人教版七年级数学上册第三章解一元一次方程——去括号去分母复习试题3(含答案) (1)

合集下载

人教版七年级数学上册第三章实际问题与一元一次方程解答题复习试题三(含答案) (81)

人教版七年级数学上册第三章实际问题与一元一次方程解答题复习试题三(含答案) (81)

人教版七年级数学上册第三章实际问题与一元一次方程解答题复习试题三(含答案)一、解答题1.七年级学生在4名数学老师的带领下去公园游玩,公园的门票为每人20元,现有两种优惠方案,甲方案:师生都按7.5折收费.乙方案:带队老师免费,学生按8折收费.(1)如有a名学生,用代数式表示两种优惠方案各需多少元?(2)当a=50时,采用哪种方案优惠?(3)当a=120时,采用哪种方案优惠?【答案】(1)甲方案为:15a+60;乙方案为:16a;(2)乙方案优惠;(3)甲方案优惠;【解析】【分析】(1)根据题意分别表示出两种方案的钱数即可;(2)把a=50代入,比较大小即可;(3)把a=120代入,比较大小即可.【详解】(1)若有a名学生,甲方案为:(15a+60)元;乙方案为:16a元;(2)当a=50时,甲方案需810元,乙方案需800元,此时乙方案优惠;(3)当a=120时,甲方案需1860元,乙方案需1920元,此时甲方案优惠.【点睛】此题考查了代数式求值,以及列代数式,熟练掌握运算法则是解本题的关键.2.某工厂第一车间有x人,第二车间比第一车间人数的45少30人,那么:()1两个车间共有多少人?()2如果从第一车间调出20人到第二车间后,两车间人数一样多,求原来两个车间各多少人?【答案】原来第一车间50人,原来第二车间10人.【解析】【分析】(1)表示出第二车间的人数,进而表示出两个车间的总人数;(2)根据等量关系:从第一车间调出20人到第二车间后,两车间人数一样多,列出方程求解即可.【详解】(1)根据题意得:两个车间共有x+45x﹣30=(95x﹣30)人;(2)根据题意得:x﹣20=45x﹣30+20解得:x=50.当x=50时,45x﹣30=40﹣30=10.答:原来第一车间50人,原来第二车间10人.【点睛】本题考查了一元一次方程的应用,解题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.3.为应对越来越严重的雾霾天气,孔明同学所在班级的家长委员会,准备为该班集资捐赠一台大型的空气净化机,现知道某商场将该型号的空气净化机按标价的八折出售,每台空气净化机仍可获利5%,已知该型号客气净化机的进价为4000元.()1求该空气净化机的标价.()2若该班有50名学生,则该班每位学生家长应平均捐助多少元.【答案】(1)该空气净化机的标价为5250元;(2)该班每位学生家长应平均捐助84元.【解析】【分析】(1)设该空气净化机的标价为x元,根据售价-进价=利润得到方程为0.8x-4000=4000×5%,解方程求出x的值即可;(2)先求出八折后的售价,然后求出平均捐款.【详解】(1) 设该空气净化机的标价为x元则有0.8x-4000=4000×5%,解得:x=5250.答:该空气净化机的标价为5250元;⨯=(元),(2)52500.84200÷=(元).42005084答:该班每位学生家长应平均捐助84元.【点睛】此题主要考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.4.列方程解应用题:张大叔在承包的10亩地里所种植的黄瓜和西红柿共获利13800元,其中,黄瓜每亩获利1200元,西红柿每亩获利1500元,问黄瓜种植了多少亩?【答案】黄瓜种了4亩.【解析】【分析】设黄瓜种了x亩,则西红柿种了(10-x)亩,由题意得出相等关系为:甲、乙两种蔬菜共10亩和共获利13800元,列方程求解即可.【详解】解:设黄瓜种了x亩,则西红柿种了(10-x)亩,由题意得1200x+1500(10-x)=13800,解得:x=4,则10-x=10-4=6.答:黄瓜种了4亩.【点睛】此题考查的是一元一次方程的应用,关键是确定相等关系列出方程求解.5.某快递员准备送出一批美术用纸共25500包,其中包括素描纸、手工彩色卡纸和水粉纸三种美术用纸,它们的数量比为1:2:14.该快递员准备送出的这三种美术用纸各多少包?【答案】素描纸用纸1500包、手工彩色卡纸3000包和水粉纸用纸21000包【解析】【分析】直接利用已知设它们的数量比为x:2x:14x,进而得出等式求出答案【详解】设素描纸、手工彩色卡纸和水粉纸三种美术用纸,它们的数量比为x:2x:14x,根据题意可得:x+2x+14x=25500,解得:x=1500,则2x=3000,14x=21000,答:素描纸用纸1500包、手工彩色卡纸3000包和水粉纸用纸21000包.【点睛】此题主要考查了一元一次方程的应用,正确得出等式是解题关键6.甲、乙两商场以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过200元后,超过200元的部分按9折收费;在乙商场累计购物超过100元后,超过100元的部分按9.5折收费,顾客到哪家商场购物花费少?【答案】详见解析.【解析】【分析】先设顾客累计花费x元,再根据三种情况进行讨论,当x≤100,100<x≤200,x≥200时,分别进行分析,即可得出答案.【详解】设顾客累计花费x元,根据题意得:(1)当x≤100时,两家商场都不优惠,则花费一样;(2)当100<x≤200时,去乙商场享受优惠,花费少;(3)当x≥200,在甲商场花费200+(x-200)×90%=0.9x+20(元),在乙商场花费100+(x-100)×95%=0.95x+5(元),①到甲商场花费少,则0.9x+20<0.95x+5,解得x>300;①到乙商场花费少,则0.9x+20>0.95x+5,x<300;①到两家商场花费一样多,则0.9x+20=0.95x+5,x=300.【点睛】本题主要考查一元一次方程与不等式的实际应用,设出未知数,根据题意列出所有可能的情况是解此题的关键.7.列方程解应用题.为纪念红军长征胜利80周年,让人们更好地了解历史,开展爱国主义教育,传承和弘扬伟大的长征精神,军事博物馆举办“英雄史诗不朽丰碑–纪念中国工农红军长征胜利80周年主题展览”.展览图片、文物、艺术品共计572件,文物比艺术品的5倍还多27件,图片比文物、艺术品的和少22件,求展出的艺术品有多少件.【答案】展出的艺术品有45件【解析】【分析】由题意找出等量关系:展览图片+文物+艺术品=572件和文物比艺术品的5倍还多27件,图片比文物、艺术品的和少22件,再设展出的艺术品有x件,列出方程求解即可.【详解】设展出的艺术品有x件,根据题意列方程,得(5x+27+x-22)+x+(5x+27)=572,解得:x=45.答:展出的艺术品有45件.【点睛】考查了一元一次方程的应用,读懂题意,找出题目中的等量关系,列出方程是解题的关键,本题的等量关系是:展览图片+文物+艺术品=572件.8.A、B两地相距600千米,一列慢车从A地开出,每小时行驶80千米,一列快车从B地开出,每小时行驶120千米,两车同时开出.()1若相向而行,出发后多少小时相遇?()2若相背而行,多少小时后,两车相距800千米()3若两车同向而行,快车在慢车后面,多少小时后,快车追上慢车?【答案】(1)若相向而行,出发后3小时相遇;(2)若两车同向而行,快车在慢车后面,15小时后,快车追上慢车.【解析】【分析】(1)设出发后x小时两车相遇,根据两地间距=相遇时间×两车速度之和,即可列出关于x的一元一次方程,解方程即可;(2)设y小时后两车相距800千米,根据行驶时间×两车速度和=两车间距-两地间距,即可列出关于y的一元一次方程,解方程即可;(3)设出发后z小时快车追上慢车,根据两地间距=相遇时间×两车速度之差,即可列出关于z的一元一次方程,解方程即可.【详解】(1)设出发后x小时相遇,根据题意,可得(80+120)x=600,解得x=3.答:若相向而行,出发后3小时相遇;(2)设y小时后两车相距800千米,根据题意,可得(80+120)y=800-600,解得y=1.答:若相背而行,1小时后,两车相距800千米;(3)设z小时后快车追上慢车,根据题意,可得(120-80)z=600,解得z=15.答:若两车同向而行,快车在慢车后面,15小时后,快车追上慢车.【点睛】考查了一元一次方程的应用,掌握行程问题中的基本数量关系是解决问题的关键.9.当x 为何值时,代数式2(x+1)与代数式1﹣x 的值互为相反数?【答案】x=﹣3【解析】【分析】利用互为相反数两数之和为0列出方程,求出方程的解即可得到x 的值.【详解】根据题意得:2(x +1)+1﹣x =0,去括号得:2x +2+1﹣x =0,解得:x =﹣3.【点睛】本题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.10.为节约用水,某市规定三口之家每月标准用水量为15立方米,超过部分加价收费,假设不超过部分水费为1.5元∕立方米,超过部分水费为3元∕立方米.设用户用水量为a 立方米.()1请用代数式表示:①该户用水量不超过标准用水量应缴纳的水费;②该户用水量超过标准用水量应缴纳的水费;()2如果小明家10月份用水20立方米,那么该月应交多少水费?【答案】()1①1.5a 元;②()322.5a -元;()2小明家10月份应交水费为37.5元.【解析】【分析】(1)①不超过部分水费为1.5元∕立方米,用a乘以1.5即可;②水费分两部分:15立方米按1.5元∕立方米收费,超过部分(a-15)按3元∕立方米收费,然后把两者相加即可;(2)把a=20代入②中的代数式中,计算出代数式的值即可.【详解】()1①该户用水量不超过标准用水量应缴纳的水费为1.5a元;②该户用水量超过标准用水量应缴纳的水费为()()⨯+-⨯=-元;a a15 1.5153322.5()2小明家10月份应交水费为32022.537.5⨯-=(元).【点睛】本题考查了列代数式,解题时要注意区分水价。

