用待定系数法求二次函数的解析式

合集下载

巧用待定系数法求二次函数的解析式

巧用待定系数法求二次函数的解析式

数学篇解法荟萃求二次函数的解析式是中考中常考的内容,我们通常采用待定系数法求解.利用待定系数法求二次函数解析式的一般步骤是设、代、解、列,即先设出适当形式的解析式,再代入条件,得到有关待定系数的方程或方程组,然后解方程或方程组求出待定系数,最后列出解析式即可.那么如何根据抛物线的特征设出适当形式的函数关系式呢?这就需要同学们开动脑筋,拓展思路,根据题目的特点灵活选择解析式的形式.一、设一般式求函数的解析式若题目已知二次函数图象上的三个点的坐标,可以设一般式y =ax 2+bx +c (a ≠0)求其解析式.方法是把三个点的坐标分别代入一般式中,构造关于a ,b ,c 的三元一次方程组,解方程组即可得到a 、b 、c 的值,从而求得正确的函数解析式.例1已知二次函数图像经过了D(-1,-10)、E (1,0)、F (3,18)三个坐标点,求解其函数解析式.解:设此二次函数解析式为y =ax 2+bx +c(a≠0),将D 、E 、F 的坐标代入可得ìíîïï-10=a -b +c ,0=a +b +c ,18=9a +3b +c ,解方程组得ìíîïïa =1,b -5,c =-6,由此可得,此二次函数的解析式为:y =x 2+5x -6.评注:若所给抛物线上三个点不是特殊点(即顶点、与x 轴的交点),常设一般式求解;若已知抛物线经过原点时,则可直接设其解析式为y =ax 2+bx ;若已知抛物线的对称轴是y 轴,则可直接设其解析式为y =ax 2+c .二、设顶点式求函数的解析式当已知函数图象的对称轴或者最值以及顶点坐标时,可以设顶点式求函数解析式.当顶点在坐标原点,即顶点为(0,0)时,可设y =ax 2(a ≠0)求函数的解析式;当顶点在y 轴上,即顶点为(0,k )时,可设y =ax 2+k (a ≠0)求函数的解析式;当顶点在x 轴上,即顶点为(h ,0)时,可设y =a (x -h )2(a ≠0)求函数的解析式;当顶点不在坐标轴上,即h 、k 都不为0时,可设y =a (x -h )2+k (a ≠0)求函数的解析式.设定解析式后,先将顶点坐标或最大(小)值代入顶点式,再把另一点的坐标代入其中求出a 的值,即可得到抛物线的解析式.例2已知二次函数的顶点坐标为(4,-2),且其图象经过点(5,1),求此二次函数的解析式.分析:已知二次函数的顶点坐标,可用顶点式来设抛物线的解析式,再将点(5,1)代入,即可求出二次函数的解析式.解:设此二次函数的解析式为y =a (x -4)2-2;∵二次函数图象经过点(5,1),∴a (5-4)2-2=1,解得a =3,∴y =3(x -4)2-2=3x 2-24x +46.巧用待定系数法求二次函数的解析式甘肃省兰州市榆中县第六中学高艳32数学篇例3已知抛物线的顶点为(3,-2),且与x 轴有两个交点,两交点间距离为4,求此二次函数解析式.分析:因为抛物线的顶点为(3,-2),且与x 轴有两个交点,两交点间距离为4,所以抛物线的对称轴是直线x =3,可设顶点式,用待定系数法求二次函数解析式.解:∵抛物线与x 轴的两交点间的距离为4,且顶点坐标为(3,-2),∴抛物线的对称轴是直线x =3,抛物线与x 轴的两交点的坐标是(1,0)和(5,0),设抛物线解析式为y =a (x -3)2-2,将点(1,0)代入得a =12,∴抛物线解析式为y =12x 2-3x +52.评注:设顶点式求解二次函数解析式,需要确定其顶点坐标的具体数值,只要知道了顶点坐标h 和k 的取值,那么在运算过程中只需求出a 的值,就能够得到二次函数的解析式.三、设交点式求函数的解析式若已知二次函数图象与x 轴的两个交点的坐标为A (x 1,0)、B (x 2,0)以及另一个点坐标,可以设交点式y =a (x -x 1)(x -x 2)(a ≠0)求其解析式.将抛物线与x 轴两个交点的横坐标代入交点式y =a (x -x 1)(x -x 2),然后再将抛物线上另一点的坐标代入其中求出a ,最后将交点式化为一般式的形式即可.例3二次函数的图象过点A(3,0),B (-1,0)且与y 轴的交点为C (0,6).求此二次函数的解析式.分析:由题意可设所求二次函数的解析式为y =a (x -3)(x +1),将点C (0,6)代入所设解析式求出a 的值,即可求得所求二次函数的解析式;2∴可设其解析式为:y =a (x -3)(x +1),又∵其图象过点(0,6),∴6=a (0-3)(0+1),解得a =-2,∴所求二次函数的解析式为:y =-2(x -3)(x +1),即y =-2x 2+4x +6;评注:若已知二次函数y=ax 2+bx +c (a 不等于零)和x 轴相交的坐标点分别为A (x 1,0)和B (x 2,0),那必然存在ax 21+bx 2+c =0,即x 1和x 2是一元二次方程的两个根,ax 2+bx +c =a (x -x 1)(x -x 2).由此将其解析式设为交点式来求解更加方便.总之,在利用待定系数法求二次函数的关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.只有选择最合适的解题方式才能让我们的解题更加高效.上期《<相似>拓展精练》参考答案1.D ;2.D ;3.D ;4.D ;5.32;6.5;7.3或65或545;8.16;9.证明过程略.10.解:由题意得:∠ABD =∠DEO =∠NPO =90°,PM =PN =4.6,BD ∥OE ,∴∠ADB =∠DOE ,∴△ADB ∽△DOE ,∴AB BD =DE EO ,∴1.53=0.6EO ,解得:EO =1.2,∵∠DOE =∠NOP ,∴△DEO ∽△NPO ,∴DE EO =NP PO ,∴0.61.2=4.6PO ,解得:PO =9.2,解法荟萃。

