七年级数学下——三角形综合题(三角形提高卷)

合集下载

2020-2021学年七年级数学北师大版下册综合练习——第4章三角形【含答案】

2020-2021学年七年级数学北师大版下册综合练习——第4章三角形【含答案】

第4章三角形一、选择题1.下列说法正确的是( )A.一个钝角三角形一定不是等腰三角形,也不是等边三角形B.一个等腰三角形一定是锐角三角形,或直角三角形C.一个直角三角形一定不是等腰三角形,也不是等边三角形D.一个等边三角形一定不是钝角三角形,也不是直角三角形2.如图,∠1=140°,∠2=100°,则∠3=( )A.100°B.120°C.130°D.140°3.如图,点A,D在线段BC的同一侧,AC与BD相交于点E,连接AB,CD,已知∠1=∠2,现添加以下哪个条件仍不能判定△ABC≌△DCB的是( )A.∠A=∠D B.AC=DB C.∠ABC=∠DCB D.AB=DC4.下列各组长度的三条线段能组成三角形的是( )A.1,2,3B.1,1,2C.1,2,2D.1,5,75.如果三角形的两条边长分别是8厘米、6厘米,那么第三边的长不可能是( )A.9厘米B.4厘米C.3厘米D.2厘米6.将一个三角形纸片剪开分成两个三角形,这两个三角形不可能( )A.都是锐角三角形B.都是直角三角形C.都是钝角三角形D.是一个锐角三角形和一个钝角三角形7.如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于点E,与CD相交于点F,DH⊥BC于H,交BE于G,有下列结论:①BH=DH;②BD=CD;③AD+CF=BD;④CE=BF.其中正确的是( )A.①②B.①③C.①②③D.①②③④8.如图,△ABC的高CD、BE相交于点O,如果∠A=60°,那么∠BOC的大小为( )A.60°B.100°C.120°D.130°9.如图将一副三角板拼成如图所示的图形(∠D=30°,∠ABC=90°,∠DCE=90°,∠A=45°),BC交DE于点F,则∠DFC的度数是( )A.75°B.105°C.135°D.125°10.如图,△ABC的两条中线AD、CE交于点G,联结BG并延长,交边AC于点F,那么下列结论不正确的是( )A.AF=FC B.GF=BG C.AG=2GD D.EG=CE11.在下列各组条件中,不能说明△ABC≌△DEF的是( )A.AB=DE,∠B=∠E,∠C=∠F B.AC=DF,BC=EF,∠A=∠DC.AB=DE,∠A=∠D,∠B=∠E D.AB=DE,BC=EF,AC=DF二、填空题12.如图,李叔叔家的凳子坏了,于是他给凳子加了两根木条,这样凳子就比较牢固了,他所应用的数学原理是 .13.如图,矩形的一个顶点落在边长为3的正方形中心(正方形对角线交点),则图中重合部分(阴影部分)的面积为 平方单位.14.在△ABC中,∠A:∠B:∠C=4:5:9,若按角分类,△ABC是 三角形.15.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=15°,∠ACP=50°,则∠P= °.16.如图,直线a过正方形ABCD的顶点A,点B、D到直线a的距离分别为1、3,则正方形的边长为 .17.要想使一个六边形活动支架ABCDEF稳固且不变形,至少需要增加 根木条才能固定.18.如图,BE是∠ABD的平分线,CF是∠ACD的平分线,BE与CF交于G,如果∠BDC=140°,∠BGC=110°,则∠A= .19.如图,BE平分∠ABC,CE平分∠ACD,∠A=60°,则∠E= .20.如图,要测量河两岸相对两点A、B间的距离,先在过点B的AB的垂线上取两点C、D,使CD=BC,再在过点D的垂线上取点E,使A、C、E三点在一条直线上,可证明△EDC≌△ABC,所以测得ED的长就是A、B两点间的距离,这里判定△EDC≌△ABC的理由是 .三、解答题21.如图所示,请你在图中画两条直线,把这个“+”图案分成四个全等的图形(要求至少要画出两种方法).22.已知:如图,在△ABC中,∠DAE=10°,AD⊥BC于点D,AE平分∠BAC,∠B=60°,求∠C的度数.23.如图,在四边形ABCD中,AD∥BC,点E为对角线BD上一点,∠A=∠BEC,且AD=BE.(1)求证:△ABD≌△ECB.(2)若∠BDC=70°.求∠ADB的度数.24.如图,点A,B,C,D在同一条直线上,AB=CD,∠A=∠D,AE=DF.(1)求证:△ACE≌△DBF.(2)若BF⊥CE于点H,求∠HBC的度数.25.如图,四边形ABCD中,AB=AC=AD,AC平分∠BAD,E是对角线AC上一点,连接BE,DE.(1)求证:BE=DE.(2)当BE∥CD,∠BAD=78°时,求∠BED的度数.26.如图,在△ABC中,AB=AC,AD⊥BC于点D,BE⊥AC于点E,AD、BE相交于点H,AE=BE.试说明:(1)△AEH≌△BEC.(2)AH=2BD.27.如图所示,已知△ABC中,∠B=∠C,AB=4厘米,BC=3厘米,点D为AB的中点.如果点P在线段BC上以每秒1厘米的速度由点B向点C运动,同时,点Q在线段CA上以每秒a厘米的速度由点C向点A运动,设运动时间为t(秒)(0≤t≤3).(1)用含t的式子表示PC的长度是 ;(2)若点P,Q的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;(3)若点P,Q的运动速度不相等,当点Q的运动速度a为多少时,能够使△BPD与△CQP全等?答案一、选择题1.D2.B3.D4.C5.D6.A7.D8.C9.B10.B11.B二、填空题12.三角形的稳定性.13..14.直角.15.35.16..17.3.18.80°.19.30°.20.ASA.三、解答题21.解:如图所示:.22.解:∵AD⊥BC,∠B=60°,∴在△ABD中,∠BAD=90°﹣60°=30°,又∵∠DAE=10°,∴∠BAE=∠BAD+∠DAE=30°+10°=40°,又∵AE平分∠BAC,∴∠BAC=2∠BAE=80°,∴在△ABC中,∠C=180°﹣∠BAC﹣∠B=180°﹣80°﹣60°=40°.答:∠C的度数是40°.23.证明:(1)∵AD∥BC,∴∠ADB=∠CBE,在△ABD和△ECB中,,∴△ABD≌△ECB(AAS);(2)∵△ABD≌△ECB,∴BD=BC,∴∠BDC=∠BCD=70°,∴∠DBC=40°,∴∠ADB=∠CBD=40°.24.(1)证明:∵AB=CD,∴AB+BC=CD+BC.∴AC=BD.在△ABC和△EDF中,,∴△ACE≌△DBF(SAS);(2)解:由(1)知△ACE≌△DBF,∴∠ACE=∠DBF.∵BF⊥CE,∴∠BHC=90°,∴∠HBC+∠HCB=90°,∴∠HBC=∠HCB=45°.25.(1)证明:∵AC平分∠BAD,∴∠BAE=∠DAE,在△BAE和△DAE中,,∴△BAE≌△DAE(SAS),∴BE=DE;(2)解:由(1)得:△BAE≌△DAE,∴∠BEA=∠DEA,∴∠BEC=∠DEC,∵AC平分∠BAD,∠BAD=78°,∴∠BAC=∠DAC=∠BAD=×78°=39°,∵AC=AD,∴∠ACD=∠ADC=×(180°﹣39°)=70.5°,∵BE∥CD,∴∠BEC=∠ACD=70.5°,∴∠BEC=∠DEC=70.5°,∴∠BED=2×70.5°=141°.26.解:(1)∵AD⊥BC,∴∠DAC+∠C=90°,∵BE⊥AC,∴∠EBC+∠C=90°,∴∠DAC=∠EBC,在△AEH与△BEC中,,∴△AEH≌△BEC(ASA);(2)∵△AEH≌△BEC,∴AH=BC,∵AB=AC,AD⊥BC,∴BC=2BD,∴AH=2BD.27.解:(1)PC=3﹣t.(2)△CPQ≌△BDP,理由如下:∵P、Q的运动速度相等,∴1秒后,CQ=BP=1,CP=BC﹣BP=3﹣1=2,∵D为AB的中点,∴BD=,∴CP=BD,在△CPQ和△BDP中,,∴△CPQ≌△BDP(SAS).(3)解:由(1)知,PC=3﹣t,BP=t,CQ=at,BD=2,∵∠C=∠B∵△BPD与△CQP全等,①当△CPQ≌△BDP时,BP=CQ,t=at,∵t≠0,∴a=1与P、Q的运动速度不相等矛盾,故舍去.②当△CPQ≌△BPD时,BP=CP,CQ=BD,∴t=3﹣t,at=2,t=a=.即点P、Q的运动速度不相等时,点Q的运动速度a为时,能够使△BPD与△CQP全等.。

数学七年级下册三角形的常见题型

数学七年级下册三角形的常见题型

数学七年级下册三角形的常见题型
数学七年级下册三角形的常见题型有:
1.已知三角形的两边长分别为3和4,则第三边长x的取值范围是:x<7且x>1。

2.三角形内角和定理:三角形内角和等于180°。

3.三角形外角定理:三角形的一个外角等于和它不相邻的两个内角的和。

4.推论:三角形的一个外角大于任何一个和它不相邻的内角。

5.三角形具有稳定性。

6.三角形两边之和大于第三边;三角形两边之差小于第三边;不符合定理的三条线段,不能组成三角形的三边。

7.已知三角形两边的长度分别为5和7,则第三边的长度范围为:大于2小于12。

以上是部分三角形的常见题型,仅供参考。

在解决具体问题时,还需根据题目要求和知识点进行灵活运用。

精品试题沪教版七年级数学第二学期第十四章三角形综合训练试题(含答案解析)

精品试题沪教版七年级数学第二学期第十四章三角形综合训练试题(含答案解析)