人教版数学七年级上册:3.3 解一元一次方程(二)——去括号与去分母 同步练习(附答案)

人教版数学七年级上册:3.3 解一元一次方程(二)——去括号与去分母  同步练习(附答案)

3.3解一元一次方程(二)——去括号与去分母1.解方程4(x-2)=2(x+3),去括号,得 .移项,得 .合并同类项,得 .系数化为1,得 .2.将方程2x-3(4-2x)=5去括号,正确的是( )A.2x-12-6x=5B.2x-12-2x=5C.2x-12+6x=5D.2x-3+6x=53.方程2(x-3)+5=9的解是( )A.x=4B.x=5C.x=6D.x=74.解下列方程:(1)2(x-1)+1=0; (2)2x+5=3(x-1).5.解方程:2(3-4x)=1-3(2x-1).解:去括号,得6-4x=1-6x-1.(第一步)移项,得-4x+6x=1-1-6.(第二步)合并同类项,得2x=-6.(第三步)系数化为1,得x=-3.(第四步)以上解方程正确吗?若不正确,请指出错误的步骤,并给出正确的解答过程.6.下列是四个同学解方程2(x -2)-3(4x -1)=9的去括号的过程,其中正确的是( )A.2x -4-12x +3=9B.2x -4-12x -3=9C.2x -4-12x +1=9D.2x -2-12x +1=97.若5m +4与-(m -2)的值互为相反数,则m 的值为( )A.-1B.1C.-12D.-328.对于非零的两个有理数a ,b ,规定a ⊗b =2b -3a ,若1⊗(x +1)=1,则x 的值为( )A.-1B.1C.12D.-129.解下列方程:(1)4(3x -2)-(2x +3)=-1;(2)4(y +4)=3-5(7-2y);(3)12x +2(54x +1)=8+x.10.若方程3(2x -2)=2-3x 的解与关于x 的方程6-2k =2(x +3)的解相同,求k 的值.第2课时利用去括号解一元一次方程的实际问题1.下面是两位同学的对话,根据对话内容,可求出这位同学的年龄是( )A.11岁B.12岁C.13岁D.14岁2.某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元.如果购买甲、乙两种奖品共花费了650元.问甲、乙两种奖品各购买了多少件?(1)若设甲种奖品购买了x件,请完成下面的表格;(2)列出一元一次方程,解决问题.3.丽水市为打造“浙江绿谷”品牌,决定在省城举办农副产品展销活动.某外贸公司推出品牌产品“山山牌”香菇、“奇尔”惠明茶共10吨前往参展,用6辆汽车装运,每辆汽车规定满载,且只能装运一种产品.因包装限制,每辆汽车满载时能装香菇1.5吨或茶叶2吨.问装运香菇、茶叶的汽车各需多少辆?4.在红城中学举行的“我爱祖国”征文活动中,七年级和八年级共收到征文118篇,且七年级收到的征文篇数是八年级收到的征文篇数的一半还少2篇,求七年级收到的征文有多少篇?5.一架飞机在两城市之间飞行,风速为24 km/h,顺风飞行需要2 h 50 min,逆风飞行需要3 h.求无风时飞机的飞行速度和两城之间的航程.6.食品安全是关乎民生的问题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A,B两种饮料均需加入同种添加剂,A饮料每瓶需加该添加剂2克,B饮料每瓶需加该添加剂3克.已知270克该添加剂恰好生产了A,B两种饮料共100瓶,问A,B两种饮料各生产了多少瓶?第3课时 利用去分母解一元一次方程1.在解方程x 3=1-x -15时,去分母后正确的是( ) A.5x =15-3(x -1) B.x =1-(3x -1)C.5x =1-3(x -1)D.5x =3-3(x -1)2.下列等式变形正确的是( )A.若-3x =5,则x =-35B.若x 3+x -12=1,则2x +3(x -1)=1 C.若5x -6=2x +8,则5x +2x =8+6D.若3(x +1)-2x =1,则3x +3-2x =13.要将方程2t -53+3-2t 5=3的分母去掉,在方程的两边最好是乘 . 4.依据下列解方程0.3x +0.50.2=2x -13的过程,请在前面的括号内填写变形步骤,在后面的括号内填写变形依据.解:原方程可变形为3x +52=2x -13.( ) 去分母,得3(3x +5)=2(2x -1).( )去括号,得9x +15=4x -2.( )( ),得9x -4x =-15-2.( )合并同类项,得5x =-17.( ),得x =-175.( ) 5.解下列方程:(1)x +12=3+x -64; (2)x -32-4x +15=1.6.某项工程甲单独做4天完成,乙单独做6天完成,已知甲先做1天,然后甲、乙合作完成此项工程.若设甲一共做了x 天,则所列方程为( )A.x 4+x +16=1B.x 4+x -16=1 C.x +14+x 6=1 D.x 4+14+x -16=1 7.整理一批图书,由一个人做要40小时完成.现计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?8.在解方程x 3=1-x -15时,去分母后正确的是( ) A.5x =1-3(x -1) B.x =1-(3x -1)C.5x =15-3(x -1)D.5x =3-3(x -1)9.某书上有一道解方程的题:1+□x 3+1=x ,□处在印刷时被油墨盖住了,查后面的答案知这个方程的解是x =-2,那么□处应该是数字( )A.7B.5C.2D.-210.某班组每天需生产50个零件才能在规定的时间内完成一批零件任务,实际上该班组每天比计划多生产了6个零件,结果比规定的时间提前3天并超额生产120个零件,若设该班组要完成的零件任务为x 个,则可列方程为( )A.x +12050-x 50+6=3B.x 50-x 50+6=3 C.x 50-x +12050+6=3 D.x +12050+6-x 50=3 11.若规定a*b =a +2b 2(其中a ,b 为有理数),则方程3*x =52的解是x = . 12.解下列方程:(1)x -13-x +26=4-x 2; (2)2x +13-5x -16=1;(3)2x +14-1=x -10x +112; (4)x 0.7-0.17-0.2x 0.03=1.13.某校组织长江夜游,在流速为2.5千米/时的航段,从A 地上船,沿江而下至B 地,然后溯江而上到C 地下船,共乘船4小时.已知A ,C 两地相距10千米(C 地在A 地上游),船在静水中的速度为7.5千米/时.求A ,B 两地间的距离.14.解关于x 的方程a -x +73=2(5-x),小刚去分母时忘记了将右边乘3,其他步骤都是正确的,巧合的是他求得的结果仍然是原方程的解,即小刚将求得的结果代入原方程后,左边与右边竟然也相等!你能求出使这种巧合成立的a 的值吗?参考答案:3.3 解一元一次方程(二)——去括号与去分母第1课时 利用去括号解一元一次方程1.解方程4(x -2)=2(x +3),去括号,得4x -8=2x +6.移项,得4x -2x =6+8.合并同类项,得2x =14.系数化为1,得x =7.2.C3.B4.(1)2(x -1)+1=0;解:去括号,得2x -2+1=0.移项、合并同类项,得2x =1.系数化为1,得x =12.(2)2x +5=3(x -1).解:2x +5=3x -3,2x -3x =-3-5,-x =-8,x =8.5.解:第一步错误.正确的解答过程如下:去括号,得6-8x =1-6x +3.移项,得-8x +6x =1+3-6.合并同类项,得-2x =-2.系数化为1,得x =1.6.A7.D8.B9.(1)4(3x -2)-(2x +3)=-1;解:去括号,得12x -8-2x -3=-1.移项,得12x -2x =8+3-1.合并同类项,得10x =10.系数化为1,得x =1.(2)4(y +4)=3-5(7-2y);解:去括号,得4y +16=3-35+10y.移项、合并同类项,得-6y =-48.系数化为1,得y =8.(3)12x +2(54x +1)=8+x.解:去括号,得12x +52x +2=8+x.移项、合并同类项,得2x =6.系数化为1,得x =3.10.解:由3(2x -2)=2-3x ,解得x =89.把x =89代入方程6-2k =2(x +3),得6-2k =2×(89+3).解得k =-89.第2课时利用去括号解一元一次方程的实际问题1.C2.(2)解:根据题意,得40x+30(20-x)=650.解得x=5.则20-x=15.答:购买甲种奖品5件,乙种奖品15件.3.解:设装运香菇的汽车需x辆.根据题意,得1.5x+2(6-x)=10.解得x=4.所以6-x=2.答:装运香菇、茶叶的汽车分别需要4辆和2辆.4.解:设七年级收到的征文有x篇,则八年级收到的征文有(118-x)篇,依题意,得(x+2)×2=118-x,解得x=38.答:七年级收到的征文有38篇.5.解:设无风时飞机的飞行速度为x km/h,则顺风时飞行的速度为(x+24) km/h,逆风飞行的速度为(x-24) km/h.根据题意,得176(x +24)=3(x -24).解得x =840. 则3(x -24)=2 448.答:无风时飞机的飞行速度为840 km/h ,两城之间的航程为2 448 km.6.解:设A 饮料生产了x 瓶,则B 饮料生产了(100-x)瓶.根据题意,得 2x +3(100-x)=270.解得x =30.则100-x =70.答:A 饮料生产了30瓶,B 饮料生产了70瓶.第3课时 利用去分母解一元一次方程1.A2.D3. 15.4.解:原方程可变形为3x +52=2x -13.(分数的基本性质) 去分母,得3(3x +5)=2(2x -1).(等式的性质2)去括号,得9x +15=4x -2.(去括号法则)(移项),得9x -4x =-15-2.(等式的性质1)合并同类项,得5x =-17.(系数化为1),得x =-175.(等式的性质2)5.(1)x +12=3+x -64;解:2(x +1)=12+(x -6).2x +2=12+x -6.2x +2=x +6.x =4.(2)x -32-4x +15=1.解:去分母,得5x -15-8x -2=10,移项合并,得-3x =27,解得x =-9.6.B7.解:设应先安排x 人工作,根据题意,得4x 40+8(x +2)40=1.化简可得:x 10+x +25=1,即x +2(x +2)=10.解得x =2.答:应先安排2人工作.8.C9.B10.C11. 1.12.(1)x -13-x +26=4-x 2; 解:去分母,得2(x -1)-(x +2)=3(4-x).去括号,得2x -2-x -2=12-3x.移项,得2x -x +3x =2+2+12.合并同类项,得4x =16.系数化为1,得x =4.(2)2x +13-5x -16=1;解:去分母,得2(2x +1)-(5x -1)=6.去括号,得4x +2-5x +1=6.移项、合并同类项,得-x =3.系数化为1,得x =-3.(3)2x +14-1=x -10x +112;解:去分母,得6x +3-12=12x -10x -1,移项合并,得4x =8,解得x =2.(4)x 0.7-0.17-0.2x 0.03=1.解:原方程可化为10x 7-17-20x 3=1.去分母,得30x -7(17-20x)=21.去括号,得30x -119+140x =21.移项、合并同类项,得170x =140.系数化为1,得x =1417. 13.解:设A ,B 两地间的距离为x 千米,依题意,得x 7.5+2.5+x +107.5-2.5=4, 解得x =203. 答:A ,B 两地间的距离为203千米. 14.解:因为去分母时忘了将右边乘3,所以a -x +73=2(5-x)化为3a -x -7=10-2x ,解得x =17-3a. 因为将求得的结果代入原方程,左边与右边相等,所以把x =17-3a 代入a -x +73=2(5-x),得 a -17-3a +73=2[5-(17-3a)], 整理,得4a =16.解得a =4,故a 的值为4.。

