岩心分析及储层特征评价方法

合集下载

岩心分析及储层特征评价方法

岩心分析及储层特征评价方法

岩⼼分析及储层特征评价⽅法岩⼼分析及储层特征评价⽅法岩⼼分析是认识油⽓层地质特征的必要⼿段,油⽓层的敏感性评价、损害机理的研究、油⽓层损害的综合诊断、保护油⽓层技术⽅案的设计都必须建⽴在岩⼼分析的基础之上。

所以,岩⼼分析是保护油⽓层技术系列中不可缺少的重要组成部分,也是保护油⽓层技术这⼀系统⼯程的起始点。

第⼀节岩⼼分析概述⼀、岩⼼分析的⽬的意义1.岩⼼分析的⽬的(1)全⾯认识油⽓层的岩⽯物理性质及岩⽯中敏感性矿物的类型、产状、含量及分布特点;(2)确定油⽓层潜在损害类型、程度及原因;(3)为各项作业中保护油⽓层⼯程⽅案设计提供依据和建议。

2.岩⼼分析的意义保护油⽓层技术的研究与实践表明,油⽓层地质研究是保护油⽓技术的基础⼯作,⽽岩⼼分析在油⽓地质研究中具有重要作⽤。

油⽓层地质研究的⽬的是,准确地认识油⽓层的初始状态及钻开油⽓层后油⽓层对环境变化的响应,即油⽓层潜在损害类型及程度。

其内容包括六个⽅⾯:(1)矿物性质,特别是敏感性矿物的类型、产状和含量;(2)渗流多孔介质的性质,如孔隙度、渗透率、裂隙发育程度、孔隙及喉道的⼤⼩、形态、分布和连通性;(3)岩⽯表⾯性质,如⽐表⾯、润湿性等;(4)地层流体性质,包括油、⽓、⽔组成,⾼压物性、析蜡点、凝固点、原油酸值等;(5)油⽓层所处环境,考虑内部环境和外部环境两个⽅⾯;(6)矿物、渗流介质、地层流体对环境变化的敏感性及可能的损害趋势和后果。

其中,矿物性质及渗流多孔介质的特性主要是通过岩⼼分析获得,从⽽体现了岩⼼分析在油⽓地质研究中的核⼼作⽤。

图2-1说明了六项内容之间的相互联系,最终应指明潜在油⽓层损害因素、预测敏感性,并有针对性地提出施⼯建议。

还应指出,室内敏感性评价和⼯作液筛选使⽤的岩⼼数量有限,不可能全部考虑油⽓层物性及敏感性矿物所表现出来的各种复杂情况,岩⼼分析则能够确定某⼀块实验岩样在整个油⽓层中的代表性,进⽽可通过为数不多的实验结果,建⽴油⽓层敏感性的整体轮廓,指导保护油⽓层⼯作液的研制和优选。

石油钻井中的储层特征识别技术

石油钻井中的储层特征识别技术

石油钻井中的储层特征识别技术石油钻井是石油工业中非常重要的一环,而储层特征识别技术则是钻井中至关重要的一项技术。

储层特征识别技术指的是通过对储层岩石进行分析和测试,识别出储层的各种特征,包括岩石类型、物理性质、孔隙度、渗透率、饱和度等指标,以便更准确地评估储层的储集能力和开采潜力,为有效开发储层提供科学依据。