沪教版七年级数学第二学期第十四章三角形综合训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、尺规作图:作A O B '''∠角等于已知角AOB ∠.示意图如图所示,则说明A O B AOB '''∠=∠的依据是( )A .SSSB .SASC .ASAD .AAS2、如图,直线l 1∥l 2,被直线l3、l 4所截,并且l 3⊥l 4,∠1=46°,则∠2等于( )A .56°B .34°C .44°D .46°3、如图,为估计池塘岸边A 、B 两点的距离,小方在池塘的一侧选取一点O ,OA =15米,OB =10米,A 、B 间的距离不可能是( )A .5米B .10米C .15米D .20米4、若三条线段中a =3,b =5,c 为奇数,那么以a 、b 、c 为边组成的三角形共有( )A .1个B .2个C .3个D .4个5、下列各条件中,不能作出唯一的ABC 的是( )A .4AB =,5BC =,10AC =B .5AB =,4BC =,30A ∠=︒ C .90A ∠=︒,30B ∠=︒,5BC =D .60A ∠=︒,50B ∠=︒,5AB =6、已知三条线段的长分别是4,4,m ,若它们能构成三角形,则整数m 的最大值是( )A .10B .8C .7D .47、根据下列已知条件,不能画出唯一ABC 的是( )A .60A ∠=︒,45B ∠=︒,4AB =B .30A ∠=︒,5AB =,3BC = C .60B ∠=︒,6AB =,10BC =D .90C ∠=︒,5AB =,3BC =8、已知三角形的两边长分别为4cm 和10cm ,则下列长度的四条线段中能作为第三边的是( )A .15cmB .6cmC .7cmD .5cm9、若一个三角形的三个外角之比为3:4:5,则该三角形为( )A .直角三角形B .等腰三角形C .等边三角形D .等腰直角三角形10、如图,在ABD △和ACE 中,AB AD =,AC AE =,AB AC >,50DAB CAE ∠=∠=︒,连接BE ,CD 交于点F ,连接AF .下列结论:①BE CD =;②50EFC ∠=︒;③AF 平分DAE △;④FA 平分DFE ∠.其中正确的个数为( )A .1个B .2个C .3个D .4个第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在平面直角坐标系中,△ABC 的顶点A 、B 、C 的坐标分别为(0,3)、(4,0)、(0,0),AB =5,点P 为x 轴上一点,若使得△ABP 为等腰三角形,那么点P 的坐标除点(78,0)外,还可以是_____.2、如图,△ABC 的面积等于35,AE =ED ,BD =3DC ,则图中阴影部分的面积等于 _______3、在ABC 中,若50,A B C ∠=︒∠=∠,则B ∠=_______.4、如图,在三角形ABC 中,40BAC ∠=︒,点D 为射线CB 上一点,过点D 作DE AC ∥交直线AB 于点E ,DF AB ∥交直线AC 于点F ,CG 平分ACB ∠交DF 于点G .若:3:4FDC EDC ∠∠=,则DGC ∠=______°.5、如图,42AOB ∠=︒,C 为OB 上的定点,P 、Q 分别为OA 、OB 上两个动点,当CP PQ +的值最小时,OCP ∠的度数为______.三、解答题(10小题,每小题5分,共计50分)1、如图,在ABC 中,AD 是BC 边上的高,CE 平分ACB ∠,若20CAD ∠=︒,50B ∠=︒,求AEC ∠的度数.2、针对于等腰三角形三线合一的这条性质,老师带领同学们做了进一步的猜想和证明,提问:如果一个三角形中,一个角的平分线和它所对的边的中线重合,那么这个三角形是等腰三角形. 已知:在△ABC 中,AD 平分∠CAB ,交BC 边于点 D ,且CD =BD ,求证:AB =AC .以下是甲、乙两位同学的作法.甲:根据角平分线和中线的性质分别能得出一组角等和一组边等,再加一组公共边,可证△ACD ≌△ABD ,所以这个三角形为等腰三角形;乙:延长AD 到E ,使DE =AD ,连接BE ,可证△ACD ≌△EBD ,依据已知条件可推出AB =AC ,所以这个三角形为等腰三角形(1)对于甲、乙两人的作法,下列判断正确的是( );A .两人都正确B .甲正确,乙错误C .甲错误,乙正确(2)选择一种你认为正确的作法,并证明.3、如图是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点为格点,线段AB 的端点都在格点上.要求以AB 为边画一个等腰ABC ,且使得点C 为格点.请在下面的网格图中画出3种不同的等腰ABC .4、如图,AD 是ABC 的高,CE 是ADC 的角平分线.若BAD ECD ∠=∠,70B ∠=︒,求CAD ∠的度数.5、如图,四边形ABCD 中,90BCD BAD ∠=∠=︒,AB AD =,AG CD ⊥于点G .(1)如图1,求证:AG CG =;(2)如图2,延长AB 交DC 的延长线于点F ,点E 在DG 上,连接AE ,且2AEF F ∠=∠,求证:FG AE EG =+;(3)如图3,在(2)的条件下,点H 在CB 的延长线上,连接EH ,EH 交AG 于点N ,连接CN ,且=CN AE ,当5BH =,9EF =时,求NG 的长.6、如图,在△ABC 中,AB =AC ,M ,N 分别是AB ,AC 边上的点,并且MN ∥BC .(1)△AMN 是否是等腰三角形?说明理由;(2)点P 是MN 上的一点,并且BP 平分∠ABC ,CP 平分∠ACB .①求证:△BPM 是等腰三角形;②若△ABC 的周长为a ,BC =b (a >2b ),求△AMN 的周长(用含a ,b 的式子表示).7、已知∠POQ=120°,点A,B分别在OP,OQ上,OA<OB,连接AB,在AB上方作等边△ABC,点D 是BO延长线上一点,且AB=AD,连接AD(1)补全图形;(2)连接OC,求证:∠COP=∠COQ;(3)连接CD,CD交OP于点F,请你写出一个∠DAB的值,使CD=OB+OC一定成立,并证明=,点D是BC边上的一个动点(点D不与点B,C重合),连接AD,作等8、在等腰ABC中,AB AC∠=∠,点D,E在直线AC两旁,连接CE.腰ADE,使AD AE=,DAE BAC(1)如图1,当90BAC ∠=︒时,直接写出BC 与CE 的位置关系;(2)如图2,当090BAC ︒<∠<︒时,过点A 作AF CE ⊥于点F ,请你在图2中补全图形,用等式表示线段BD ,CD ,2EF 之间的数量关系,并证明.9、如图,△ABC 是等边三角形,点D 、E 、F 分别同时从A 、B 、C 以同样的速度沿AB 、BC 、CA 方向运动,当点D 运动到点B 时,三个点都停止运动.(1)在运动过程中△DEF 是什么形状的三角形,并说明理由;(2)若运动到某一时刻时,BE =4,∠DEC =150°,求等边△ABC 的周长;10、△ABC 中,AB =AC ,BD 平分∠ABC 交AC 于点D ,从点A 作AE ∥BC 交BD 的延长线于点E .(1)若∠BAC =40°,求∠E 的度数;(2)点F 是BE 上一点,且FE =BD .取DF 的中点H ,请问AH ⊥BE 吗?试说明理由.-参考答案-一、单选题1、A【分析】利用基本作图得到OD=OC=OD′=OC′,CD=C′D′,则根据全等三角形的判定方法可根据“SSS”可判断△OCD≌△O′C′D′,然后根据全等三角形的性质得到∠A′OB′=∠AOB.【详解】解:由作法可得OD=OC=OD′=OC′,CD=C′D′,所以根据“SSS”可判断△OCD≌△O′C′D′,所以∠A′OB′=∠AOB.故选:A.【点睛】本题考查了作图﹣基本作图和全等三角形的判定与性质,解题关键是熟练掌握基本作图和全等三角形的判定定理.2、C【分析】依据l1∥l2,即可得到∠3=∠1=46°,再根据l3⊥l4,可得∠2=90°﹣46°=44°.【详解】解:如图:∵l1∥l2,∠1=46°,∴∠3=∠1=46°,又∵l3⊥l4,∴∠2=90°﹣46°=44°,故选:C.【点睛】本题考查了平行线性质以及三角形内角和,平行线的性质:两直线平行,同位角相等以及三角形内角和是180°.3、A【分析】根据三角形的三边关系得出5<AB<25,根据AB的范围判断即可.【详解】解:连接AB,根据三角形的三边关系定理得:15﹣10<AB<15+10,即:5<AB<25,∴A、B间的距离在5和25之间,∴A、B间的距离不可能是5米;故选:A.【点睛】本题主要考查对三角形的三边关系定理的理解和掌握,能正确运用三角形的三边关系定理是解此题的关键.4、C【分析】根据三角形的三边关系,得到合题意的边,进而求得三角形的个数.【详解】解:c的范围是:5﹣3<c<5+3,即2<c<8.∵c是奇数,∴c=3或5或7,有3个值.则对应的三角形有3个.故选:C.【点睛】本题主要考查了三角形三边关系,准确分析判断是解题的关键.5、B【分析】根据三角形全等的判定及三角形三边关系即可得出结果.【详解】+<,不能组成三角形;解:A、AB BC ACB、根据SSA不可以确定选项中条件能作出唯一三角形;C、根据AAS可以确定选项中条件能作出唯一三角形;D、根据ASA可以确定选项中条件能作出唯一三角形;故答案为:B .【点睛】本题考查确定唯一三角形所需要的条件及三角形三边关系,解题关键在于对全等判定条件的理解.6、C【分析】根据三角形三边关系列出不等式,根据不等式的解集求整数m 的最大值.【详解】解:条线段的长分别是4,4,m ,若它们能构成三角形,则4444m -<<+,即08m <<又m 为整数,则整数m 的最大值是7故选C【点睛】本题考查了求不等式的整数解,三角形三边关系,根据三角形的三边关系列出不等式是解题的关键.7、B【分析】根据三角形存在的条件去判断.【详解】∵60A ∠=︒,45B ∠=︒,4AB =,满足ASA 的要求,∴可以画出唯一的三角形,A 不符合题意;∵30A ∠=︒,5AB =,3BC =,∠A 不是AB ,BC 的夹角,∴可以画出多个三角形,B 符合题意;∵60B ∠=︒,6AB =,10BC =,满足SAS 的要求,∴可以画出唯一的三角形,C 不符合题意;∵90C ∠=︒,5AB =,3BC =,AB 最大,∴可以画出唯一的三角形,D 不符合题意;故选B .【点睛】本题考查了三角形的存在性,熟练掌握三角形全等的判定方法是解题的关键.8、C【分析】根据三角形的三边关系可得104104x -<<+,再解不等式可得答案.【详解】解:设三角形的第三边为xcm ,由题意可得:104104x -<<+,即614x <<,故选:C .