人教版七年级数学上册第三章解一元一次方程——去括号去分母复习试题3(含答案) (19)

人教版七年级数学上册第三章解一元一次方程——去括号去分母复习试题3(含答案) (19)

人教版七年级数学上册第三章解一元一次方程——去括号去分母复习试题3(含答案) 解方程:123126x x +--=-. 【答案】x=-76. 【解析】【分析】方程去分母转化为整式方程,求出整式方程的解得到x 的值即可.【详解】方程去分母得:3(x+1)-(2-3x)=-6整理得:6x=-7,即x=-76. 【点睛】本题考查的知识点是解方程,解题的关键是熟练的掌握解方程.82.解方程:(1)()2438x x +=-;(2)215136x x +--=. 【答案】(1)16x =;(2)13x =-. 【解析】【分析】(1)依次去括号、移项、合并同类项、系数化为1可得;(2)依次去分母、去括号、移项、合并同类项、系数化为1可得.【详解】解:(1)()2438x x +=-2838x x +=-2388x x -=--16x -=-16x =.(2)215136x x +--= ()()22156x x +--=4256x x +-+=31x =-13x =-. 【点睛】本题考查解一元一次方程,去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a 形式转化.83.解方程:1﹣(2x ﹣5)=7﹣3x .【答案】x =1【解析】【分析】根据一元一次方程的一般解题步骤去括号,移项,系数化为一即可解题.【详解】解:去括号,得1﹣2x+5=7﹣3x移项,得﹣2x+3x =7﹣5﹣1系数化为1,得x =1.【点睛】本题考查了求解一元一次方程,属于简单题,熟悉解方程的一般步骤是解题关键.84.解方程:(1)41536x x -=+ (2)121525y y y -+-=-. 【答案】(1)x=21;(2)y=-1.【解析】【分析】(1)方程移项合并,把x 系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把y 系数化为1,即可求出解.【详解】(1)4x-3x=6+15x=21;(2)2y-5(y-1)=10-2(y+2)2y-5y+5=10-2y-42y-5y+2y=10-4-5-y=1y=-1【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解. 85.已知关于x 的方程3[2()]43a x x x --=和3151128x a x +--=有相同的解,那么这个解是什么? 【答案】2728x =【解析】【分析】分别将两个方程中的x 用a 表示出来,然后联立得到方程,继而可求得x 的值.【详解】 由方程(1)得x=27a,由方程(2)得:x=272a 21- 由题意得27a=272a 21-,得a=278,代入解得27.28x = 则这个解是2728. 【点睛】本题考查的是解方程,正确求出x 与a 的关系是解题的关键.86.阅读:解方程2.4-40.5y -=35y ,有如下四种解法: 解法A :24-45y -=6y ,第一步 120-y +4=30y ,第二步-31y =-124,第三步y =4.第四步解法B :2.4-10405y -=35y ,第一步 12+10y -40=3y ,第二步7y =28,第三步y =4.第四步解法C:24-104012y-=6y,第一步48+10y-40=12y,第二步8=2y,第三步y=4.第四步解法D:125-10405y-=35y,第一步12-10y+40=3y,第二步-13y=-52,第三步y=4.第四步阅读上面的解法,你认为哪些解法正确?解法错误的错在哪一步?【答案】D是正确【解析】【分析】根据解法依次分析.【详解】只有解法D是正确的.解法A错在第一步,解法B错在第二步,解法C错在第二步.【点睛】查解一元一次方程,解题的关键是掌握解一元一次方程的基本步骤:去分母、去括号、移项、合并同类项、系数化为1,同时针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.87.解方程:(1)2(x -1)-3(2+x)=5;(2)2-216x -=13x ++1. 【答案】(1)x=-13(2)x=54【解析】【分析】(1)去括号、移项、合并同类项、系数化为1可得;(2)去分母、去括号、移项、合并同类项、系数化为1可得.【详解】(1)2x -2-6-3x =5,-x =13,x =-13.(2)方程两边同乘以6,得12-(2x -1)=2(x +1)+6,12-2x +1=2x +2+6,4x =5,x =54. 【点睛】考查解一元一次方程,解题的关键是掌握解一元一次方程的基本步骤:去分母、去括号、移项、合并同类项、系数化为1,同时针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a 形式转化.88.解方程:12x +-1=23x -. 【答案】x =75.【解析】【分析】根据解方程的方法去分母,去括号,移项,合并同类项,系数化为1求解.【详解】解:去分母,得 3(x +1)-6=2(2-x).去括号,得 3x +3-6=4-2x .移项、合并同类项,得5x=7.系数化为1,得x=75. 故答案为x=75. 【点睛】本题考查了含分母的一元一次方程的解法,去分母时不要漏乘是解题的关键.89.解方程(1)43(2)x x -=-. (2)12123x x +--=. 【答案】(1)x =1;(2)x =—1【解析】【分析】(1)根据一元一次方程的解法,去括号,移项,合并同类项,系数化为1即可;(2)这是一个带分母的方程,所以要先去分母,再去括号,最后移项,合并同类项,系数化为1,从而得到方程的解.【详解】解:(1)去括号得,4-x=6-3x,移项得,-x+3x=6-4,合并同类项得,2x=2,系数化为1得,x=1;(2)去分母得,6-3(x+1)=2(2-x),去括号得,6-3x-3=4-2x,移项得,-3x+2x=4-6+3,合并同类项得,-x=1,系数化为1得,x=-1.【点睛】本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.三、填空题90.方程224x-=的解是__________3【答案】x=9【解析】【分析】根据解一元一次方程的步骤先去分母,再移项,合并同类项,系数化为1即可求解;【详解】解:224x-=32x-6=122x=12+62x=18x=9故答案为:x=9.【点睛】本题考查解一元一次方程的步骤,解题关键是:移项变号.。

七年级数学上册第三单元《一元一次方程》-解答题专项复习题(含解析)

七年级数学上册第三单元《一元一次方程》-解答题专项复习题(含解析)