储层特征识别技术一般分为室内试验和现场试验两种方法。

室内试验主要是通过对所采集的钻井岩心样品进行实验室分析和测试,确定岩石的各项物理性质和孔隙结构参数,这些参数可以很好地反映储层的物性特征和油气储集状况。

现场试验则是通过各种仪器和采集装置对钻井井壁进行测量和测试,直接获得储层的物性参数。

两种方法的结合可以更准确地评估储层的物性参数,从而更好地开发储层。

储层特征识别技术涉及的主要参数有岩性、孔隙度、渗透率、压力、地质构造、地层年代等指标。

不同的储层有着不同的特征。

例如,沙岩储层的重要特性是孔隙度和渗透率,而在砾岩、泥岩储层中则需要特别关注分布规律和孔隙机理等。

因此,储层特征识别技术需要在实践中不断总结和完善。

在储层特征识别中,利用地震勘探技术是一种常用的方法。

地震勘探是将声波沿地面传播,对地下物质进行探测和图像化,以便更好地识别和评估储层的特征。

同时,地震勘探技术还可以对储层的构造和沉积环境进行研究,为开采储层提供科学依据。

在实际操作中,另一个非常重要的步骤是通过井壁岩屑物性和钻屑化学分析来识别储层类型。

钻屑化学分析法可以确定岩屑的主要成分、元素含量和矿物组成,从而识别岩石类型、地质构造和油气藏类型等储层特征。

在实际操作过程中,通过对井壁岩石的观察和分析,与现有数据库比较,可以更加全面地了解该储层的特征和性质,从而制定更科学的开发方案。

总之,储层特征识别技术是石油钻井中非常重要的一项技术,它可以帮助石油工程师更准确地评估储层的储量和开采潜力,从而提高开采效率和经济效益。

在未来,随着科技的不断进步,储层特征识别技术也将不断升级和完善,为石油工业的可持续发展贡献更多科技力量。

非常规油气储层的分析及评价

非常规油气储层的分析及评价

非常规油气储层的分析及评价随着全球经济的快速发展和人口的不断增长,油气资源的需求也在不断增加。

为了满足这种需求,石油勘探和开发就成为了必不可少的工作。

然而,在不断追求更高的产量和质量的同时,往往忽略了油气储集层的性质。

因此,本文将讨论非常规油气储集层的分析及评价。

1、非常规油气储集层的定义传统的油气储集层一般指天然气和石油在沉积岩体中的堆积层,比如砂岩、泥岩等。

而非常规油气储集层则指那些在结构上、成分上和地质年龄上与传统储层有所不同的油气储集层。

这些非常规储层中包括页岩气、煤层气、可燃冰等。

2、非常规油气储集层的分析方法(1)钻井和岩心分析法通过进行实地勘探和钻井,并获取相应的岩心样品来对沉积岩的物理性质、地质特征、有机质含量和有机质类型进行分析评价,这是最常用的非常规油气储层分析方法之一。

钻井和岩心分析法最大的优点是获取的数据量比较大,同时可以开展较为详细的物理地质分析。

(2)地震勘探方法地震勘探方法是通过声波在地下的传播,获取反射波和折射波的延时,根据波形整理和分析反演油气储集层的结构和油气含量等信息。

该方法的优点是可以精确描绘储层的三维分布和构造,缺点是只能反映油气储集层的物理性质,对有机质含量和类型等地质特征的反演较不敏感。

3、非常规油气储集层的评价标准(1)有机质含量有机质是非常规油气藏形成的关键因素之一,因此对其含量的分析是评价非常规油气储集层的关键指标之一。

页岩气和煤层气的有机质含量需达到相应的标准才有开采和开发的可能。

(2)有机质类型不同的沥青质和干酪根会影响储层孔隙度和渗透性,因此需要对其中的有机质类型进行分析。

(3)孔隙度和渗透性孔隙度和渗透性是评价油气储集层的另外两个关键指标。

需要进行相应的地质和物理实验,以获取准确的数值。

4、结论本文对非常规油气储集层的分析和评价进行了探讨,说明了非常规油气储集层的特点以及分析方法和评价标准。

在开采和开发油气资源的同时,我们要更多地关注储层特征,以实现节约能源资源并保护环境的目标。

碳酸盐岩储层评价方法及标准

碳酸盐岩储层评价方法及标准

碳酸盐岩储层评价一、储层岩石学特征评价1、内容和要求(1)颜色;(2)矿物成分、含量、结构等,其中矿物结构分粒屑结构、礁岩结构、残余结构、晶粒结构。

粒屑结构:要求描述粒屑组分、含量、基质、胶结物等特征。

粒屑组分描述应包括内碎屑、生屑和其他颗粒(鲕粒、球粒、团粒)的大小、形态、分选、磨圆、排列方向、破碎程度等方面的内容。

对鲕粒还应描述内部结构;粒屑含量是指采用镜下面积目估法或计点统计法确定各种碎屑的含量;基质(一般把粒径<0.032mm的颗粒划为基质=成分、含量、颗粒形态、结晶程度、类型、成因及胶结物(亮晶)成分、含量、晶体的大小、结晶程度、与颗粒接触关系、胶结物形态(栉壳状、粒状、再生边或连生胶结)、胶结世代及胶结类型等都是应描述的内容。