【点睛】本题主要考查了三角形的三边关系,解题的关键是掌握三角形两边之和大于第三边;三角形的两边差小于第三边.9、A【分析】根据三角形外角和为360°计算,求出内角的度数,判断即可.【详解】解:设三角形的三个外角的度数分别为3x 、4x 、5x ,则3x +4x +5x =360°,解得,x =30°,∴三角形的三个外角的度数分别为90°、120°、150°,对应的三个内角的度数分别为90°、60°、30°,∴此三角形为直角三角形,故选:A .【点睛】本题考查的是三角形的外角和,掌握三角形外角和为360°是解题的关键.10、C【分析】由全等三角形的判定及性质对每个结论推理论证即可.【详解】∵50DAB CAE ∠=∠=︒∴DAB BAC CAE BAC ∠+∠=∠+∠∴DAC BAE ∠=∠又∵AB AD =,AC AE =∴()DAC BAE SAS ≅△△∴BE CD =故①正确∵DAC BAE ≅∴AEB ACD ∠=∠由三角形外角的性质有ACD CFE AEB CAE ∠+∠=∠+∠则50EFC CAE ∠=∠=︒故②正确作AH DC ⊥于H ,AG BE ⊥于G ,如图所示:则90AGE AHC =∠∠=°,在AHC 和AGE 中,AHC AGE DAC BEA AC AE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴()AG AHC E AAS ≅∆,∴AH AG =,在AHF △和AGF 中,AH AG AHF AGF AF AF =⎧⎪∠=∠⎨⎪=⎩∴()AGF L A H HF ≅∆,∴AFH AFG ∠=∠∴FA 平分DFE ∠故④正确假设AF 平分DAE △则DAF EAF ∠=∠∵DAB CAE ∠=∠∴DAF DAB FAE CAE ∠-∠=∠-∠即BAF CAF ∠=∠由④知AFD AFE ∠=∠又∵BFD CFE ∠∠、为对顶角∴BFD CFE ∠=∠∴BFD AFD CFE AFE ∠+∠=∠+∠∴AFB AFE ∠=∠∴在ABF 和ACF 中,BAF CAF AF AF BFA CAF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()CF BFA A ASA ≅∆即AB =AC又∵AB AC >故假设不符,故AF 不平分DAE △故③错误.综上所述①②④正确,共有3个正确.故选:C .【点睛】本题考查了全等三角形的判定及性质,灵活的选择全等三角形的判定的方法是解题的关键,从判定两个三角形全等的方法可知,要判定两个三角形全等,需要知道这两个三角形分别有三个元素(其中至少一个元素是边)对应相等,这样就可以利用题目中的已知边角迅速、准确地确定要补充的边角,有目的地完善三角形全等的条件,从而得到判定两个三角形全等的思路.二、填空题1、(1-,0)、(4-,0)、(9,0)【分析】先表示出PB=|a-4|,PB2=a2+9,AB=5,再分三种情况①当PB=AB时.②当PA=PB时,③当PA=AB时,讨论计算即可.【详解】设P(a,0),∵A(0,3),B(4,0),∴PB=|a-4|,PA2=a2+9,AB=5,∵△ABP是等腰三角形,∴①当PB=AB时,∴|a-4|=5,∴a=-1或9,∴P(-1,0)或(9,0),②当PA=PB时,∴(a-4)2=a2+9,∴a=78,∴P(78,0),③当PA=AB时,∴a2+9=25,∴a=4(舍)或a=-4,∴P(-4,0).即:满足条件的点P的坐标为(-1,0)、(-4,0)、(9,0).【点睛】本题考查了平面直角坐标系中点的坐标规律,等腰三角形的性质,分类讨论和用方程思想解决问题是解本题的关键.2、15【分析】连接DF ,根据AE =ED ,BD =3DC ,可得12ABE BDE ABD SS S == ,AEF DEF S S =,3ABD ADC S S = ,3BDF CDF S S =,然后设△AEF 的面积为x ,△BDE 的面积为y ,则DEF S x =△,BDF S x y =+,ABE S y =,()13CDF S x y =+,再由△ABC 的面积等于35,即可求解. 【详解】解:如图,连接DF ,∵AE =ED ,∴12ABE BDE ABD S S S == ,AEF DEF S S =,∵BD =3DC ,∴3ABD ADC S S = ,3BDF CDF S S =设△AEF 的面积为x ,△BDE 的面积为y ,则DEF S x =△,BDF Sx y =+,ABE S y =,()13CDF S x y =+, ∵△ABC 的面积等于35, ∴()1353x x y y x y +++++= , 解得:15x y += .故答案为:15【点睛】 本题主要考查了与三角形中线有关的面积问题,根据题意得到12ABE BDE ABD SS S == ,AEF DEF S S =,3ABD ADC S S = ,3BDF CDF S S =是解题的关键.3、65°65度【分析】由三角形的内角和定理,得到180A B C ∠+∠+∠=︒,即可得到答案;【详解】解:在ABC 中,180A B C ∠+∠+∠=︒,∵50,A B C ∠=︒∠=∠,∴502180B ︒+∠=︒,∴65B ∠=︒;故答案为:65°.【点睛】本题考查了三角形的内角和定理,解题的关键是掌握三角形的内角和等于360°.4、80【分析】先求解40,DFC 再求解140,60,80,40,EDF FDC FCD FCG 再利用三角形的外角的性质可得答案.【详解】 解: 40BAC ∠=︒,DF AB ∥,40,DFC BACDE AC ∥,180140,EDF DFC:3:4FDC EDC ∠∠=,140,EDC FDC314060,7FDC 180406080,FCD CG 平分ACB ∠, 140,2FCGFCD 404080.DGC FCG DFC故答案为:80【点睛】本题考查的是角平分线的定义,平行线的性质,三角形的内角和定理,三角形的外角的性质,熟练的运用平行线的性质探究角之间的关系是解本题的关键.5、6°【分析】作点C 关于直线OA 的对称点C ',连接CC ',交OA 于点D ,过点C '作C M OB '⊥,交OA 于点N ,根据CP PQ C P PQ C Q ''+=+≥,且当C Q BO '⊥时最小,所以当CP PQ +的值最小时,当点P 与点N 重合,点Q 与点M 重合时,此时OCP ∠等于OCN ∠,进而根据直角三角形的两锐角互余,以及角度的和差关系求得OCN ∠即可【详解】解:如图,作点C 关于直线OA 的对称点C ',连接CC ',交OA 于点D ,过点C '作C M OB '⊥,交OA 于点N ,∴='CP C P ,CP PQ C P PQ C Q '+∴'=+≥,且当C Q BO '⊥时最小,所以当CP PQ +的值最小时,当点P 与点N 重合,点Q 与点M 重合时,此时OCP ∠等于OCN ∠, CC OA '⊥又42AOB ∠=︒90,90DC N C ND AOC ONM ''∠+∠=︒∠+∠=︒,ONM C NA '∠=∠42CC M AOB '∴∠=∠=︒9048DCO AOC ∴∠=︒-∠=︒根据对称性可得42NC D DCD '∠=∠=︒48426NCO DCM DCM ∴∠=∠-∠=︒-︒=︒∴当CP PQ +的值最小时,OCP ∠的度数为6︒故答案为:6︒【点睛】本题考查了根据轴对称求最短线段和,垂线段最短,直角三角形的,根据题意作出图形是解题的关键.三、解答题1、85°【分析】由高的定义可得出∠ADB=∠ADC=90,在△ACD中利用三角形内角和定理可求出∠ACB的度数,结合CE平分∠ACB可求出∠ECB的度数.由三角形外角的性质可求出∠AEC的度数,【详解】解:∵AD是BC边上的高,∴∠ADB=∠ADC=90.在△ACD中,∠ACB=180°﹣∠ADC﹣∠CAD=180°﹣90°﹣20°=70°.∵CE平分∠ACB,∴∠ECB=1∠ACB=35°.2∵∠AEC是△BEC的外角,50∠=︒,B∴∠AEC=∠B+∠ECB=50°+35°=85°.答:∠AEC的度数是85°.【点睛】本题考查了三角形内角和定理、角平分线的定义以及三角形外角的性质,利用三角形内角和定理及角平分线的性质,求出∠ECB的度数是解题的关键.2、(1)C ;(2)见解析【分析】(1)甲同学证明的两个三角形全等,没有边边角的判定,故错误,而乙的证明则正确,因此可作出判断;(2)按照乙的分析方法进行即可.【详解】(1)甲同学证明的两个三角形全等,边边角不能判定两个三角形全等,故错误,而乙的证明则正确,故选C ;(2)依据题意,延长AD 至E ,使DE =AD ,连接BE ,如图.∵D 为BC 中点.∴BD CD =.在△CAD 和△BED 中DE AD ADC EDB BD CD =⎧⎪∠=∠⎨⎪=⎩∴△CAD ≌△BED (SAS ).∴DAC E ∠=∠,BE AC =∵AD 平分∠BAC ,∴BAD CAD ∠=∠∴DAB E ∠=∠∴BE AB =∴AB =AC∴△ABC 为等腰三角形【点睛】本题考查了全等三角形的判定与性质,等腰三角形的判定,关键是构造辅助线得到全等三角形.3、答案见解析【分析】AB为4个等边三角形组成的平行四边形的对角线,因此只要找到另一腰也4个等边三角形组成的平行四边形的对角线即可【详解】解:如图,……[答案不唯一]【点睛】本题考查等腰三角形的绘图,掌握等边三角形和等腰三角形性质即可.4、50︒【分析】AD 是ABC 的高,有90ADB ADC ∠=∠=︒;由70B ∠=︒知20BAD ∠=︒;CE 是ADC 的角平分线可得12ECD ACD ∠=∠;20BAD ECD ∠=∠=︒,40ACD ∠=︒;在ACD △中,904050CAD ∠=︒-︒=︒. 【详解】解:∵AD 是ABC 的高∴90ADB ADC ∠=∠=︒∵70B ∠=︒∴20BAD ∠=︒∵CE 是ADC 的角平分线 ∴12ECD ACD ∠=∠∵20BAD ECD ∠=∠=︒∴40ACD ∠=︒∴在ACD △中,904050CAD ∠=︒-︒=︒.【点睛】本题考查了角平分线.解题的关键在于正确表示各角度之间的数量关系.5、(1)见解析;(2)见解析;(3)2【分析】(1)过点B 作BQ AG ⊥于点Q ,根据AAS 证明△ABQ DAG ≅∆得AG BQ =,再证明四边形BCGQ 是矩形得BQ =CG ,从而得出结论;(2) 在GF 上截取GH =GE ,连接AH ,证明AH =FH ,GE =GH 即可;(3) 过点A 作AP HC ⊥于点P ,在FC 上截取MG GE =,连接,,AM AC AH ,证明()Rt AGE Rt CGN HL ∆≅∆得GN GE MG ==,可证明AC 是EH 的垂直平分线,再证明()Rt APH Rt AGM HL ∆≅∆和△()ABH ADM SAS ≅∆得5BH MD ==可求出4ME =,从而可得结论.