一、解答题1.列方程解应用题:为参加学校运动会,七年级一班和七年级二班准备购买运动服. 下面是某服装厂给出的运动服价格表:已知两班共有学生67人(每班学生人数都不超过60人),如果两班单独购买服装,每人只买一套,那么一共应付3650元. 问七年级一班和七年级二班各有学生多少人?解析:七年级一班有37人,七年级二班有30人;或者七年级一班有30人,七年级二班有37人.【分析】首先根据题中表格数据得出有一个班的人数大于35人,接着设大于35人的班有学生x 人,根据等量关系列出方程,求解即可.【详解】⨯=解:∵67604020>40203650∴所以一定有一个班的人数大于35人.设大于35人的班有学生x人,则另一班有学生(67-x)人,依题意得+-=x x5060(67)3650-=x6730答:七年级一班有37人,七年级二班有30人;或者七年级一班有30人,七年级二班有37人.【点睛】本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.2.世界读书日,某书店举办“书香”图书展,已知《汉语成语大词典》和《中华上下五千年》两本书的标价总和为150元,《汉语成语大词典》按标价的50%出售,《中华上下五千年》按标价的60%出售,小明花80元买了这两本书,求这两本书的标价各多少元.解析:《汉语成语大词典》的标价为100元,《中华上下五千年》的标价为50元.【解析】试题分析:首先设《汉语成语大词典》的标价为x元,则《中华上下五千年》的标价为(150﹣x)元,然后根据两本书的售价总和为80元列出一元一次方程,从而求出x的值,得出答案.试题设《汉语成语大词典》的标价为x 元,则《中华上下五千年》的标价为(150﹣x )元, 根据题意得:50%x+60%(150﹣x )=80,解得:x=100,150﹣100=50(元).答:《汉语成语大词典》的标价为100元,《中华上下五千年》的标价为50元.3.10.3x -﹣20.5x + =1.2. 解析:4【解析】 试题分析:先将分母化成整数后,再去分母,去括号,移项,系数为1的步骤解方程即可; 试题12 1.20.30.5x x -+-=10103x --10205x +=6550x-50-30x-60=1820 x=128x=6.4 4.在十一黄金周期间,小明、小华等同学随家长共15人一同到金丝峡游玩,售票员告诉他们:大人门票每张100元,学生门票8折优惠.结果小明他们共花了1400元,那么小明他们一共去了几个家长、几个学生?解析:10个家长,5个学生【分析】设小明他们一共去了x 个家长,则有(15﹣x )个学生,根据“大人门票购买费用+学生门票购买费用=1400”列式求解即可.【详解】解:设小明他们一共去了x 个家长,(15﹣x )个学生,根据题意得:100x +100×0.8(15﹣x )=1400,解得:x =10,15﹣x =5,答:小明他们一共去了10个家长,5个学生.【点睛】本题考查了一元一次方程的应用.5.某同学在解方程21132y y a -+=-去分母时,方程右边的-1没有乘6,结果求得方程的解为y =2,试求a 的值及此方程的解.解析:y =-3.【分析】根据题意得到去分母结果,把y=2代入求出a 的值,即可确定出方程的解.【详解】根据题意去分母得:4y-2=3y+3a-1,把y=2代入得:6=6+3a-1,解得:a=13,方程为12131 32yy+-=-,去分母得:4y-2=3y+1-6,解得:y=-3.【点睛】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.6.解下列方程:(1)15(x+15)=1231-(x-7).(2)2110121364x x x-++-=-1.解析:(1)x=-516;(2)x=16.【分析】(1)直接根据解一元一次方程的步骤进行即可;(2)直接根据解一元一次方程的步骤进行即可.【详解】解:(1)15(x+15)=1231-(x-7).去分母,得6(x+15)=15-10(x-7).去括号,得6x+90=15-10x+70.移项及合并同类项,得16x=-5.系数化为1,得x=-5 16.(2)2110121 364x x x-++-=-1去分母,得4(2x-1)-2(10x+1)=3(2x+1)-12.去括号,得8x-4-20x-2=6x+3-12.移项,得8x-20x-6x=3-12+4+2.合并同类项,得-18x=-3.系数化为1,得x=16.【点睛】此题主要考查解一元一次方程,熟练掌握解一元一次方程的步骤是解题关键.7.运用等式的性质解下列方程:(1)3x=2x-6;(2)2+x=2x+1;(3)35x-8=-25x+1.解析:(1)x=-6;(2)x=1;(3)x=9【分析】(1)根据等式的性质:方程两边都减2x,可得答案;(2)根据等式的性质:方程两边都减x,化简后方程的两边都减1,可得答案.(3)根据等式的性质:方程两边都加25x,化简后方程的两边都加8,可得答案.【详解】(1)两边减2x,得3x-2x=2x-6-2x.所以x=-6.(2)两边减x,得2+x-x=2x+1-x.化简,得2=x+1.两边减1,得2-1=x+1-1所以x=1.(3)两边加25 x,得35x-8+25x=-25x+1+25x.化简,得x-8=1.两边加8,得x-8+8=1+8.所以x=9.【点睛】本题主要考查了等式的基本性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.8.某同学在解方程21233x x a-+=-时,方程右边的﹣2没有乘以3,其它步骤正确,结果方程的解为x=1.求a的值,并正确地解方程.解析:a=2,x=-3【分析】由题意可知x=1是方程2x-1=x+a-2的解,然后可求得a的值,然后将a的值代入方程求解即可.【详解】解:将x=1代入2x﹣1=x+a﹣2得:1=1+a﹣2.解得:a=2,将a=2代入21233x x a-+=-得:2x﹣1=x+2﹣6.解得:x =﹣3.【点睛】本题主要考查的是一元一次方程的解,明确x=1是方程2(2x-1)=3(x+a )-2的解是解题的关键.9.解方程:()()3x 7x 132x 3--=-+① ;5x 2x 3132---=②. 解析:(1)5;(2)138; 【分析】①方程去括号,移项合并,把x 系数化为1,即可求出解;②方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.【详解】①去括号得:3x−7x+7=3−2x−6,移项合并得:−2x=−10,解得:x=5;②去分母,去括号得:10−2x−6=6x−9,移项合并得:8x=13, 解得:x=138. 【点睛】 此题考查解一元一次方程,解题关键在于掌握方程的解法.10.关于x 的方程357644m x m x +=-的解比方程4(37)1935x x -=-的解大1,求m 的值. 解析:623m =-【分析】 分别求出两方程的解,根据题意列出关于m 的方程,然后求解即可.【详解】 解:357644m x m x +=-, 整理得:2(310)321m x m x +=- 313x m =- 解得:331m x =-, 4(37)1935x x -=-4747x =1x =由题意得:311 31m--=解得:623 m=-【点睛】本题考查了一元二次方程的解和解方程,关键是能先用含有m的式子表示x,然后根据题意列出方程.11.如图,甲船逆水,静水速度为28海里/时;乙船顺水,静水速度为12海里/时,两船相距60海里.已知水流速度为3海里/时,两船同时相向而行.(1)两船同时航行1小时,求此时两船之间的距离;(2)再(1)的情况下,两船再继续航行1小时,求此时两船之间的距离;(3)求两船从开始航行到两船相距12海里,需要多长时间?解析:(1) 20海里;(2) 20海里;(3) 1.2小时或1.8小时.【分析】(1)根据1h后甲、乙间的距离=两船相距-(甲船行驶的路程+乙船行驶的路程)即可得;(2)根据2h后甲、乙间的距离=甲船行驶的路程-乙船行驶的路程即可得;(3)可分相遇前与相遇后两种情况讨论即可解答.【详解】解:根据题意可知甲船的行驶速度为28-3=25海里/时,乙船的行驶速度为12+3=15海里/时(1)1h后甲、乙间的距离=60-25×1-15×1=20海里;(2)2h后甲、乙间的距离=25×2-15×2=20海里;(3)相遇前,设两船从开始航行到两船相距12海里,需要t小时则12=60-(25+15)t,求得t=1.2小时相遇后,设两船从开始航行到两船相距12海里,需要t1小时则12+60=(25+15)t1,求得t1=1.8小时故两船从开始航行到两船相距12海里,1.2小时或1.8小时.【点睛】本题主要考查列代数式与一元一次方程的实际应用,掌握船顺流航行时的速度与逆流航行的速度公式是解题的关键.12.根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从2015年5月1日起对居民生活用电试行“阶梯电价”收费,具体收费标准见下表.