礁岩结构:分析原地生长的生物种类、骨架孔隙的发育情况,确定粘结结构类型(叠层状、席状、皮壳状)、规模大小及成因;分析异地堆积的类型(分散礁角砾、接触礁角砾)、成因、各类礁角砾的大小和含量,描述其形态、分布等。

残余结构:确定原结构类型、残余程度,分析成因。

晶粒结构:描述晶体形态、晶粒间接触关系以及晶间孔发育和连通程度,确定晶粒大小、各种晶粒的比例。

(3)沉积构造物理成因构造a.流动构造:确定类型(冲刷痕、皱痕、微型层理及渗流砂),描述形态、大小和排列方向;b.变形构造:确定类型(滑塌构造、水成岩墙),描述特征;c.暴露构造:确定类型(雨痕、干裂、席状裂隙、鸡丝构造、帐蓬构造),描述特征;d.重力成因构造:确定类型(递变层理、包卷构造,枕状构造、重荷模构造),描述特征。

化学成因构造a.结晶构造:确定类型(晶痕、示底构造),描述特征;b.压溶构造:确定类型(缝合线、叠锥构造)描述特征;c.交代增生构造:确定类型(结核、渗滤豆石),描述特征。

生物沉积构造a.生物遗迹:确定类型(足迹、爬痕、潜穴、钻孔),描述形态和分布;b.生物扰动构造:确定类型(定形扰动、无定形扰动),描述形态和分布;c.鸟眼构造:描述鸟眼孔的大小、充填物质与充填情况、分布特点,分析成因。