【详解】解:(1)证明:过点B 作BQ AG ⊥于点Q ,如图1∵AG CD ⊥90AQB BAD ︒∴∠==∠ABQ BAQ DAG BAQ ∴∠+∠=∠+∠ABQ DAG ∴∠=∠又AB AD =,90AQB AGD ︒∠=∠=∴△()ABQ DAG AAS ≅∆B AG Q ∴=,,BC CD AG CD BQ AG ⊥⊥⊥∴四边形BCGQ 是矩形BQ CG ∴=CG AG ∴=;(2)在GF 上截取GH =GE ,连接AH ,如图2,,HG GE AG GF =⊥AH AE ∴=AEH AHE ∴∠=∠2AEF F ∠=∠2AHE F ∴∠=∠又AHE F FAH ∠=∠+∠F FAH ∴∠=∠FH AH ∴=AE FH ∴=FG FH HG AE EG ∴=+=+(3)过点A 作AP HC ⊥于点P ,在FC 上截取MG GE =,连接,,AM AC AH ,如图3,由(1)、(2)知,AP CG AG ==,,AM AE FM F FAM ==∠=∠∵EF FG GE FM ME =+=+∴9AM ME =+∵,CN AE AG CG ==∴()Rt AGE Rt CGN HL ∆≅∆∴GN GE MG ==∴∠45GNE GEN ︒=∠=∵BC FD ⊥∴∠45CHE CEH ︒=∠=∴CH CE =∵AG CG =∴∠45ACG CAG ︒=∠=∴45ACG ACH ∠=∠=︒∴AC 是EH 的垂直平分线,∴AH AE =∴AH AM =又∵AG AP =∴()Rt APH Rt AGM HL ∆≅∆∴∠HAP MAG =∠∴∠90HAM PAG ︒=∠=∵∠F FAM =∠,90,90FAM MAD F D ∠+∠=︒∠+∠=︒∴∠MAD D =∠∴AM MD =∵,,AP CH HC FD AG FD ⊥⊥⊥∴90PAG ∠=︒∴90MAG PAM ∠+∠=︒∵∠HAP MAG =∠∴90PAH MAP ∠+∠=︒,即90HAM ∠=︒∴90HAB BAM ∠+∠=︒∵90BAD ∠=︒,即90BAM MAD ∠+∠=︒∴HAB MAD ∠=∠在ABH ∆和ADM ∆中,{AA =AA∠AAA =∠AAA AA =AA∴△()ABH ADM SAS ≅∆∴5BH MD ==∴5AM FM ==∴4ME =∴2GN GE MG ===【点睛】本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键. 6、(1)△AMN 是是等腰三角形;理由见解析;(2)①证明见解析;②a ﹣b .【分析】(1)由等腰三角形的性质得到∠ABC=∠ACB,由平行线的性质得到∠AMN=∠ABC,∠ANM=∠ACB,于是得到∠AMN=∠ANM,根据等角对等边即可证得结论;(2)①由角平分线的定义得到∠PBM=∠PBC,由平行线的性质得到∠MPB=∠PBC,于是得到∠PBM=∠MPB,根据等角对等边即可证得结论;②由①知MB=MP,同理可得:NC=NP,故△AMN的周长=AB+AC,再根据已知条件即可求出结果.(1)解:△AMN是是等腰三角形,理由如下:∵AB=AC,∴∠ABC=∠ACB,∵MN∥BC,∴∠AMN=∠ABC,∠ANM=∠ACB,∴∠AMN=∠ANM,∴AM=AN,∴△AMN是等腰三角形;(2)①证明:∵BP平分∠ABC,∴∠PBM=∠PBC,∵MN∥BC,∴∠MPB=∠PBC∴∠PBM=∠MPB,∴MB=MP,∴△BPM是等腰三角形;②由①知MB=MP,同理可得:NC=NP,∴△AMN的周长=AM+MP+NP+AN=AM+MB+NC+AN=AB+AC,∵△ABC的周长为a,BC=b,∴AB+AC+b=a,∴AB+AC=a﹣b∴△AMN的周长=a﹣b.【点睛】本题考查了等腰三角形的性质和判定,平行线的性质,列代数式,能够灵活应用这些性质是解决问题的关键.7、(1)见解析;(2)见解析;(3)∠DAB=150°,见解析【分析】(1)依据题意作出相应图形即可;(2)在BQ上截取BE=AO,连接CE,由等边三角形的性质得,CA=CB,∠ACB=60°由同角的补角相等得∠CAO=∠CBE,由SAS证得△CAO和△CBE全等,即可得证;(3)由∠DAB=150°,DA=AB,得∠ADB=∠ABD=15°,由等边三角形性质,可得∠CAB=∠CBA=∠ACB =60°,故∠CAD=150°,由等边对等角得∠ADC=∠ACD=15°,由此∠DBC=∠DCB=75°,由等角对等边得DB=DC再由∠POQ=120°,∠BDC=30°,得∠DFO=90°,等量代换即可得证.【详解】解:(1)如图所示:(2)证明如下:在BQ 上截取BE =AO ,连接CE ,∵△ABC 为等边三角形,∴CA =CB ,∠ACB =60°∵∠POQ =120°,∴∠CAO +∠CBO =180°∵∠CBO +∠CBE =180°,∴∠CAO =∠CBE ,在△CAO 和△CBE 中,CA CB CAO CBE AO BE =⎧⎪∠=∠⎨⎪=⎩, ∴△CAO ≌△CBE (SAS ),∴CO =CE ,∠COA =∠CEB ,∴∠COE =∠CEB ,∴∠COP =∠COQ ;(3)∠DAB =150°,如图:∵∠DAB=150°,DA=AB,∴∠ADB=∠ABD=15°∵△ABC为等边三角形,∴∠CAB=∠CBA=∠ACB=60°,∴∠CAD=150°,∵AD=AC,∴∠ADC=∠ACD=15°,∴∠DBC=∠DCB=75°,∴DB=DC,∵∠POQ=120°,∠BDC=30°,∴∠DFO=90°∵AD=AC,∴DF=FC∴DO=OC∵DB=DO+OB,∴DB=CO+OB,∴CD= OB + OC.【点睛】此题考查全等三角形的判定和性质、等腰三角形的判定和性质,等边三角形的判定和性质,以及添加辅助线构造全等三角形,掌握相应的判定和性质是解答此题的关键.8、(1)BC CE ⊥(2)2CD BD EF -=或2BD CD EF -=,见解析【分析】(1)根据已知条件求出∠B =∠ACB =45°,证明△BAD ≌△CAE ,得到∠ACE =∠B =45°,求出∠BCE =∠ACB +∠ACE =90°,即可得到结论BC CE ⊥;(2)根据题意作图即可,证明ABD △≌ACE .得到BD CE =,B ACE ∠=∠,ADB AEC ∠=∠,推出ACB ACE ∠=∠.延长EF 到点G ,使FG EF =,证明ADC ≌AGC ,推出CD CG =.由此得到2CD BD EF -=.同理可证2BD CD EF -=.(1)解:90BAC ∠=︒,AB AC =,∴∠B =∠ACB =45°,∵DAE BAC ∠=∠,∴DAE DAC BAC DAC ∠-∠=∠-∠,即∠BAD =∠CAE ,∵AB AC =,AD AE =,∴△BAD ≌△CAE ,∴∠ACE =∠B =45°,∴∠BCE =∠ACB +∠ACE =90°,∴BC CE ⊥;(2)解:如图,补全图形;2CD BD EF -=.证明:∵BAC DAE ∠=∠,∴BAD CAE ∠=∠.又∵AB AC =,AD AE =,∴ABD △≌ACE .∴BD CE =,B ACE ∠=∠,ADB AEC ∠=∠.∵AB AC =,∴B ACB ∠=∠.∴ACB ACE ∠=∠.延长EF 到点G ,使FG EF =.∵AF CE ⊥,∴AE AG =.∴AEG G ∠=∠.∵ADB AEC ∠=∠,∴ADC AEG ∠=∠.∴ADC G ∠=∠.∵AC AC =,∴ADC ≌AGC .∴CD CG =.∵2CG CE EF -=,∴2CD BD EF -=.如图,同理可证2BD CD EF -=..【点睛】此题考查了全等三角形的判定及性质,等腰三角形的性质,熟记全等三角形的判定及性质是解题的关键.掌握分类思想解题是难点.9、(1)△DEF 是等边三角形,理由见解析(2)等边△ABC 的周长为18【分析】(1)利用△DEF 是等边三角形的性质以及三点的运动情况,求证EBD FCE ∆∆≌和ECF FAD ∆∆≌,进而证明==DE EF FD ,最后即可说明△DEF 是等边三角形.(2)利用题(1)的条件即∠DEC =150°,得出DEB ∆是含30角的直角三角形,求出122BD BE ==,最后求解出等边△ABC 的BC 长,最后即可求出等边△ABC 的周长. 【详解】(1)解:△DEF 是等边三角形,证明:由点D 、E 、F 的运动情况可知:AD BE CF ==,△ABC 是等边三角形,60A B C ∴∠=∠=∠=︒,AB BC CA ==,BD AB AD BC BE CE ∴=-=-=,CE BC BE CA CF AF =-=-=,在EBD ∆与FCE ∆中,BD CE B C BE CF =⎧⎪∠=∠⎨⎪=⎩()EBD FCE SAS ∴∆∆≌,DE EF ∴=,同理可证ECF FAD ∆∆≌,进而有=EF FD ,DE EF FD ∴==,故△DEF 是等边三角形.(2)解:由(1)可知△DEF 是等边三角形,且EBD FCE ∆∆≌,60DEF ∴∠=︒,BDE CEF ∠=∠,BD CE =,150DEC ∠=︒,90BDE CEF DEC DEF ∴∠=∠=∠-∠=︒,在Rt DEB ∆中,9030DEB B ∠=︒-∠=︒,122BD BE ∴==, 6BC BE CE BE BD ∴=+=+=,AB BC CA ==,∴等边△ABC 的周长为318BC =.【点睛】本题主要是考查了全等三角形的性质及判定、等边三角形的判定及性质和含30角直角三角形的性质,熟练利用等边三角形的性质,找到相等条件,进而证明全等三角形,综合利用全等三角形以及含30角直角三角形的性质,求出对应边长,是解决该题的关键.10、(1)∠E =35°;(2)AH ⊥BE .理由见解析.【分析】(1)根据等腰三角形两底角相等,已知顶角,可以求出底角,再根据角平分线的定义求出∠CBD 的度数,最后根据两直线平行,内错角相等求出;(2)由“SAS ”可证△ABD ≌△AEF ,可得AD =AF ,由等腰三角形的性质可求解.【详解】解:(1)∵AB =AC ,∴∠ABC =∠ACB ,∵∠BAC =40°,∴∠ABC =12(180°-∠BAC )=70°,∵BD 平分∠ABC ,∴∠CBD =12∠ABC =35°,∵AE ∥BC ,∴∠E =∠CBD =35°;(2)∵BD 平分∠ABC ,∠E =∠CBD ,∴∠CBD =∠ABD =∠E ,∴AB =AE ,在△ABD 和△AEF 中,AB AE E ABD BD EF =⎧⎪∠=∠⎨⎪=⎩, ∴△ABD ≌△AEF (SAS ),∴AD =AF ,∵点H 是DF 的中点,∴AH⊥BE.【点睛】本题考查了全等三角形的判定和性质,等腰三角形的性质,证明三角形全等是解题的关键.。