若2015年5月份,该市居民甲用电100千瓦时,交电费60元.(1)上表中,a=,若居民乙用电200千瓦时,交电费元.(2)若某用户某月用电量超过300千瓦时,设用电量为x千瓦时,请你用含x的代数式表示应交的电费.(3)试行“阶梯电价”收费以后,该市一户居民月用电多少千瓦时时,其当月的平均电价每千瓦时不超过0.62元?解析:(1)0.6;122.5.(2)0.9x﹣82.5.(3)250千瓦.【分析】(1)根据100<150结合应交电费60元即可得出关于a的一元一次方程,解之即可得出a 值;再由150<200<300,结合应交电费=150×0.6+0.65×超出150千瓦时的部分即可求出结论;(2)根据应交电费=150×0.6+(300-150)×0.65+0.9×超出300千瓦时的部分,即可得出结论;(3)设该居民用电x千瓦时,其当月的平均电价每千瓦时为0.62元,分x在第二档及第三档考虑,根据总电费=均价×数量即可得出关于x的一元一次方程,解之即可得出x值,结合实际即可得出结论.【详解】(1)∵100<150,∴100a=60,∴a=0.6,若居民乙用电200千瓦时,应交电费150×0.6+(200-150)×0.65=122.5(元),故答案为0.6;122.5;(2)当x>300时,应交的电费150×0.6+(300-150)×0.65+0.9(x﹣300)=0.9x﹣82.5;(3)设该居民用电x千瓦时,其当月的平均电价每千瓦时为0.62元,当该居民用电处于第二档时,90+0.65(x﹣150)=0.62x,解得:x=250;当该居民用电处于第三档时,0.9x﹣82.5=0.62x,解得:x≈294.6<300(舍去).综上所述该居民用电不超过250千瓦时,其当月的平均电价每千瓦时不超过0.62元.【点睛】本题考查了一元一次方程的应用以及列代数式,解题的关键是:(1)根据数量关系列式计算;(2)根据数量关系列出代数式;(3)根据总电费=均价×数量列出关于x的一元一次方程.13.学校要购入两种记录本,预计花费460元,其中A种记录本每本3元,B种记录本每本2元,且购买A 种记录本的数量比B 种记录本的2倍还多20本.(1)求购买A 和B 两种记录本的数量;(2)某商店搞促销活动,A 种记录本按8折销售,B 种记录本按9折销售,则学校此次可以节省多少钱?解析:(1)购买A 种记录本120本,B 种记录本50本;(2)学校此次可以节省82元钱.【分析】根据两种记录本一共花费460元即可列出方程【详解】(1)设购买B 种记录本x 本,则购买A 种记录表(2x +20)本,依题意,得:3(2x +20)+2x =460,解得:x =50,∴2x +20=120.答:购买A 种记录本120本,B 种记录本50本.(2)460﹣3×120×0.8﹣2×50×0.9=82(元).答:学校此次可以节省82元钱.【点睛】根据题意中的等量关系列出方程是解决问题的关键14.解方程:(1)3x ﹣4=2x +5;(2)253164x x --+=. 解析:(1)9x = ;(2)13x =【分析】(1)通过移项,合并同类项,便可得解;(2)通过去分母,去括号,移项,合并同类项,进行解答便可.【详解】(1)3x ﹣2x =5+4,解得:x =9;(2)去分母得:2(2x ﹣5)+3(3﹣x )=12,去括号得:4x ﹣10+9﹣3x =12,移项得:4x ﹣3x =12+10﹣9,合并同类项得:x =13.【点睛】本题主要考查了解一元一次方程,熟记解一元一次方程的一般步骤是解题的关键. 15.已知关于x 的方程:2(x ﹣1)+1=x 与3(x +m )=m ﹣1有相同的解,求以y 为未知数的方程3332my m x --=的解.解析:214y=-.【分析】根据方程可直接求出x的值,代入另一个方程可求出m,把所求m和x代入方程3,可得到关于y的一元一次方程,解答即可.【详解】解:解方程2(x﹣1)+1=x得:x=1将x=1代入3(x+m)=m﹣1得:3(1+m)=m﹣1解得:m=﹣2将x=1,m=﹣2代入33 32my m x --=得:3(2)2332y----=,解得:214y=-.【点睛】本题考查了含分母的一次方程,属于简单题,正确求解方程是解题关键.16.在“五一”期间,小明、小亮等同学随家长一同到某公园游玩,下面是购买门票时,小明与爸爸的对话(如图),请根据图中的信息,解答下列问题:(1)他们共去了几个成人,几个学生?(2)请你帮他们算算,用哪种方式购票更省钱?解析:(1)他们一共去了8个成人,4个学生;(2)按团体票购票更省钱【分析】(1)本题有两个相等关系:学生人数+成人人数=12人,成人票价+学生票价=400元,据此设未知数列方程组求解即可;(2)计算出按照团体票购买需要的钱数,然后与400元作对比即得答案.【详解】解:(1)设去了x个成人,y个学生,依题意得,1240400.5400x y x y +=⎧⎨+⨯=⎩,解得84x y =⎧⎨=⎩, 答:他们一共去了8个成人,4个学生;(2)若按团体票购票,共需16×40×0.6=384(元),∵384<400,∴按团体票购票更省钱.【点睛】本题主要考查了二元一次方程组的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键.17.由于施工,需要拆除学校图书馆,七年级同学主动承担图书馆整理图书的任务,如果由一个人单独做要用30小时完成,现先安排一部分人用1小时整理,随后又增加6人和他们一起又做了2小时,恰好完成整理工作,假设每个人的工作效率相同,那么先按排整理的人员有多少?解析:6人【分析】设先安排整理的人员有x 人,根据工作效率×工作时间×工作人数=工作总量结合题意,即可得出关于x 的一元一次方程,解之即可得出结论.【详解】解:设先安排整理的人员有x 人, 根据题意得:()1126=13030x x +⨯+, 解得:x =6.答:先安排整理的人员有6人.【点睛】本题考查了一元一次方程的应用,找准等量关系正确列出一元一次方程是解题的关键. 18.一项工程,甲队独做10h 完成,乙队独做15h 完成,丙队独做20h 完成,开始时三队合作,中途甲队另有任务,由乙、丙两队完成,从开始到工程完成共用了6h ,问甲队实际工作了几小时?解析:3【分析】设三队合作时间为x ,总工程量为1,根据等量关系:三队合作部分工作量+乙、丙两队合作部分工作量=1,列式求解即可得到甲队实际工作时间.【详解】设三队合作时间为xh ,乙、丙两队合作为(6)x h -,总工程量为1, 由题意得:11111()()(6)11015201520x x ++++-=, 解得:3x =,答:甲队实际工作了3小时.【点睛】本题主要考查了一元一次方程实际问题中的工程问题,准确分析题目中的等量关系以及设出未知量是解决本题的关键.19.小明解方程26152x x a -++=时,由于粗心大意,在去分母时,方程左边的1没有乘以10,由此得到方程的解为1x =-,试求a 的值,并正确地求出原方程的解. 解析:2a =-,8x =【分析】先根据错误的做法:“方程左边的1没有乘以10”而得到1x =-,代入错误方程,求出a 的值,再把a 的值代入原方程,求出正确的解.【详解】解:412155x x a -+=+∵1x =-为412155x x a -+=+的解∴16155a -+=-+∴2a =-;∴原方程为:262152x x --+= 去分母得:41210510x x -+=-∴45101012x x -=--+∴8x -=-∴8x =.【点睛】本题考查了解一元一次方程,本题易在去分母、去括号和移项中出现错误.由于看到小数、分数比较多,学生往往不知如何寻找公分母,怎样合并同类项,怎样化简,所以我们要教会学生分开进行,从而达到分解难点的效果.20.如果,a b 为定值,关于x 的方程2236kx a x bk +-=+无论k 为何值时,它的根总是1,求,a b 的值. 解析:a=132,b=﹣4 【分析】 先把方程化简,然后把x =1代入化简后的方程,因为无论k 为何值时,它的根总是1,就可求出a 、b 的值.【详解】解:方程两边同时乘以6得:4kx +2a =12+x−bk ,(4k−1)x +2a +bk−12=0①,∵无论为k 何值时,它的根总是1,∴把x =1代入①,4k−1+2a +bk−12=0,则当k =0,k =1时,可得方程组:12120412120a ab --⎧⎨--⎩+=++=, 解得:a=132,b=﹣4 当a=132,b=﹣4时,无论为k 何值时,它的根总是1. ∴a=132,b=﹣4 【点睛】本题主要考查了一元一次方程的解,理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.本题利用方程的解求未知数a 、b .21.依据下列解方程0.30.5210.23x x +-=的过程,请在前面的括号内填写变形步骤,在后面的括号内填写变形依据。

