等。
根据E = dU ∆∆知,回路上各处的电场强度应相等(只不过电场线是曲线,而且是闭合的)。
由ε总 = πr 2tB ∆∆ 和 E =r2πε总 得E =2kr显然,撤去假想回路,此电场依然存在。
(2)外部情形求解。
思路类同(1),只是外部“假想回路”的磁通量不随“回路”的半径增大而改变,即 φ=πR 2B由ε总 = πR 2tB ∆∆ 和 E ′=r2πε总 得E =r2kR 2(r >R )【答案】感生电场线是以螺线管轴心为圆心的同心圆,具体涡旋方向服从楞次定律。
感生电场强度的大小规律可以用图10-12表达。
〖说明〗本题的解答中设置的是一个特殊的回路,才会有“在此回路上感生电场大小恒定”的结论,如果设置其它回路,E =r2πε总关系不可用,用我们现有的数学工具将不可解。
当然,在启用高等数学工具后,是可以的出结论的,而且得出的结论和“特殊回路”的结论相同。
〖学员思考〗如果在螺线管内、外分别放置两段导体CD 和EF ,它们都是以螺线管轴线为圆心、且圆心角为θ的弧形,试求这两段导体两端的电势差。
〖参考解答〗因为在弧线上的场强都是大小恒定的,故可用U = E 〃l 弧长求解显然,U CD =2k θr 2,U EF =2k θR 2。
〖推论总结〗我们不难发现,U CD = tB ∆∆×(扇形OCD 的面积), U EF =tB ∆∆×(扇形OGH 的面积)。
结论:感生电动势的大小可以这样计算,用磁感应强度的变化率乘以自磁场变化中心出发引向导体两端的曲边形(在磁场中)的“有效面积”。
注意,针对(圆心在磁场变化中心的)非弧形导体,用U = Ed 行不通(启用ε= ⎰∙l d E数学工具又不到位),但上面的“推论”则是可以照样使用的。
【应用】半径为R 螺线管内充满匀强磁场,磁感应强度随时间的变化率tB ∆∆已知。
求长为L 的直导体在图10-14中a 、b 、c 三个位置的感应电动势大小分别是多少?【解】在本题中,由于没有考查(以涡旋中心为圆心的)环形回路或弧形回路,所以需要用上面的“推论”解决问题。
显然,这里的“有效面积”分别为 S a = 0S b = 21L 22)2L (R -∙S c =21R 2·arctgRl L +【答】εa = 0 ;εb = 22LR 4tB 4L -∆∆ ;εa =tB 2R 2∆∆arctgRl L + 。
二、电势、电流、能量和电量1、只要感应电路闭合,将会形成感应电流,进而导致能量的转化。
关于感应电路的电流、能量和电量的计算,可以借助《稳恒电流》一章中闭合电路欧姆定律的知识。
但是,在处理什么是“外电路”、什么是“内电路”的问题上,常常需要不同寻常的眼光。
我们这里分两种情形归纳——如果发电是“动生”的,内电路就是(切割)运动部分;如果发电是“感生”的,内、外电路很难分清,需要具体问题具体分析,并适当运用等效思想。
(内电路中的电动势分布还可能不均匀。