陆相页岩油储层评价关键参数及方法

陆相页岩油储层评价关键参数及方法

陆相页岩油储层评价关键参数及方法在石油勘探开发领域中,页岩油储层评价是一个至关重要的环节。

而对于陆相页岩油储层的评价,更是需要考虑到其特殊的地质条件和油气成藏特点。

本文将从多个方面对陆相页岩油储层评价的关键参数及方法进行深入探讨,并共享个人观点和理解。

一、岩石地球物理参数评价在陆相页岩油储层评价中,岩石地球物理参数是至关重要的。

包括岩石的孔隙度、渗透率、孔喉结构、裂缝特征等参数,都直接影响着储层的含油气性能。

利用密度、声波、电阻率等地球物理勘探技术,对储层进行详细的参数评价是至关重要的。

1. 孔隙度和渗透率孔隙度和渗透率是评价页岩储层储层性质的重要参数。

其中,孔隙度直接关系到储集空间的大小,而渗透率则是衡量岩石孔隙连接性的重要指标。

通过密度测井、核磁共振等技术,可以获得储层的孔隙度和渗透率数据,从而评价储层的含油气能力。

2. 孔隙结构和裂缝特征页岩储层中的孔隙结构和裂缝特征对于油气的储集和运移具有重要影响。

通过核磁共振、微观成像等高分辨率技术,可以对储层孔隙结构和裂缝进行定量描述,为后续的油藏开发提供重要依据。

二、地质条件评价除了岩石地球物理参数外,对于陆相页岩油储层评价,还需要考虑其特殊的地质条件。

包括构造背景、沉积环境、岩相特征等多个方面的评价。

1. 构造背景构造背景直接影响着储层的形成和演化。

对于陆相页岩储层来说,构造背景的复杂性常常导致储层的非均质性和非均一性,因此需要对构造背景进行详细评价,为储层开发提供依据。

2. 沉积环境沉积环境对于储层的孔隙结构、岩相特征等都有着重要影响。

通过对沉积环境的综合分析,可以更好地理解储层的特点和规律,为勘探开发提供指导。

三、评价方法及技术针对陆相页岩油储层评价的复杂性和特殊性,需要结合多种评价方法和技术来进行综合评价。

1. 地震技术地震技术在陆相页岩油储层评价中有着重要应用。

通过地震反演、地震成像等技术,可以获取储层的地质构造、岩性分布等重要信息。

2. 岩心分析岩心分析是对储层岩石进行详细分析的重要手段。

分析石油地质勘探与储层评价方法

分析石油地质勘探与储层评价方法

分析石油地质勘探与储层评价方法
石油地质勘探是指通过多种手段,以确定地下是否有石油或天然气等烃类矿产资源,
并进一步评估其规模、分布、性质等信息的一项全过程。

储层评价则是在勘探过程中,对
已探明的油气藏内部构造、岩石物性及流体状态等方面的特征进行分析和评价,以确定开
发方案和产能预估等。

在石油地质勘探中,地质勘探与物探技术相结合,可以精确地测量地表及地下的地形、地貌、地层厚度和性质等信息,进而绘制出具有一定分辨率的地质图和深部剖面图,提供
给石油工程师和地质学家分析、评估地下沉积序列、构造特征、流体动力学等石油地质学
基础数据。

例如,地震勘探技术可以测量岩石介电常数及密度等物理量,确定地下岩石的
类型和分布;电磁法通过测量岩石渗透率和电阻率等物理量,可以判断储层岩石的渗透性
和连通性;地热勘探则可测定地下热流、热容和热导率等数据,间接地反映油气藏的储量
和热膨胀。

在储层评价方面,主要应用地震资料解释,并跟踪流体系统的行为,评估储层的物性
和流动性,并推断流体储量和分布。

例如,利用地震分层技术,可以分析岩石的波速和阻
抗等数据,确定储层的界面和层位,进而推断出油气含量、渗透率和孔隙度等物性参数。

此外,还可借助钻井数据、岩心分析、产能测试等技术,综合评价储层的物理性质和流动
特征,以建立合理有效的储层模型,指导油藏开发和成本控制。

总的来说,石油地质勘探与储层评价方法是针对油气资源勘探开发过程的整个过程提
供了精确和可靠的数据和方法,有助于油气资源的接续探明和开发,提高勘探开发效率和
资源利用率,也为保障能源安全、推动国家经济发展作出了积极贡献。