北师大版七年级(下)全等三角形、对称轴综合测试卷

北师大版七年级(下)全等三角形、对称轴综合测试卷

北师大版七年级(下)轴对称数学综合测试卷一、选择题1.对于下列命题:(1)关于某一直线成轴对称的两个三角形全等;(2)等腰三角形的对称轴是顶角的平分线;(3)一条线段的两个端点一定是关于经过该线段中点的直线的对称点; (4)如果两个三角形全等,那么它们关于某直线成轴对称.其中真命题的个数为 A.0 B.1 C.2 D.3 ) ( )2.如图,△ABC 和△A′B′C′关于直线 L 对称,下列结论中正确的有( (1)△ABC≌△A′B′C′ (2)∠BAC=∠B′A′C′ (3)直线 L 垂直平分 CC′ (4)直线 BC 和 B′C′的交点不一定在直线 L 上. A.4 个 B.3 个 C.2 个 D.1 个第2题 第5题 第7题 3.一个角的对称轴是( ) A.这个角的其中的一条边 B.这个角的其中的一条边的垂线 C.这个角的平分线 D.这个角的平分线所在的直线 4.下列四个判断:①成轴对称的两个三角形是全等三角形;②两个全等三角形一定成轴对 称;③轴对称的两个圆的半径相等;④半径相等的两个圆成轴对称,其中正确的有( ) A.4 个 B.3 个 C.2 个 D.1 个 5.如图,在平面内,把矩形 ABCD 沿 EF 对折,若∠1=50°,则∠AEF 等于( ) A.115° B.130° C.120° D.65° 6.下图是我国几家银行的标志,其中是中心对称图形的有( )A.1 个 B.2 个 C.3 个 D.4 个 7.如图,∠1=∠2,PD⊥AB,PE⊥BC,垂足分别为 D、E,则下列结论中错误的是( ) A.PD=PE B.BD=BE C.∠BPD=∠BPE D.BP=BE 8.如图,∠AOB 和一条定长线段 a,在∠AOB 内找一点 P,使 P 到 OA,OB 的距离都等于 a,作法如下:(1)作 OB 的垂线段 NH,使 NH=a,H 为垂足. (2)过 N 作 NM∥OB. (3)作∠AOB 的平分线 OP,与 NM 交于 P. (4)点 P 即为所求. 其中(3)的依据是( ) A.平行线之间的距离处处相等 B.到角的两边距离相等的点在角的平分线上 C.角的平分线上的点到角的两边的距离相等 D.到线段的两个端点距离相等的点在线段的垂直平分线上第8题 第 10 题 第 11 题 9.下列四个图形中,如果将左边的图形作轴对称变换,能变成右边的图形的是()A.B.C.D.10.如图,在桌面上坚直放置两块镜面相对的平面镜,在两镜之间放一个小凳,那么在两镜 中共可得到小凳的象( ) A.2 个 B.4 个 C.16 个 D.无数个 11.如图,直线 l1、l2、l3 表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条 公路的距离相等,则供选择的地址有( ) A.1 处 B.2 处 C.3 处 D.4 处二、填空题 11.已知等腰三角形的腰长是底边长的 ________.4 ,一边长为 11cm,则它的周长为 3第 12 题第 13 题第 14 题第 17 题12. 如图, 在△ABC 中, AB=AC, E 分别是 AC, 上的点, BC=BD, D, AB 且 AD=DE=EB, 则∠A=( ) 度. 13.如图,如果直线 m 是多边形 ABCDE 的对称轴,其中∠A=130°,∠B=110°.那么∠ BCD 的度数等于______________ 度. 14.如图,等边△ABC 中,D、E 分别在 AB、AC 上,且 AD=CE,BE、CD 交于点 P,若∠ ABE:∠CBE=1:2,则∠BDP= ( )度.15. 等腰三角形的“三线合一”是指 ( )( ) , , ( ) 互相重合. 16. 在直线、角、线段、等边三角形四个图形中,对称轴最多的是( ) ,它有 ( )条 对称轴;最少的是() ,它有() 条对称轴. 17. 如图,DE 是 AB 的垂直平分线,交 AC 于点 D,若 AC=6 cm,BC=4 cm,则△BDC 的 周长是 ( ) . 18. 一天小刚照镜子时,在镜子中看见挂在身后墙上的时钟,如图,猜想实际的时间应是 ( ) .第 18 题 第 19 题 第 20 题 第 21 题 19.如图,在△ABC 中,∠C=90°,AD 平分∠BAC,BC=30,BD:CD=3:2,则点 D 到 AB 的距离为( ) cm. 20.如图,D、E 为 AB、AC 的中点,将△ABC 沿线段 DE 折叠,使点 A 落在点 F 处,若∠ B=50°,则∠BDF=( ) 度. 21. 如图,直角△ABC 中,∠C=90°,∠BAC=2∠B,AD 平分∠BAC,CD:BD=1:2, BC=2.7 厘米,则点 D 到 AB 的距离 DE= 厘米,AD= ( )厘米.三、解答题1.已知:如图 7—110,△ABC 中,AB=AC,BE∥AC,∠BDE=100°,∠BAD=70°,则∠E 度数?2.如图 7—111,在 Rt△ABC 中,B 为直角,DE 是 AC 的垂直平分线,E 在 BC 上,∠BAE:∠ BAC=1:5,则∠C 的度数?3.如图 7—112,∠BAC=30°,AM 是∠BAC 的平分线,过 M 作 ME∥BA 交 AC 于 E,作 MD⊥ BA,垂足为 D,ME=10cm,则 MD 的长度?4.如图 7—119,点 G 在 CA 的延长线上,AF=AG,∠ADC=∠GEC.求证:AD 平分∠BAC.5.已知:如图 7—120,等腰直角三角形 ABC 中,∠A=90°,D 为 BC 中点,E、F 分别为 AB、 AC 上的点,且满足 EA=CF.求证:DE=DF.6.已知,如图Δ ABC 中,AB=AC,D 点在 BC 上,且 BD=AD,DC=AC.将图中的等腰三角 形全都写出来.并求∠B 的度数.ABDC7.如图,已知 P 点是∠AOB 平分线上一点,PC⊥OA,PD⊥OB,垂足为 C、D, (1)∠PCD=∠PDC 吗? 为什么? (2) 是 CD 的垂直平分线吗? 为什么? OPA CPODB8. 已知,△ABC 中,∠ABC 为锐角,且∠ABC=2∠ACB,AD 为 BC 边上的高,延长 AB 到 E,使 BE=BD,连接 ED 并延长交 AC 于 F.求证:AF=CF=DF.答案 三、1.∠ABC=∠BDE - ∠BAD=100° =30° -70° ∠ACB = ∠ABC =30 ∠DAC = 180-100 - 30 =50 因为 BE//AC ∠E = ∠DAC=50°2∵DE 是 AC 的垂直平分线∴AE=CE ∴∠C=∠CAE ∵∠BAE∶∠BAC=1∶5 ∴∠BAE=1/5∠BAC ∴∠CAE=4/5∠BAC ∴∠C=4/5∠BAC 即∠BAC=5/4∠C ∵∠B=90° ∴∠BAC+∠C=90° ∴5/4∠C+∠C=90° ∠C=40°3 解:过 E 点作 AB 的垂线交 AB 于 F因为 ME‖AB,且 AM 是∠BAC 的平分线 所以∠EMA=∠MAB=1/2 乘以 30°=15° 所以三角形 AEM 为等腰三角形 所以 AE=EM=10cm 又,在直角三角形 AEF 中 ∠BAC=30° 所以 EF=1/2AE=5cm 又 EFDM 为长方形,所以 MD=EF=5cm4 证明:∵AF=AG, ∴∠G=∠GFA. ∵∠ADC=∠GEC, ∴AD∥GE. ∴∠BAD=∠GFA,∠DAC=∠G. ∴∠BAD=∠DAC,即 AD 平分∠BAC.5.证明:连 AD,如图,∵△ABC 为等腰直角三角形,D 为 BC 中点, ∴AD=DC,AD 平分∠BAC,∠C=45°, ∴∠EAD=∠C=45°,在△ADE 和△CDF 中∴△ADE≌△CDF, ∴DE=DF.6. 解 析因为 AB=AC,BD=AD,DC=AC,由等腰三角形的概念得△ABC,△ADB,△ADC 是等腰三角形,再根据角之间的关系求得∠B 的度数.解 答图中等腰三角形有△ABC,△ADB,△ADC ∵AB=AC ∴△ABC 是等腰三角形; ∵BD=AD,DC=AC ∴△ADB 和△ADC 是等腰三角形; ∵AB=AC ∴∠B=∠C ∵BD=AD,DC=AC ∴∠B=∠BAD,∠ADC=∠DAC ∴5∠B=180° ∴∠B=36° .7.解: (1)∠PCD=∠PDC。