人教版初一七年级上册数学 课时练《 解一元一次方程(二)—去括号与去分母》03(含答案)

人教版初一七年级上册数学 课时练《 解一元一次方程(二)—去括号与去分母》03(含答案)

人教版七年级上册数学《3.3解一元一次方程(二)—去括号与去分母》课时练一、单选题1.关于x 的方程(a +1)x =a ﹣1有解,则a 的值为()A .a ≠0B .a ≠1C .a ≠﹣1D .a ≠±12.方程()3235x x --=去括号变形正确的是()A .3235x x --=B .3265x x --=C .3235x x -+=D .3265x x -+=3.下列方程变形中,正确的是()A .方程3x ﹣2=2x +1,移项,得3x ﹣2x =﹣1+2B .方程3﹣x =2﹣5(x ﹣1),去括号,得3﹣x =2﹣5x ﹣1C .方程23x =32,未知数系数化为1,得x =1D .方程10.2x -﹣0.5x=1化成3x =64.在解方程123123x x -+-=时,去分母正确的是()A .3(1)2(23)1x x --+=B .3(1)2(23)1x x -++=C .3(1)2(23)6x x --+=D .3(1)2(23)6x x --+=5.已知有理数x 滴足:31752233x xx -+-³-,若32x x --+的最小值为a ,最大值为b ,则a b -=()A .3-B .4-C .5-D .6-6.若方程()2160x --=与关于x 的方程313a x-=的解互为相反数,则a 的值为().A .13-B .13C .73D .1-7.将方程0.50.2 1.550.90.20.5x x--+=变形正确的是()A .521550925x x --+=B .521550.925x x--+=C .52155925x x--+=D .520.93102x x -+=-8.解方程21132x x a-+=-时,小刚在去分母的过程中,右边的“-1”漏乘了公分母6,因而求得方程的解为2x =,则方程正确的解是()A .3x =-B .2x =-C .13x =D .13x =-9.将方程211132x x -+-=去分母得到()221316x x --+=,错在()A .分母的最小公倍数找错B .去分母时漏乘项C .去分母时分子部分没有加括号D .去分母时各项所乘的数不同10.若关于x 的方程2123kx k kx ++=+的解为非正整数,那么符合条件的所有的整数k 之和为()A .32B .29C .28D .2711.把方程102.07.015.03.0=--xx 分母化为整数,正确的是()A .11570132xx --=B .101570132x x --=C .10157132xx --=D .10 1.57132xx --=12.小强在解方程时,不小心把一个数字用墨水污染成了x +2=1-2x -·,他翻阅了答案知道这个方程的解为x =1,于是他判断●应该是()A .5B .3C .-3D .-513.若1x =是方程36m x x -+=的解,则关于y 的方程()()3225m y m y --=-的解是()A .10y =-B .3y =C .43y =D .4y =14.小明解一道一元一次方程的步骤如下0.10.20.20.510.60.3x x x +--=+解:2251 (63)x x x +--=+①()()622256.......x x x -+=-+②624106..............x x x --=-+③46106 2...............x x x ---=--+④1114............................x -=-⑤14 (11)x =⑥以上6个步骤中,其依据是等式的性质有()A .①②④B .②④⑥C .③⑤⑥D .①②④⑥二、填空题15.解一元一次方程3141136x x --=-时,为达到去分母目的,第一步应该在方程的两边同乘以各分母的最小公倍数________.16.关于x 的方程4(1)3(1)2x k +--=的解是1=-x k ,则k 的值是_________.17.若52x +与27-+x 的值互为相反数,则2x -=_______.18.定义一种新运算:a *b =12a ﹣13b .若(x +3)*(2x ﹣1)=1,则根据定义的运算求出x 的值为_____.19.已知关于x 的一元一次方程点320212021xx a +=+①与关于y 的一元一次方程()3232021322021y y a --=--②,若方程①的解为2021x =,则方程②的解为______.三、解答题20.解下列方程:(1)113424x -=(2)75348x -=(3)215168x x -+=(4)192726x x --=(5)11(32)152x x --=(6)2151136x x +--=(7)1(214)427x x+=-(8)329(200)(300)300101025x x +--=´21.用方程解答下列问题:(1)x 与4之和的1.2倍等于x 与14之差的3.6倍,求x ;(2)y 的3倍与1.5之和的二分之一等于y 与1之差的四分之一,求y .22.若方程126x -+13x +=1-214x +与关于x 的方程x +63x a -=6a -3x 的解相同,求a 的值.23.小明同学在解方程21133x x a-+=-去分母时,方程右边的1-没有乘3,因而求得方程的解为3x=,试求a的值,并正确地解方程.24.规定符号(a,b)表示a、b两个数中较小的一个,规定符号[a,b]表示两个数中较大的一个.例如(3,1)=1,[3,1]=3.(1)计算:(-2,3)+[23-,(2,34-)];(2)若(m,m-2)+3[-m,-m-1]=-5,求m的值.参考答案1.C 2.D 3.D 4.D 5.B 6.A7.D 8.A 9.C 10.B11.B 12.A13.B14.B15.617.-518.519.y =-673解:∵关于x 的一元一次方程320212021xx a +=+①的解为x =2021,∴关于y 的一元一次方程()3232021322021y y a --=--②中-(3y -2)=2021,解得:y =-673,故答案为:y =-673.20.(1)5x =;(2)1314x =;(3)1x =-;(4)203x =-;(5)2512x =;(6)3x =-;(7)78x =;(8)216x =解:(1)移项,得131442x =+,合并同类项,得1544x =,系数化为1,得5x =;(2)去分母,得2(75)3x -=,去括号,得14103x -=,移项,得14310x =+,合并同类项,得1413x =,系数化为1,得1314x =;(3)去分母,得4(21)3(51)x x -=+,去括号,得84153x x -=+,移项,得81543x x -=+,合并同类项,得77x -=,系数化为1,得1x =-;(4)去分母,得34292x x -=-,移项,得39242x x -=-+,合并同类项,得640x -=,系数化为1,得203x =-;(5)去括号,得13152x x -+=,移项,得13152x x +=+,合并同类项,得6552x =,系数化为1,得2512x =;(6)去分母,得2(21)(51)6x x +--=,去括号,得42516x x +-+=,移项,得45621x x -=--,合并同类项,得3x -=,系数化为1,得3x =-;(7)去括号,得22427x x +=-,移项,得22427x x +=-,合并同类项,得1627x =,系数化为1,得78x =;(8)去括号,得3260601081010x x +-+=,移项,得3210860601010x x +=+-,合并同类项,得11082x =,系数化为1,得216x =.21.(1)23x =;(2)45y =-.解:(1)根据题意列方程为:()()1.24 3.614x x +=-去括号得:1.2 4.8 3.650.4x x +=-,移项、合并同类项得: 2.455.2x -=-系数化为1得:23x =.(2)根据题意列方程为:3 1.5124y y +-=去分母得:2(3 1.5)1y y +=-去括号得:631y y +=-,移项、合并同类项得:54y =-系数化为1得:45y =-.22.6解:121211634x x x -+++=-,2(12)4(1)123(21)x x x -++=-+,24441263x x x -++=--,63x =,12x =,把12x =代入6336x a ax x -+=-,得:1332362a a -+=-,3629a a +-=-,318a -=-,6a =,∴a 的值为6.23.3a =,1x =解:把3x =代入方程()211x x a -=+-,得()6131a -=+-,解得3a =.把3a =代入21133x x a-+=-,得213133x x -+=-.去分母,得2133x x -=+-,移项,得2331x x -=-+,合并同类项,得1x =.24.(1)83-;(2)m =32.解:(1)(2,34-)=34-,(-2,3)=-2,[23-,(2,34-)]=[23-,34-]=23-,则(-2,3)+[23-,(2,34-)]=-2+(23-)=83-;(2)根据题意得:m-2+3×(-m)=-5,解得m=3 2.。

人教版七年级数学上册第三章实际问题与一元一次方程解答题复习试题三(含答案) (93)

人教版七年级数学上册第三章实际问题与一元一次方程解答题复习试题三(含答案) (93)