沉积作用与沉积物储层特征研究

沉积作用与沉积物储层特征研究

沉积作用与沉积物储层特征研究一、引言沉积作用和沉积物储层特征是地质学中一个重要的研究领域。

这一领域的研究对于能源勘探、环境保护以及地质灾害预测等方面具有重要意义。

本文将探讨沉积作用的概念,以及沉积物储层特征的研究方法和应用。

二、沉积作用的概念沉积作用是指地表或水体中,由于重力、水力、风力等外力作用而使岩层沉积的过程。

这个过程通常发生在水体、湖泊和海洋等环境中。

沉积作用会导致沉积物的堆积,形成沉积岩。

三、沉积物储层特征的研究方法1. 岩心分析:通过采集地层中的岩心样品进行分析,可以了解沉积物的物理性质、化学成分以及孔隙结构等。

岩心分析是研究沉积物储层特征的常用方法之一。

2. 地震勘探:利用地震波在岩石中传播的速度和反射特征,可以获取地下岩石层的结构信息。

地震勘探在研究沉积物储层的时空分布和孔隙连通性方面具有重要作用。

3. 数值模拟:通过建立数学模型,模拟沉积作用的过程和沉积物在不同环境条件下的分布特征。

数值模拟可以帮助科学家预测沉积作用对地质环境的影响,并为资源勘探提供依据。

四、沉积物储层特征的应用研究沉积物储层特征对于能源勘探具有重要意义。

根据不同的储层特征,可以判断储层中的石油、天然气等能源资源的存在及分布情况,从而指导勘探工作。

此外,沉积物储层特征还可以用于地质灾害预测和环境保护等方面。

五、挑战与展望尽管沉积作用和沉积物储层特征的研究已经取得了一定的成果,但仍然面临着许多挑战。

首先,沉积作用是一个复杂的过程,受多种因素的影响,需要进一步深入研究。

其次,沉积物储层特征的获取和解释需要借助先进的技术手段和仪器设备。

未来的研究应该注重创新和跨学科合作,以应对这些挑战。

六、结论沉积作用与沉积物储层特征的研究在地质学中具有重要意义。

通过深入探索沉积作用的过程和沉积物储层特征的获取方法,我们可以为能源勘探、环境保护和地质灾害预测等领域提供更精确的科学依据。

然而,这一领域的研究仍然面临着许多挑战,需要不断创新和合作才能取得更大的突破。

碳酸盐岩储层特征与评价

碳酸盐岩储层特征与评价

碳酸盐岩储层特征与评价碳酸盐岩储层是石油和天然气资源的重要储备基质之一。

对碳酸盐岩储层的特征和评价有着深入的研究,可以帮助油气开发人员更好地了解储层的性质和潜力,并提供指导性的依据。

本文将介绍碳酸盐岩储层的特征和评价方法。

一、碳酸盐岩储层的特征碳酸盐岩储层主要由碳酸盐矿物组成,其主要特征包括孔隙度、渗透率、储层构造和成岩作用。

以下将对这些特征逐一进行介绍。

1. 孔隙度碳酸盐岩储层的孔隙度是指储层中存在的孔隙和裂缝的总体积与岩石体积的比值。

碳酸盐岩的孔隙类型多样,包括生物孔隙、溶蚀孔隙、溶解缝、晶间隙和溶洞等。

碳酸盐岩储层的孔隙度通常较低,但是由于溶蚀作用的影响,部分碳酸盐岩储层的孔隙度可达到较高水平。

2. 渗透率碳酸盐岩储层的渗透率是指岩石中流体流动的能力,是储层导流能力的重要指标。

影响渗透率的因素包括孔隙度、孔隙连通性、孔喉半径和孔隙结构等。

通常情况下,碳酸盐岩储层的渗透率相对较低,但是由于孔隙结构的复杂性,有些储层的渗透率仍然较高。

3. 储层构造碳酸盐岩储层的构造特征包括裂缝、节理和构造缝洞等。

这些构造特征对储层的渗透性和储集性能有着重要影响。

通过对储层构造的研究和评价,可以了解储层的导流性和导存能力。

4. 成岩作用碳酸盐岩储层的成岩作用是地质历史过程中产生的物理、化学改变。

成岩作用包括压实作用、溶解作用、胶结作用和脱水作用等。

成岩作用对储层的物性和储集性能有着重要影响。

通过分析成岩作用的类型和程度,可以评价储层的成熟度和储集能力。

二、碳酸盐岩储层的评价方法对碳酸盐岩储层进行评价主要从储集条件、储集模式和储集效果等方面进行分析。

以下将介绍常用的评价方法。

1. 储集条件评价储集条件评价主要研究储层物性参数,包括孔隙度、渗透率、孔隙结构和岩性特征等。

可以通过岩心分析、测井解释和物性实验等方法获取储集条件的参数,从而评价储层的物性和储集潜力。

2. 储集模式评价碳酸盐岩储层的储集模式包括溶蚀缝洞型、晶间孔隙型和胶结型等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

岩心分析及储层特征评价方法岩心分析是认识油气层地质特征的必要手段,油气层的敏感性评价、损害机理的研究、油气层损害的综合诊断、保护油气层技术方案的设计都必须建立在岩心分析的基础之上。

所以,岩心分析是保护油气层技术系列中不可缺少的重要组成部分,也是保护油气层技术这一系统工程的起始点。

第一节岩心分析概述一、岩心分析的目的意义1.岩心分析的目的(1)全面认识油气层的岩石物理性质及岩石中敏感性矿物的类型、产状、含量及分布特点;(2)确定油气层潜在损害类型、程度及原因;(3)为各项作业中保护油气层工程方案设计提供依据和建议。