北师大数学七年级下册三角形全章分课时习题及答案

北师大数学七年级下册三角形全章分课时习题及答案

北师大版数学七年级下册三角形全章分课时习题及答案1、认识三角形一、单项选择题1.以下长度的各组线段为边能构成一个三角形的是()A.9,9,1B.4,5,1C.4,10,6D.2,3,6假如CD均分含30°三角板的∠ACB,则∠1等于().°°°°3.以下说法正确的选项是()A.在一个三角形中起码有一个直角B.三角形的中线是射线C.三角形的高是线段D.一个三角形的三条高的交点必定在三角形的外面4.一个三角形的内角中,起码有()A.一个钝角B.一个直角C.一个锐角D.两个锐角5.如图,△ABC中BC边上的高为()A.AEB.BFC.ADD.CF6.知足以下条件的△ABC中,不是直角三角形的是()A.∠B+∠A=∠CB.∠A:∠B:∠C=2:3:5C.∠A=2∠B=3∠CD.一个外角等于和它相邻的一个内角7.如图为一张方格纸,纸上有一灰色三角形,其极点均位于某两网格线的交点上,若灰色三角形面积为平方厘米,则此方格纸的面积为()第1页/共88页A.11平方厘米B.12平方厘米C.13平方厘米D.14平方厘米8.具备以下条件的△ABC 中,不是直角三角形的是()∠A+∠B=∠CB.∠A-∠B=∠C C.∠A︰∠B︰∠C=1︰2︰3D. ∠A=∠B=3∠C9.以长为8cm 、6cm 、10cm 、4cm 的四条线段中的三条线段为边,能够画出三角形的个数为() 个个 个 个10.已知△ABC 中,∠A:∠B:∠C=2:3:5,则△ABC 是()A.直角三角形B.锐角三角形C.钝角三角形D.不可以确立三角形的形状11.已知三角形的两边长分别为 3cm 和8cm ,则这个三角形的第三边的长可能是( )A.4cmC.6cmD. 13cm12.三角形的以下四种线段中必定能将三角形分红面积相等的两部分的是( ) A.角均分线 B.中位线 C.高 D.中线二、填空题13.如图,在△ABC 中,∠ACB=58°,若P 为△ABC 内一点,且∠1=∠2,则∠BPC=________.14.画三角形内角的均分线交对边于一点,极点与交点之间的线段叫做三角形的________.2,15.如图,在△ABC 中,已知点D 为BC 上一点,E ,F 分别为AD ,BE 的中点,且S △ABC =8cm则图中暗影部分△CEF的面积是_____cm2.第2页/共88页16 .已知三角形两边长分别是3cm,5cm,设第三边的长为xcm,则x的取值范围是________.17.如图,△ABC的面积为18,BD=2DC,AE=EC,那么暗影部分的面积是_______.18.各边长度都是整数.最大边长为8的三角形共有________个.三、解答题19.如图,△ABC中,AD是高,AE、BF是角均分线,它们订交于点 O,∠CAB=50°,∠C=60°,求∠DAE和∠BOA的度数。

七年级数学下——三角形综合题(三角形提高卷)

七年级数学下——三角形综合题(三角形提高卷)

《三角形》综合题1、如图,在△ABC 中,AB=1,BC=2,则△ABC 的高AD :CE 为 。

第1题图第2题图第3题图2、如图,在△ABC 中,点D ,E ,F 分别为BC ,AD ,AC 的中点,且S △ABC =16,则S △DEF 的面积为 。

3、如图,△ABC 中,点D 、E 、F 分别在三边上,E 是AC 的中点,AD ,BE ,CF 交于一点G ,BD=2DC ,S △BGD =8,S △AGE =3,则△ABC 的面积是 。

4、如图,在△ABC 中E 是BC 上的一点,EC=2BE ,点D 是AC 的中点,设△ABC ,△ADF ,△BEF 的面积分别为S △ABC ,S △ADF ,S △BEF ,且S △ABC =12,则S △ADF -S △BEF = 。

第4题图 第5题图 第6题图4、如图,△ABC 中,AD 、BE 相交于点O ,BD :CD=3:2,AE :CE=2:1。

那么S △BOC :S △AOC :S △AOB 为( )A 、2:3:4B 、2:3:5C 、3:4:5D 、3:4:65、如图,在△ABC 中,M 是边AB 的中点,N 是边AC 上的点,且AN ∶NC=2,CM 与BN 相交于点K ,若△BCK 的面积等于1,则△ABC 的面积等于( ) A 、3 B 、310 C 、4 D 、3136、如图,将△ABC 的三边AB ,BC ,CA 分别延长至B ′,C ′,A ′,且使BB ′=AB ,CC ′=2BC ,AA ′=3AC .若S △ABC =1,那么S △A'B'C'是 。

第6题第7题7、如图,在△ABC中,AD平分∠BAC,P为线段AD上的一个点.PE⊥AD交直线BC于点E.(1)若∠B=30°,∠ACB=70°,则∠ADC= 度,∠E= 度;(2)若∠B=58°,∠ACB=102°,则∠ADC= 度,∠E= 度;(3)若∠B=m°,∠ACB=n°,且n>m,请用含m、n的式子表示∠ADC、∠E的度数.(写出结论即可,不需要证明)8.已知,如图7,在△ ABC中,AD,AE分别是△ ABC的高和角平分线。

人教版七年级下数学三角形知识点归纳、典型例题及考点分析

人教版七年级下数学三角形知识点归纳、典型例题及考点分析

BC三角形知识点归纳、典型练习题及考点分析一、三角形相关概念 1.三角形的概念由不在同一直线上的三条线段首尾顺次连结所组成的图形叫做三角形 要点:①三条线段;②不在同一直线上;③首尾顺次相接.2.三角形的表示通常用三个大写字母表示三角形的顶点,如用A 、B 、C 表示三角形的三个顶点时,此三角形可记作△ABC ,其中线段AB 、BC 、AC 是三角形的三条边,∠A 、∠B 、∠C 分别表示三角形的三个内角.3.三角形中的三种重要线段三角形的角平分线、中线、高线是三角形中的三种重要线段.(1)三角形的角平分线:三角形一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.注意:①三角形的角平分线是一条线段,可以度量,而角的平分线是经过角的顶点且平分此角的一条射线.②三角形有三条角平分线且相交于一点,这一点一定在三角形的内部.③三角形的角平分线画法与角平分线的画法相同,可以用量角器画,也可通过尺规作图来画.(2)三角形的中线:在一个三角形中,连结一个顶点和它的对边中点的线段叫做三角形的中线. 注意:①三角形有三条中线,且它们相交三角形内部一点.②画三角形中线时只需连结顶点及对边的中点即可.(3)三角形的高线:从三角形一个顶点向它的对边作垂线,顶点和垂足间的限度叫做三角形的高线,简称三角形的高.注意:①三角形的三条高是线段②画三角形的高时,只需要向对边或对边的延长线作垂线,连结顶点与垂足的线段就是该边上的高.练习题:1、图中共有( A :5 B :6 C :7 D :82、如图,AE ⊥BC ,BF ⊥AC ,CD ⊥AB ,则△ABC 中AC 边上的高是( ) A :AE B :CD C :BF D :AF 3、三角形一边上的高( )。