人教版七年级数学上册第三章实际问题与一元一次方程解答题复习试题三(含答案)李红为班级购买笔记本作晚会上的奖品,回来时向生活委员刘磊交账时说:“共买了36本,有两种规格,单价分别为1.80元和2.60元,去时我领了100元,现在找回27.60元”刘磊算了一下说:“你一定搞错了”李红一想,发觉的确不对,因为他把自己口袋里原有的2元钱一起当作找回的钱款交给了刘磊,请你算一算两种笔记本各买了多少?想一想有没有可能找回27.60元,试用方程的知识给予解释.【答案】没有可能找回27.60元,理由见解析【解析】【分析】设购买单价1.80元的笔记本x本,根据李红原来的报价可列出关于x的一个方程,解此方程即可.【详解】设购买单价1.80元的笔记本x本,则购买单价2.60元的笔记本为36-x本,故有:1.8x+2.6×(36-x)=100-25.6解得x=24,36-24=12,从而购买单价1.80元的笔记本24本,单价2.60元的笔记本为12本,故没有可能找回27.60元.【点睛】本题考查的是函数的应用题,根据问题建立数学模型是解决本题的关键.22.售货员:“快来买啦,特价鸡蛋,原价每箱14元,现价每箱12元,每箱有鸡蛋30个.”顾客甲:“我店里买了一些这种特价鸡蛋,花的钱比按原价买同样多鸡蛋花的钱的2倍少96元.”乙顾客:“我家买了两箱相同特价的鸡蛋,结果18天后,剩下的20个鸡蛋全坏了.”请你根据上面的对话,解答下面的问题:(1)顾客乙买的两箱鸡蛋合算吗?说明理由.(2)请你求出顾客甲店里买了多少箱这种特价鸡蛋,假设这批特价鸡蛋的保质期还有18天,那么甲店里平均每天要消费多少个鸡蛋才不会浪费?【答案】(1)顾客乙买的两箱鸡蛋不合算,理由见解析;(2)10个【解析】【分析】已知:原价每箱14元,现价每箱12元,每箱有鸡蛋30个.原价每个鸡蛋元,现价每个12÷30=0.4元.14÷30=715(1)顾客乙买的两箱鸡蛋共花了12×2=24元,18天后坏了20个,实际等于花24元买了30×2-20=40个鸡蛋,则每个鸡蛋24÷40=0.6元个,0.6元>7元,比原价要高,不合算.15(2)设顾客甲买了x箱这种鸡蛋,则花的钱数为12x元,顾客甲花的钱比按原价买同样多鸡蛋花的钱的2倍少96元,由可得方程:2×14x-96=12x,解此方程后,即得买的箱数,进而求得个数及需要每天消费多少个不会浪费.【详解】(1)原价每个鸡蛋14÷30=7元,现价每个12÷30=0.4元.1512×2÷(30×2-20)=24÷(60-20),=24÷40,=0.6(元/个).元.0.6元>715答:原价要高,不合算.(2)设顾客甲买了x箱这种鸡蛋,可得方程:2×14x-96=12x28x-96=12x,16x=96,x=6.30×6÷18=10(个).答:甲店里平均每天要消费10个鸡蛋才不会浪费.【点睛】完成本题认真分析已知条件及顾客所提供的信息,然后进行解答.23.初一学生王马虎同学在做作业时,不慎将墨水瓶打翻,使一道作业只能看到:甲、乙两地相距160千米,摩托车的速度为45千米/时,运货汽车的速度为35千米/时,?请你将这道作业题补充完整并列出方程解答.【答案】两车2小时后相遇【解析】分析:本题较明确的量有:路程,速度,所以应该问的是时间.可根据路程=速度×时间来列等量关系.详解:应补充的内容为:摩托车从甲地,运货汽车从乙地,同时相向出发,两车几小时相遇?设两车x小时相遇,则:45x+35x=160解得:x=2答:两车2小时后相遇.点睛:本题缺少条件,路程问题里只有相遇问题和追及问题,也应根据此来补充条件.需注意在补充条件时应强调时间,方向两方面的内容.24.某地电话拨号上网有两种收费方式,用户可以任选其一:(A)计时制,0.05元∕分;(B)包月制,50元∕分(限一部个人住宅电话上网);此外,每种上网方式都附加通信费0.02元∕分。

人教版七年级数学上册第三章解一元一次方程——去括号去分母复习试题3(含答案) (3)

人教版七年级数学上册第三章解一元一次方程——去括号去分母复习试题3(含答案) (3)

人教版七年级数学上册第三章解一元一次方程——去括号去分母复习试题3(含答案)解方程:(1)2x+3=4x-5(2)127x--1=33x+.【答案】(1)x=4;(2)x=-3.【解析】【分析】(1)依次移项,合并同类项,系数化为1,即可得到答案,(2)依次去分母,去括号,移项,合并同类项,系数化为1,即可得到答案.【详解】解:(1)移项得:2x-4x=-5-3,合并同类项得:-2x=-8,系数化为1得:x=4,(2)方程两边同时乘以21得:3(1-2x)-21=7(x+3),去括号得:3-6x-21=7x+21,移项得:-6x-7x=21+21-3,合并同类项得:-13x=39,系数化为1得:x=-3.【点睛】本题考查了解一元一次方程,正确掌握解一元一次方程的方法是解题的关键.22.本学期学习了一元一次方程的解法,下面是林林同学的解题过程:解方程2x 1x 236++-=1 解:方程两边同时乘以6,得:2x 1x 2636++⨯-×6=1×6…………第①步 去分母,得:2(2x+1)-x+2=6………………第②步去括号,得:4x+2-x+2=6…………………第③步移项,得:4x-x=6-2-2…………………第④步合并同类项,得:3x=2…………………………第⑤步系数化1,得:x=23…………………………第⑥步 上述林林的解题过程从第______步开始出现错误,错误的原因是______. 请你帮林林改正错误,写出完整的解题过程.【答案】②,去括号没变号;x=2.【解析】【分析】找出林林错误的步骤,分析原因,写出正确的解题过程即可.【详解】上述林林解题过程从第②步开始出现错误,错误的原因是去括号没变号; 故答案为②;去括号没变号;正确解题过程为:去分母得:2(2x+1)-(x+2)=6,去括号得:4x+2-x-2=6,移项合并得:3x=6,解得:x=2.【点睛】本题考查解一元一次方程,熟练掌握运算法则是解本题的关键.23.解方程:(1)4x ﹣5=10﹣x ; (2)215126x x +--=1. 【答案】(1)x =3;(2)x =2.【解析】【分析】(1)根据一元一次方程的解法,移项,合并同类项,系数化为1,解答即可;(2)这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.【详解】(1)移项得,4x+x =10+5,合并同类项得,5x =15,系数化为1得,x =3;(2)去分母得,3(2x+1)﹣(5x ﹣1)=6,去括号得,6x+3﹣5x+1=6,移项、合并同类项得,x =2.【点睛】本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.24.解方程(1)10x 712x 5+=-(2)3x 15x 7146---= 【答案】(1)x 6=(2)x 1=-【解析】【分析】()1移项、合并同类项、系数化为1,依此即可求解;()2去分母、去括号、移项、合并同类项、系数化为1,依此即可求解.【详解】()110x 712x 5+=-,10x 12x 57-=--,2x 12-=-,x 6=;()3x 15x 72146---=, ()()33x 11225x 7--=-,9x 31210x 14--=-,9x 10x 14312-=-++,x 1-=,x 1=-.【点睛】考查了解一元一次方程,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x a=形式转化.25.(1)计算:8-(-4)÷2-2+3(2)解方程:22x-+13x+=2【答案】(1)27;(2)x=-4.【解析】【分析】(1)根据有理数的混合运算顺序,计算求值即可,(2)依次去分母,去括号,移项,合并同类项,系数化为1,解之即可.【详解】解:(1)原式=8-(-4)×4+3=8-(-16)+3=8+16+3=27,(2)方程两边同时乘以6得:3(2-x)+2(x+1)=12,去括号得:6-3x+2x+2=12,移项得:-3x+2x=12-2-6,合并同类项得:-x=4,系数化为1得:x=-4.【点睛】本题考查了解一元一次方程,有理数的混合运算,负整数指数幂,解题的关键:(1)正确掌握负整数指数幂和有理数的混合运算顺序,(2)正确掌握解一元一次方程的方法.26.解方程:(1)3x -2=1-2(x +1);(2)45153x x x +-+=-. 【答案】(1)1 5x =;(2) x =27【解析】【分析】(1)先去括号,再移项、合并同类项、化系数为1,从而得到方程的解.(2)先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.【详解】(1)3x -2=1-2(x +1),3x -2=1-2x -2,5x =1,15x =; (2)45153x x x +-+=-, 3(x +4)+15=15x -5(x -5),3x +12+15=15x -5x +25,7x =2,x =27.【点睛】本题考查解一元一次方程的知识,题目难度不大,但是出错率很高,是失分率很高的一类题目,同学们要在按步骤解答的基础上更加细心的解答.27.解方程:()1x 2124x +=-;()2x 110x 12136++-=. 【答案】(1)x 2=(2)5x 6=-【解析】【分析】(1)依次移项、合并同类项、系数化为1可得;(2)依次去分母、去括号、移项、合并同类项、系数化为1可得.【详解】解:(1)x +4x =12−2,5x =10,x =2;(2) 2(2x +1)−(10x +1)=6,4x +2−10x −1=6,4x −10x =6−2+1,−6x =5,x =56-. 【点睛】本题主要考查解一元一次方程,去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向形x a =式转化.28.解方程:(1)8y -2=5y +4;(2)121224x x +--=+. 【答案】(1) y =2;(2) x =4.【解析】【分析】(1)依次移项、合并同类项、系数化为1可得;(2)依次去分母、去括号、移项、合并同类项、系数化为1可得.【详解】解:(1)8y -5y =4+2,3y =6,y =2;(2)2(x +1)-4=8+2-x ,2x +2-4=8+2-x ,2x +x =8+2-2+4,3x =12,x =4.【点睛】本题主要考查解一元一次方程,去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a 形式转化.29.解下列方程:(1)3x-(x-1)=5;(2)x x 222x 3123--=-. 【答案】(1)x=2;(2)x=2.【解析】【分析】(1)依次去括号、移项、合并同类项、系数化为1可得;(2)依次去分母、去括号、移项、合并同类项、系数化为1可得.【详解】(1)3x ﹣x +1=5,3x ﹣x =5﹣1,2x =4,x =2;(2)4x ﹣(x ﹣2)=24﹣8x ,4x ﹣x +2=24﹣8x ,4x ﹣x +8x =24﹣2,11x =22,x =2.【点睛】本题考查了解一元一次方程,解题的关键是掌握解一元一次方程的步骤:去分母、去括号、移项、合并同类项、系数化为1.30.()1计算:4291(3)0.512⎛⎫-+-⨯-+- ⎪⎝⎭. ()2先化简再求值:()()22223x y 5x xy y 5xy --+-+,其中x 1=,y 1=-. ()3解方程:2y 1y 1y 32+-=-. 【答案】1412-();()原式2222031x y y ;()=-+==.【解析】【分析】(1)根据有理数的运算法则即可求出答案.(2)根据整式的运算法则即可求出答案.(3)根据一元一次方程的解法即可求出答案.【详解】(1)原式=﹣181-+0.5=﹣41;2(2)原式=3x2﹣3y2﹣5x2﹣5xy+5y2+5xy=﹣2x2+2y2当x=1,y=﹣1时,原式=22-⨯+⨯-=-2+2=0;212(1)(3)2(2y+1)=6y﹣3(y﹣1)4y+2=6y﹣3y+34y+2=3y+34y﹣3y=3﹣2y=1.【点睛】本题考查了学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.。