2.岩心分析的意义保护油气层技术的研究与实践表明,油气层地质研究是保护油气技术的基础工作,而岩心分析在油气地质研究中具有重要作用。

油气层地质研究的目的是,准确地认识油气层的初始状态及钻开油气层后油气层对环境变化的响应,即油气层潜在损害类型及程度。

其内容包括六个方面:(1)矿物性质,特别是敏感性矿物的类型、产状和含量;(2)渗流多孔介质的性质,如孔隙度、渗透率、裂隙发育程度、孔隙及喉道的大小、形态、分布和连通性;(3)岩石表面性质,如比表面、润湿性等;(4)地层流体性质,包括油、气、水组成,高压物性、析蜡点、凝固点、原油酸值等;(5)油气层所处环境,考虑内部环境和外部环境两个方面;(6)矿物、渗流介质、地层流体对环境变化的敏感性及可能的损害趋势和后果。

其中,矿物性质及渗流多孔介质的特性主要是通过岩心分析获得,从而体现了岩心分析在油气地质研究中的核心作用。

图2-1说明了六项内容之间的相互联系,最终应指明潜在油气层损害因素、预测敏感性,并有针对性地提出施工建议。

还应指出,室内敏感性评价和工作液筛选使用的岩心数量有限,不可能全部考虑油气层物性及敏感性矿物所表现出来的各种复杂情况,岩心分析则能够确定某一块实验岩样在整个油气层中的代表性,进而可通过为数不多的实验结果,建立油气层敏感性的整体轮廓,指导保护油气层工作液的研制和优选。

二、岩心分析的内容岩心分析是指利用各种仪器设备来观测和分析岩心一切特性的系列技术。

岩心是地下岩石(层)的一部分,所以岩心分析是获取地下岩石信息的十分重要的手段。

表2-1给出了保护油气层研究中岩心分析的内容及相应的技术方法。

应用中要根据具体的油气层特点进行选择分析,做到既能抓住主要矛盾,解决实际问题,又要经济实用,注意发挥不同技术的优点,配套实施。

三、取样要求岩心分析的样品可以来自全尺寸成形的岩心、也可以是井壁取心或钻屑。

经验表明,钻屑的代表性很差,故通常使用成形岩心,而且多个实验项目可以进行配套分析,便于找出岩石各种参数之间的内在联系。

岩石结构与矿物分析、孔隙结构的测定要在了解油气层岩性、物性、含油气性、电性的基础上,有重点地进行选样分析。

铸体薄片的样品应能包括油气层剖面上所有岩石性质的极端情况,如粒度、颜色、胶结程度、结核、裂缝、针孔、含油级别等,样品间距1~5块/ m,必要时加密。

X射线衍射(XRD)的扫描电镜(SEM)分析样品密度大约为铸体薄片的1/3至1/2,对油气层要加密,水层及夹层进行控制性分析。

压汞分析的岩样,对于一个油组(或厚油层),每个渗透率级别至少有3~5条毛管压力曲线,最后可根据物性分布求取该油组的平均毛管压力曲线。

图2-1保护油气技术中油气层地质研究的内容及岩心分析的作用如图2-2所示,最好在同一段岩心上取足配套分析的柱塞。

铸体薄片、扫描电镜、压汞分样需在同一柱塞上进行,这有利于建立孔隙分布与孔喉分布参数间的关系,以及孔隙结构与岩性、物性、粘土矿物之间的联系。

XRD分析可以用碎样,但应清除被泥浆污染的部分,否则会干扰实验结果。

电子探针分析可用其它柱塞端部,这样在所有分析项目完成后,就能指出潜在的损害类型及原因,预测不同渗透率级别(储层类型)的油气层的敏感程度,正确解释敏感性评价实验结果。

表2-1 岩心分析揭示的内容及所用的方法第二节岩心分析技术及应用一、X射线衍射1.X射线衍射分析技术全岩矿物组分和粘土矿物可用X射线衍射(XRD)迅速而准确地测定。