A :必在三角形内部B :必在三角形的边上C :必在三角形外部D :以上三种情况都有可能 4、能将三角形的面积分成相等的两部分的是( )。

七年级数学下册第四章三角形4用尺规作三角形直角三角形全等的判定、尺规作图、测距离试题北师大版

七年级数学下册第四章三角形4用尺规作三角形直角三角形全等的判定、尺规作图、测距离试题北师大版

直角三角形全等的判定、尺规作图、测距离知识点一:直角三角形的判定1.直角三角形全等的判定条件——HL如果两个直角三角形的斜边及一条直角边分别对应相等,那么这两个直角三角形全等.2.直角三角形全等的判定方法的综合运用.判定两个直角三角形全等的方法有五种,即SSS、SAS,ASA.AAS,HL.3.判定条件的选择技巧(1)上述五种方法是判定两直角三角形全等的方法,但有些方法不可能运用.如SSS,因为有两边对应相等就能够判定两个直角三角形全等.(2)判定两个直角三角形全等,必须有一组对应边相等.(3)证明两个直角三角形全等,可以从两个方面思考:①是有两边相等的,可以先考虑用HL,再考虑用SAS;②是有一锐角和一边的,可考虑用ASA或AAS.例1.如图所示,有两个长度相等的滑梯(即BC=EF),左边滑梯的高度AC与右边滑梯的水平方向的长度DF相等,则∠ABC+∠DFE=________.分析:本题解决问题的关键是证明Rt△ABC≌Rt△DEF,由此,我们也知道三角形全等是解决问题的有力工具.解:由现实意义及图形提示可知CA⊥BF,ED⊥BF,即∠BAC=∠EDF=90°.又因为BC=EF,AC=DF,可知Rt△ABC≌Rt△DEF.得∠DFE=∠ACB.因为∠ACB+∠ABC=90°,故∠ABC+∠DFE=90°.例2.如图所示,△ABC中,AD是它的角平分线,BD=CD,DE.DF分别垂直于AB.AC,垂足为E.F.求证BE=CF.解:在△AED和△AFD中,∠ ∠ (垂直的定义)∠ ∠ (角平分线的定义)(公共边)所以△AED≌△AFD(AAS).所以DE=DF(全等三角形的对应边相等).在Rt△BDE和Rt△CDF中, (已知) (已证)所以Rt△BDE≌△Rt△CDF(HL).所以BE= CF(全等三角形的对应边相等).例3.如图所示,已知AB=AE,BC=ED,∠B=∠E,AF⊥CD,F为垂足,求证:CF=DF.分析:要证CF=DF,可连接AC.AD后,证△ACF≌△ADF即可.证明:连结AC.AD.在△ABC和△AED中,所以AC=AD(全等三角形的对应边相等).因为AF⊥CD(已知),所以∠AFC=∠AFD=90°(垂直定义).在Rt△ACF和Rt△ADF中,(已证) (公共边)所以Rt△ACF≌Rt△ADF(HL).所以CF=DF(全等三角形的对应边相等).例4.已知在△ABC与△A′B′C′中,CD.C′D′分别是高,且AC=A′C′,AB=A′B′,CD=C′D′,试判断△ABC 与△A′B′C′是否全等,说说你的理由.分析:分析已知条件,涉及到三角形的高线,而三角形的高线有在三角形内、外或形上三种情形,故需分类讨论. 解:情形一,如果△ABC与△A′B′C′都为锐角三角形,如图所示.因为CD.C′D′分别是△ABC.△A′B′C′的高.所以∠ADC=∠A′D′C′=90°.在△ADC和△A′D′C′中∴Rt△ADC≌Rt△A′D′C′,则∠A=∠A′.在△ABC与△A′B′C′中,∴△ABC≌△A′B′C′(SAS).情形二,当△ABC为锐角三角形,△A′B′C′为钝角三角形,如图.显然△ABC与△A′B′C′不全等.情形三,当△ABC与△A′B′C′都为钝角三角形时,如图.由CD.C′D′分别为△ABC和△A′B′C′的高,所以∠ADC=∠A′D′C′=90°,在Rt△ADC和Rt△A′D′C′中,CD=C′D′,AC=A′C′∴Rt△ACD≌Rt△A′C′D′,∴∠CAD=∠C′A′D′.∴∠CAB=∠C′A′B′,在△ABC与△A′B′C′中∴△ABC≌△A′B′C′.例5.阅读下题及证明过程:如图,已知D是△ABC中BC边上的一点,E是AD上一点,EB=EC,∠BAE=∠CAE,求证:∠ABE=∠ACE.证明:在△ABE和△ACE中∴△ABE≌△ACE 第一步∴∠ABE=∠ACE 第二步上面的证明过程是否正确?若正确,请写出每一步推理的根据,若不正确,请指出错在哪一步,并写出你认为正确的证明过程.分析:用三角形全等的判定条件去判断,易发现错在第一步,它不符合全等三角形的条件,因此需另辟途径.由题设知,当结论成立时,必有△ABE≌△ACE,而由已知条件不能求证这两个三角形全等,故需将这两个三角形中重新构造出全等三角形.解:上面的证明过程不正确,错在第一步,正确的证明过程如下:过E作EG⊥AB于G,EH⊥AC于H.如图所示则∠BGE=∠CHE=90°在△AGE与△AHE中∴△AGE≌△AHE∴EG=EH在Rt△BGE与Rt△CHE中,EG=EH,BE=CE.∴Rt△BGE≌Rt△CHE,∴∠ABE=∠ACE.例6.已知:如图所示,AD为△ABC的高,E为AC上一点,BE交AD于F,且有BF=AC,FD=CD.(1)求证:BE⊥AC;(2)若把条件BF=AC和结论BE⊥AC互换,那么这个命题成立吗?(1)证明:因为AD⊥BC(已知),所以∠BDA=∠ADC=90°(垂直定义),∠1+∠2=90°(直角三角形两锐角互余).在Rt△BDF和Rt△ADC中, (已知) (已知)所以Rt△BDF≌Rt△ADC(HL).所以∠2=∠C(全等三角形的对应角相等).因为∠1+∠2=90°(已证),所以∠1+∠C=90°.因为∠1+∠C+∠BEC=180°(三角形内角和等于180°),所以∠BEC=90°.所以BE⊥AC(垂直定义);(2)证明:命题成立,因为BE⊥AC,AD⊥BC,所以∠BDF=∠ADC=90°(垂直定义).所以∠1+∠C=90°,∠DAC+∠C=90°.所以∠1=∠DAC(同角的余角相等).在△BFD与△ACD中,∠ ∠ (已证)∠ ∠ °(已证)(已知)所以△BFD≌△ACD(AAS).所以BF=AC(全等三角形的对应边相等).知识二:利用三角形全等测距离通过探索三角形全等,得到了“边边边”,“边角边”,“角边角”,“角角边”定理,用这些定理能够判断两个三角形是否全等,掌握了这些知识,就具备了“利用三角形全等测距离”的理论基础.体会数学与生活的密切联系,能够利用三角形全等解决生活中的实际问题.在解决实际问题时确定方案使不能直接测量的物体间的距离转化为可以测量的距离(即把距离的测量转化为三角形全等的问题).例1.如图,有一湖的湖岸在A.B之间呈一段圆弧状,A.B间的距离不能直接测得.•你能用已学过的知识或方法设计测量方案,求出A.B间的距离吗?答案:要测量A.B间的距离,可用如下方法:(1)过点B作AB的垂线BF,在BF上取两点C.D,使CD=BC,再定出BF的垂线DE,使A.C.E在一条直线上,根据“角边角公理”可知△EDC≌△ABC.因此:DE=BA.•即测出DE的长就是A.B之间的距离.(如图甲)(2)从点B出发沿湖岸画一条射线BF,在BF上截取BC=CD,过点D作DE∥AB,使A.•C.E在同一直线上,这时△EDC≌△ABC,则DE=BA.即DE的长就是A.B间的距离.(•如图乙)例2.如图、小红和小亮两家分别位于A.B两处隔河相望,要测得两家之间的距离,请你设计出测量方案.分析:本题的测量方案实际上是利用三角形全等的知识构造两个全等三角形,使一个三角形在河岸的同一边,通过测量这个三角形中与AB相等的线段的长,就可求出两家的距离.方案:如图,在点B所在的河岸上取点C,连接BC并延长到D,使CD=CB,利用测角仪器使得∠B=∠D,A.C.E三点在同一直线上.测量出DE的长,就是AB的长.因为∠B=∠D,CD=CB,∠ACB=∠ECD,所以△ACB≌△ECD,所以AB=DE.知识点三:尺规作图1.用尺规作三角形的根据是三角形全等的条件.2.尺规作图的几何语言①过点×、点×作直线××;或作直线××;或作射线××;②连接两点××;或连接××;③延长××到点×;或延长(反向延长)××到点×,使××=××;或延长××交××于点×;④在××上截取××=××;⑤以点×为圆心,××的长为半径作圆(或弧);⑥以点×为圆心,××的长为半径作弧,交××于点×;⑦分别以点×、点×为圆心,以××、××的长为半径作弧,两弧相交于点×、×.3.用尺规作图具有以下三个步骤①已知:当题目是文字语言叙述时,要学会根据文字语言用数学语言写出题目中的条件;②求作:能根据题目写出要求作出的图形及此图形应满足的条件;③作法:能根据作图的过程写出每一步的操作过程.当不要求写作法时,一般要保留作图痕迹. 对于较复杂的作图,可先画出草图,使它同所要作的图大致相同,然后借助草图寻找作法.例1.已知三角形的两角及其夹边,求作这个三角形.已知:∠α,∠β,线段c(如图).求作:△ABC,使∠A=∠α,∠B=∠β,AB=c.请按照给出的作法作出相应的图形.例2.如图,已知线段a,b,c,满足a+b>c,用尺规作图法作△ABC,使BC=a,AC=b,AB=c.错误作法:(1)作线段AB=c;(2)作线段BC=a;(3)连接AC,则△ABC就是所求作的三角形(如图).分析:本题第2步作线段BC=a,在哪个方向作,∠CBA的度数是多少是不确定,所以这步的作法不正确,不能保证AC的长一定等于b.错误的原因在于没有真正理解用尺规作三角形的方法.正确作法:(1)作射线CE;(2)在射线CE上截取CB=a;(3)分别以C,B为圆心,b,c长为半径画弧,两弧交于点A.连接AC.AB,则△ABC为所求作的三角形(如图).例3.已知两边和其中一边上的中线,求作三角形.已知线段A.b 和 m.求作△ABC,使BC=a,AC=b,BC边上的中线等于m.分析:如果BC已作出,则只要确定顶点A.由于AD是中线,则D为BC的中点,A在以D为圆心,m为半径的圆上,又AC=b,点A也在以C为圆心b为半径的圆上,因此点A是这两个轨迹的交点.作法:1.作线段BC=a.2.分别以B.C为圆心,大于 长为半径画弧,在BC两侧各交于一点M、N,连接M、N交BC于点D.3.分别以D为圆心,m长为半径作弧,以C为圆心,b长为半径作弧,两弧交于点A.4.分别连接AB.AC.则△ABC就是所求作的三角形.思考:假定△ABC已经作出,其中 BC=a,AC=b,中线 AD=m.显然,在△ADC中,AD=m,DC= ,AC=b,所以△ADC若先作出.然后由BD= 的关系,可求得顶点B的位置,同样可以作出△ABC.作法请同学们自己写出.1.如图,DB⊥AB,DC⊥AC,垂足分别为B.C,且BD=CD,求证:AD平分∠BAC.证明:∵DB⊥AB,DC⊥AC∴∠B=∠C=90°在Rt△ABD和Rt△ACD中∴Rt△ABD≌Rt△ACD(HL)∴∠1=∠2∴AD平分∠BAC.2.如图,已知AB=AC,AB⊥BD,AC⊥CD,AD和BC相交于点E,求证:(1)CE=BE;(2)CB⊥AD.证明:(1)∵AB⊥BD,AC⊥CD∴∠ABD=∠ACD=90°在Rt△ABD和Rt△ACD中∴Rt△ABD≌Rt△ACD (HL)∴∠1=∠2在△ABE和△ACE中∴△ABE≌△ACE(SAS)∴BE=CE(2)∵△ABE≌△ACE∴∠3=∠4又∵∠3+∠4=180°∴∠3=90°∴CB⊥AD3.如图,已知一个角∠AOB,你能否只用一块三角板作出它的平分线吗?说明方法与理由.解:能.作法:(1)在OA,OB上分别截取OM=ON(2)过M作MC⊥OA,过N作ND⊥OB,MC交ND于P(3)作射线OP则OP为∠AOB的平分线证明:∵MC⊥OA.ND⊥OB∴∠1=∠2=90°在Rt△OMP和Rt△ONP中∴Rt△OMP≌Rt△ONP(HL)∴∠3=∠4∴OP平分∠AOB.4.如图,AB=AD,BC=DE,且BA⊥AC,DA⊥AE,你能证明AM=AN吗?解:能.理由如下:∵BA⊥AC,DA⊥AE,∴∠BAC=∠DAE=90° 在 Rt△ABC 和 Rt△ADE 中∴Rt△ABC≌Rt△ADE(HL) ∴∠C=∠E,AC=AE 在△AMC 和△ANE 中∴△AMC≌△ANE(ASA),∴AM=AN. 5.如图,CE⊥AB,DF⊥AB,垂足分别为 E.F,且 AE=BF,AD=BC,则(1)△ADF 和△BEC 全等吗?为什么? (2)CM 与 DN 相等吗?为什么?解: (1)△ADF≌△BCE,理由如下:∵CE⊥AB,DF⊥AB ∴∠1=∠2=∠3=∠4=90° 又∵AE=BF,∴AF=BE 在 Rt△ADF 和 Rt△BCE 中∴Rt△ADF≌Rt△BCE(HL) (2)CM=DN,理由如下: ∵△ADF≌△BCE ∴DF=CE,∠A=∠B 在△AME 和△BNF 中∴△AME≌△BNF(ASA) ∴ME=NF,又∵CE=DF ∴MC=ND. 6.如图所示,已知线段 a,b,∠α ,求作△ABC,使 BC=a,AC=b,∠ACB=∠α ,•根据作图在下面空格中填上适 当的文字或字母. (1)如图甲所示,作∠MCN=________; (2)如图乙所示,在射线 CM 上截取 BC=________,在射线 CN 上截取 AC=________. (3)如图丙所示,连接 AB,△ABC 就是_________.答案:∠α ,a,b,所求作的三角形. 7.已知线段 a 及锐角α ,求作:三角形 ABC,使∠C=90°,∠B=∠α ,BC=A.作法:(1)作∠MCN=90°; (2)以 C 为圆心,a 为半径,在 CM 上截取 CB=a; (3)以 B 为顶点,BC 为一边作∠ABC=∠α ,交 CN 于点 A.连接 AB,则△ABC 即为所求作的三角形. 8.你一定玩过跷跷板吧!如图是贝贝和晶晶玩跷跷板的示意图,支柱 OC 与地面垂直,点 O 是横板 AB 的中点,AB 可以绕着点 O 上下转动,当 A 端落地时,∠OAC=20°.(1)横板上下可转动的最大角度(即∠A′OA)是多少? (2)在上下转动横板的过程中,两人上升的最大高度 AA′,BB′有何数量关系?为什么?解:(1)∵OC⊥AB′,∠OAC=20°, ∴∠AOC=90°-20°=70°, 同理可求∠B′OC=70°, ∴∠AOA′=180°-2×70°=40°;(2)AA′=BB′, 如图所示,连接 AA′、BB′, ∵AB=A′B′,∠BAB′=∠A′B′A,AB′=B′A, ∴△A′AB′≌△BB′A,∴AA′=BB′. 9.有一池塘,要测池塘两端 A.B 间的距离,可先在平地上取一个可以直接到达 A 和 B 的点 C,连接 AC 并延长到 D, 使 CD=CA,连接 BC 并延长到 E,使 CE=CB,连接 DE,量出 DE 的长,这个长就是 A.B 之间的距离。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角形综合题
1、如图,在△ABC 中,AB=1,BC=2,则△ABC 的高AD :CE 为 。