人教版七年级数学上册3.3《解一元一次方程(二)去括号与去分母》同步练习(含答案)

人教版七年级数学上册3.3《解一元一次方程(二)去括号与去分母》同步练习(含答案)

3.3《解一元一次方程(二)去括号与去分母》一、选择题1.方程3-(x +2)=1去括号正确的是( )A.3-x +2=1B.3+x +2=1C.3+x -2=1D.3-x -2=12.方程1-(2x -3)=6的解是( )A.x=-1B.x=1C.x=2D.x=03.将等式2-x-13=1变形,得到( ) A .6-x+1=3 B .6-x-1=3 C .2-x+1=3 D .2-x-1=34.把方程去分母正确的是( )A.18x +2(2x -1)=18-3(x +1)B.3x +(2x -1)=3-(x +1)C.18x +(2x -1)=18-(x +1)D.3x +2(2x -1)=3-3(x +1)5.方程去分母正确的是( )A.18x +2(2x-1)=18-3(x +1)B.3x +2(2x-1)=3-(x +1)C.18x +(2x-1)=18-(x +1)D.3x +2(2x-1)=3-3(x +1)6.下列方程中变形正确的是( )①3x+6=0变形为x +2=0;②2x+8=5-3x 变形为x=3;③x 2+x 3=4去分母,得3x +2x=24; ④(x+2)-2(x -1)=0去括号,得x +2-2x -2=0.A.①③B.①②③C.①④D.①③④7.已知1-(2-x)=1-x ,则代数式2x 2-7的值是( )A.-5B.5C.1D.-18.整式mx +n 的值随x 的取值不同而不同,下表是当x 取不同值时对应的整式的值,则关于x 的方程-mx -n=8的解为( )A. -1B.0C. 1D.2二、填空题9.已知与的值相等时,x=__________。

10.已知与互为相反数.则 x =_______.11.当x=_______时,代数式与的值相等.12.如果关于x的方程2x+1=3和方程的解相同,那么k的值为_______13.如果4是关于x的方程3a﹣5x=3(x+a)+2a的解,则a=________.14.若方程2x+1=-3和的解相同,则a的值是。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版七年级数学上册第三章解一元一次方程——去括号
去分母复习试题3(含答案)
一、单选题
1.若2x =-是关于x 的方程342x x a +=
-的解,则1001001a a -的值是( ) A .1
B .-1
C .0
D .100 【答案】C
【解析】
【分析】
先把2x =-代入方程342x x a +=
-中求出a 的值,从而求出1001001a a -的值即可.
【详解】
解:把2x =-代入方程342x x a +=
-中,得:()23242-⨯-+=-a , 解得:a=1,
把a=1代入1001001a
a -中, 原式=10010011=01
-, 故选C.
【点睛】
本题是对解一元一次方程的考查,熟练掌握一元一次方程的解法是解决本题的关键.
2.已知关于x 的方程23(2)kx k x -=+的解是正整数,则整数k 的值为( )
A .3
B .5
C .1
D .3或5
【答案】D
【解析】
【分析】 首先解关于x 的方程,利用k 表示出方程的解,然后根据方程的解是正整数即可求得.
【详解】
解:移项得:2(2)3-+=kx k x ,
合并同类项得:(2)3-=k x ,
由题意可知k-2不等于0,系数化为1得:32
x k =
-, ∵方程的解为正整数,
∵k-2=1或3,
解得:k=3或5,
故选D.
【点睛】
本题是对一元一次方程的考查,熟练掌握一元一次方程的解法是解决本题的关键.
3.数学老师在如图所示的木板上写了关于x 的两个方程,并解出方程①的解比方程②的解小4,则a 的值为( )
A .32
B .32-
C .2
D .﹣2
【答案】C
【解析】
【分析】 分别解一元一次方程,进而利用解出方程①的解比方程②的解小4得出等式求出答案.
【详解】
解:①方程两边同乘以6得:
3(x +a )=2(x +a ),
解得:x =﹣a ,
解②得:x =2a ﹣2,
∵解出方程①的解比方程②的解小4,
∴﹣a +4=2a ﹣2,
解得:a =2.
故选:C .
【点睛】
本题考查一元一次方程的解,解一元一次方程,正确解方程是解题的关键.
4.解方程3x +211332
x x -+=-时,去分母正确的解是( ) A .3x +4x ﹣2=3﹣3x ﹣3 B .18x +4x ﹣1=18﹣3x ﹣1
C .18x +4x ﹣2=18﹣3x +3
D .18x +4x ﹣2=18﹣3x ﹣3 【答案】D
【解析】
【分析】
将方程两边同时乘以各分母的最小公倍数6,去分母,再去括号即可.
【详解】
解:方程两边都乘以6,得:18x +2(2x ﹣1)=18﹣3(x +1),
去括号,得:18x +4x ﹣2=18﹣3x ﹣3.
故选:D .
【点睛】
本题考查解一元一次方程,解一元一次方程的一般步骤是,去分母、去括号、移项、合并同类项、系数化为1.
5.小明在解方程21133
x x a -+=-去分母时,方程右边的﹣1没有乘3,因而求得的解为x =2,则原方程的解为( )
A .x =0
B .x =﹣1
C .x =2
D .x =﹣2
【答案】A
【解析】
【分析】
已知小明在解方程去分母时,方程右边的﹣1这个项没有乘3,则所得的式子是:2x ﹣1=x+a ﹣1,把x =2代入方程即可得到一个关于a 的方程,求得a 的值,然后把a 的值代入原方程,解这个方程即可求得方程的解.
【详解】
解:根据题意,得:2x ﹣1=x+a ﹣1,
把x =2代入这个方程,得:3=2+a ﹣1,
解得:a =2,
代入原方程,得:212133
x x -+=-, 去分母,得:2x ﹣1=x+2﹣3,
移项、合并同类项,得:x =0,
故选:A .
【点睛】
此题考查了一元一次方程的解法以及方程的解的定义.熟练掌握解一元一次方程的方法和步骤是解题的关键.
6.一元一次方程7x =﹣3(x+5)的解是( )
A .12
B .32
C .﹣23
D .﹣32
【答案】D
【解析】
【分析】 根据一元一次方程的一般解法求解.
【详解】
7x =﹣3(x+5)
去括号,得7x=-3x-15
移项,得7x+3x=-15
合并同类项,得10x=-15
系数化为1,得x=-1.5
故选D
【点睛】
解一元一次方程.
7.已知代数式
x 13-与3x 12-的值相等,则x 的值为( ) A .17
B .7
C .17
- D .7- 【答案】A
【解析】
【分析】 根据题意列出方程,求出方程的解即可得到x 的值.
【详解】 解:根据题意得:13132
x x --=, 去分母得:2x-2=9x-3,
移项合并得:7x=1,
解得:x=17
, 故选A .
【点睛】
考查了解一元一次方程,熟练掌握运算法则是解本题的关键.
8.在下列解方程的过程中,对方程变形正确的一个是( )
A .由x+3=0得x =3
B .由18
x =0得x =8 C .由﹣5x =﹣1得x =﹣15
D .由3=x ﹣6得x =9 【答案】D
【解析】
【分析】
各项中方程变形得到结果,即可做出判断.
【详解】
A 、由x+3=0得到x=-3,错误;
B 、由18
x=0得x=0,错误; C 、由-5x=-1得x=15
,错误; D 、由3=x-6得x=9,正确,
故选D .
【点睛】
此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.
9.若
2153x -=与115kx -=的解相同,则k 的值为( ) A .8
B .6
C .-2
D .2
【答案】D
【解析】
【分析】 先求出方程2153
x -=的解,再把求得的解代入115kx -=即可求出k 的值. 【详解】 ∵2153
x -=, ∴2x-1=15,
∴2x=16,
∴x=8,
把x=8代入115kx -=,得
8115k -=,
∴k=2.
故选D.
【点睛】
本题考查了一元一次方程的解及其解法,正确掌握解一元一次方程的方法是解题的关键.解一元一次方程的基本步骤为:①去分母;②去括号;③移项;④合并同类项;⑤未知数的系数化为1.
+-=的解,则a的值为() 10.已知x3=是关于x的方程ax2x30
A.1-B.2-C.3-D.1
【答案】A
【解析】
【分析】
根据方程的解为x3=,将x3=代入方程即可求出a的值.
【详解】
+⨯-=,
解:将x3=代入方程得:3a2330
=-.
解得:a1
故选:A.
【点睛】
此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.。

相关文档
最新文档