XRD分析借助于X 射线衍射仪来实现,它主要由光源、测角仪、X射线检测和记录仪构成(图2-3)。

由于粘土矿物的含量较低,砂岩中一般3%~15%。

这时,X射线衍射全岩分析不能准确地反映粘土的组成与相对含量,需要把粘土矿物与其它组分分离,分别加以分析。

首先将岩样抽提干净,然后碎样,用蒸馏水浸泡,最好湿式研磨,并用超声波振荡加速粘土从颗粒上脱落,提取粒径小于2μm(泥、页岩)或小于5μm(砂岩)的部分,沉降分离、烘干、计算其占岩样的重量百分比。

图2-3 X射线衍射仪的衍射系统粘土矿物的XRD分析使用定向片,包括自然干燥的定向片(N片)、经乙二醇饱和的定向片(再加热至550℃),或盐酸处理之后的自然干燥定向片。

粒径大于2μm或5μm的部分则研磨至粒径<40μm的粉末,用压片法制片,上机分析。

此外还可以直接进行薄片的XRD 分析,它对于鉴定疑难矿物十分方便,并可与薄片中矿物的光性特征对照,进行综合分析。

2.X射线衍射在保护油气层中的应用1)地层微粒分析地层微粒指粒径小于37μm(或44μm)即能通过美国400目(或325目)筛的细粒物质,它是砂岩中重要的损害因素,砂岩中与矿物有关的地层损害都与其有密切的联系。

地层微粒的分析为矿物微粒稳定剂的筛选、解堵措施的优化提供依据。

除粘土矿物外,常见的其它地层微粒有长石、石英、云母、菱铁矿、方解石、白云石、石膏等。

2)全岩分析对粒径大于5μm的非粘土矿物部分进行XRD分析,可以知道诸如云母、碳酸盐矿物、黄铁矿、长石的相对含量,对酸敏(HF,HCl)性研究和酸化设计有帮助。

长石含量高的砂岩,当酸液浓度和处理规模过大时,会削弱岩石结构的完整性,并且存在着酸化后的二次沉淀问题,可能导致土酸酸化失败。

3)粘土矿物类型鉴定和含量计算利用粘土矿物特征峰的 d00l值鉴定粘土矿物类型,表2-2列出了各族主要粘土矿物的d001值。

根据出现的矿物对应衍射峰的强度(峰面各或峰高度),依据行业标准SYS5163-87“用X射线衍射仪测定沉积岩粘土矿物的定量分析方法”求出粘土矿物相对含量。

表2-2 各族主要粘土矿物的d001(10-1nm)X射线衍射特征注:Di-二八面体;Tri-三八面体;Ch-绿泥石; S-蒙皂石; Ve-蛭石; Bi-黑云母4)间层矿物鉴定和间层比计算油气层中常见的间层矿物大多数是由膨胀层与非膨胀层单元相间构成。

表2-3列出了间层矿物的类型,伊利石/蒙皂石间层矿物、绿泥石/蒙皂石间层矿物较常见。

间层比指膨胀性单元层在间层矿物中所占比例,通常以蒙皂石层的百分含量表示。

由衍射峰的特征,依据行业标准SY/T5983-94“伊利石/蒙皂石间层矿物X射线射鉴定方法”求出间层矿物间层比及间层类型(绿泥石/蒙皂石间层矿物间层比的标准化计算方法待定)。