2、如图,在△ABC 中,点D ,E ,F 分别为BC ,AD ,AC 的中点,且S △ABC =16,则
S △DEF 的面积为 。

3、如图,△ABC 中,点D 、E 、F 分别在三边上,E 是AC 的中点,AD ,BE ,CF
交于一点G ,BD=2DC ,S △BGD =8,S △AGE =3,则△ABC 的面积是 。

4、如图,在△ABC 中E 是BC 上的一点,EC=2BE ,点D 是AC 的中点,设△ABC ,
△ADF ,△BEF 的面积分别为S △ABC ,S △ADF ,S △BEF ,且S △ABC =12,则
S △ADF -S △BEF =。

第4题图 第5题图 第6题图
4、如图,△ABC 中,AD 、BE 相交于点O ,BD :CD=3:2,AE :CE=2:1。

那么S △BOC :S △AOC :S △AOB 为( )
A 、2:3:4
B 、2:3:5
C 、3:4:5
D 、3:4:6
5、如图,在△ABC 中,M 是边AB 的中点,N 是边AC 上的点,且AN ∶NC=2,CM 与BN 相交于点K ,若△BCK 的面积等于1,则△ABC 的面积等于( )
A 、3
B 、310
C 、4
D 、3
13 6、如图,将△ABC 的三边AB ,BC ,CA 分别延长至B ′,C ′,A ′,且使BB ′=AB ,
CC ′=2BC ,AA ′=3AC .若S △ABC =1,那么S △A'B'C'是 。

第6题
7、如图,在△ABC 中,AD 平分∠BAC ,P 为线段AD 上的一个点.PE ⊥AD 交直
线BC 于点E .
(1)若∠B=30°,∠ACB=70°,则∠ADC= 度,∠E= 度;
(2)若∠B=58°,∠ACB=102°,则∠ADC= 度,∠E= 度; 第7题
(3)若∠B=m °,∠ACB=n °,且n >m ,请用含m 、n 的式子表示∠ADC 、∠E 的度数.(写出结论即可,不需要证明)
8、如图,在△ABC 中,∠C=75°,∠BAC 和∠ABC 的平分线交于D ,过D 分别作DE ∥AC 交AB 于E,DF ∥BC 于点F ,求∠1的度数.

3题图第2题图

1
题图
9、(1)已知△ABC中,BO、CO分别是∠ABC、∠ACB的平分线,且BO、CO相交于点O,试探索∠BOC与∠A之间的数量关系,并说明理由.
(2)已知BO、CO分别是△ABC的外角∠DBC、∠ECB的角平分线,BO、CO相交于O,试探索∠BOC与∠A之间的数量关系,并说明理由.
(3)已知:BD为△ABC的角平分线,CO为△ABC的外角平分线,它与BO的延长线交于点O,试探索∠BOC与∠A的数量关系,并说明理由
10、如图1,在平面直角坐标系中,△AOB是直角三角形,∠AOB=90°,斜边AB与y轴交于点C.
①若∠A=∠AOC,求证:∠B=∠BOC;
②如图2,延长AB交x轴于点E,过O作OD⊥AB,若∠DOB=∠EOB,∠A=∠E,求∠A的度数;
③如图3,OF平分∠AOM,∠BCO的平分线交FO的延长线于点P,∠A=40°,当△ABO绕O点旋转时(斜边AB与y轴正半轴始终相交于点C),问∠P的度数是否发生改变?若不变,求其度数;若改变,请说明理由.
11、已知:如图,MN⊥PQ,垂足为O,点A、B分别在射线上OM、OP上,直线BE平分∠PBA与∠BAO的平分线相交于点C.
(1)若∠BAO=45°,求∠ACB;
(2)若点A、B分别在射线上OM、OP上移动,试问∠ACB的大小是否会发生变化?如果保持不变,
请说明理由;如果随点A、B的移动发生变化,请求出变化的范围.
12、已知△ABC中,∠BAC=100°.
(1)若∠ABC和∠ACB的角平分线交于点O,如图1,试求∠BOC的大小;
(2)若∠ABC和∠ACB的三等分线(即将一个角平均分成三等分的射线)相交于O,O1,如图2所示,试求∠BOC的大小;
(3)如此类推,若∠ABC和∠ACB的n等分线自下而上依次相交于O,O1,O2…,如图3所示,试探求∠BOC的大小与n的关系,并判断当∠BOC=170°时,是几等分线的交线所成的角.。

相关文档
最新文档