对间层矿物的间层类型、间层比和有高序度的研究有助于揭示油气层中粘土矿物水化、膨胀、分散的特性。

应该指出,XRD分析不能给出敏感性矿物产状,所以必须与薄片、扫描电镜技术配套使用,才能全面揭示敏感性矿物的特征。

4)无机垢分析XRD分析技术鉴定矿物的能力在地层损害研究中还有广泛的应用。

油气井见水后,可能会有无机盐类沉积在射孔孔眼和油管中,利用XRD分析技术就可以识别矿物的类型,为预防和解除垢沉积提供依据。

如大庆油田聚合物驱采油中,生产井油管中无机垢沉积,经XRD 鉴定存在BaSO4。

此外,XRD分析还用于注入和产出流体中的固相分析,明确矿物成分和相对含量,对于研究解堵措施很有帮助。

二、扫描电镜1.扫描电镜分析技术扫描电镜(SEM)分析能提供孔隙内充填物的矿物类型、产状的直观资料,同时也是研究孔隙结构的重要手段。

扫描电镜通常由电子系统、扫描系统、信息检测系统、真空系统和电源系统五大部分构成(图2-4),它是利用类似电视摄影显象的方式,用细聚焦电子束在样品表面上逐点进行扫描,激发产生能够反映样品表面特征的信息来调制成象。

有些扫描电镜配有X射线能谱分析仪,因此能进行微区元素分析。

扫描电镜分析具有制样简单、分析快速的特点。

分析前要将岩样抽提清洗干净,然后加工出新鲜面作为观察面,用导电胶固定在样品于桩上,自然晾干,最后在真空镀膜机上镀金(或碳),样品直径一般不超过1cm。

近年来,在扫描电镜样品制备方面取得了显著的进展。

临界点干燥法可以详细地观察原状粘土矿物的显微结构,背散射电子图象的使用能够在同一视域中直接识别不同化学成分的各种矿物。

2.扫描电镜在保护油气层中的应用1)油气层中地层微粒的观察图2-4 扫描电镜基本结构图扫描电镜分析能给出孔隙系统中微粒的类型、大小、含量、共生关系的资料。

越靠近孔、喉中央的微粒,在外来流体和地层流体作用下越容易失稳。

测定微粒的大小分布及在孔喉中的位置,能有效地估计临界流速和速敏程度,便于有针对性地采取措施防止或解除因分散、运移造成的损害。

2)粘土矿物的观测粘土矿物有其特殊的形态(表2—4),借此可确定粘土矿物的类型、产状和含量。

如孔喉桥接状、分散质点状粘土矿物易与流体作用。

对于间层矿物,通过形态可以大致估计间层比范围。

3)油气层孔喉的观测扫描电镜立体感强,更适于观察孔喉的形态、大小及与孔隙的连通关系。

对孔喉表面的粗糙度、弯曲度、孔喉尺寸的观测能揭示微粒捕集、拦截的位置及难易程度,对研究微粒运移和外来固相侵入很有意义。

4)含铁矿物的检测当扫描电镜配有X射线能谱仪时,能对矿物提供半定量的元素分析,常用于检测铁元素,如碳酸盐矿物、不同产状绿泥石的含铁量,因为在盐酸酸化时少量的铁很容易形成二次沉淀,造成油气层的损害。

5)油气层损害的监测利用背散射电子图象,岩心可以不必镀金和镀碳就能测定,在敏感性(或工作液损害)评价实验前后都可以进行直观分析。

对于无机和有机垢的晶体形态、排布关系的观察,还可以为抑垢除垢、筛选处理剂、优化工艺措施提供依据。

三、薄片技术1.薄片分析技术薄片技术是保护油气层的岩相学分析三大常规技术之一,也是最基础的一项分析。

应用光学显微镜观察薄片,由铸体薄片获得的资料比较可靠。

制作铸体薄片的样品最好是成形岩心,不推荐使用钻屑。

薄片厚度为0.03mm,面积不小于15mm×15mm。

未取心的情况除外,建议少用或不用钻屑薄片,因为岩石总是趋于沿弱连接处破裂,胶结致密的岩块则能保持较大的尺寸,这样会对孔隙发育及胶结状况得出错误的认识。

2.薄片分析技术在保护油气层中的应用1)岩石的结构与构造薄片粒度分析给出的粒度分布参数可供设计防砂方案时参考,当然应以筛析法和激光粒度分析获得的数据为主要依据。

研究颗粒间接触关系、胶结类型及胶结物的结构可以估计岩石的强度,预测出砂趋势。

相关文档
最新文档