用待定系数法求二次函数解析式的几种方法

用待定系数法求二次函数解析式的几种方法

用待定系数法求二次函数解析式的几种方法二次函数解析式是高中数学中最基本的概念,其表示的是简单的直线、抛物线或是曲线的方程。

它的复杂性使得学生更易于弄清楚,并且在数学知识的建立上也有较大的作用。

本文将介绍用待定系数法求二次函数解析式的几种方法。

首先,用待定系数法求二次函数解析式也称为求因式分解法,是一种求解二次函数解析式的有效方法。

它所给出的解析式可以使用此解析式求解函数的最大值、最小值以及极值点,有助于研究函数的拓展和深入分析。

求解二次函数解析式的待定系数法通常包括以下几个步骤:首先,将二次函数解析式以下式形式表达:ax + bx + c = 0;其次,求解ax + bx + c的系数a、b、c的解,即a、b、c的值,这样就可以得到完整的二次函数解析式;最后,根据完整的二次函数解析式,可以进行函数曲线的画法,以便对函数特征进行更深入的分析。

这种求解二次函数解析式的待定系数法还可以用来求二次不等式的解。

这些不等式的解也可以用上述的方法求出,只需将其表示成ax + bx + c 不等式的形式,并根据所给的条件来解系数a、b、c,从而得到最终的不等式解。

此外,学生也可以使用特殊的因式分解法,通过将二次函数解析式表示成ax+bx+c=f(x)形式,通过求出形式系数a、b、c来求解因式分解法。

这种方法可以用来求解多项式方程,从而得到多项式函数的解析式。

在求解二次函数时,还有一种简便而又实用的方法,即通过图表的方法,根据函数图象的特点求出函数的解析式,从而更加简单、快捷地求解二次函数。

通过以上介绍,用待定系数法求二次函数解析式的几种方法已经清楚地展示出来。

由此可见,求解二次函数解析式使用待定系数法可以得到准确、完整的解析式,从而有助于学生更好地理解函数的拓展及应用,进而深入认识数学知识,受益匪浅。

待定系数法求二次函数解析式

待定系数法求二次函数解析式

待定系数法求二次函数解析式一、用待定系数法求二次函数的解析式用三种方法:1.已知抛物线过三点,设一般式为y=ax2+bx+c.2.已知抛物线顶点坐标及一点,设顶点式y=a(x-h)2+k.3.已知抛物线与x轴有两个交点(或已知抛物线与x轴交点的横坐标),设两根式:y=a(x-x1)(x-x2) .(其中x1、x2是抛物线与x轴交点的横坐标)例题分析例1 已知抛物线经过点A(-1,0),B(4,5),C(0,-3),求抛物线的解析式.例2 已知抛物线顶点为(1,-4),且又过点(2,-3).求抛物线的解析式.例3 已知抛物线与x轴的两交点为(-1,0)和(3,0),且过点(2,-3).求抛物线的解析式.二、应用迁移 巩固提高1.已知二次函数的图象过(-1,-9)、(1,-3)和(3,-5)三点,求此二次函数的解析式。

2.二次函数,=-2时=-6, =2时=10, =3时=24,求此函数的解析式。

3.已知抛物线的顶点(-1,-2)且图象经过(1,10),求此抛物线解析式。

4.已知抛物线的顶点坐标为(4,-1),与轴交于点(0,3),求这条抛物线的解析式5.二次函数的对称轴为=3,最小值为-2,且过(0,1),求此函数的解析式。

6.抛物线的对称轴是=2,且过(4,-4)、(-1,2),求此抛物线的解析式。

7.已知二次函数的图象与轴的交点为(-5,0),(2,0),且图象经过(3,-4),求解析式8.抛物线的顶点为(-1,-8),它与轴的两个交点间的距离为4,求此抛物线的解析式。

9. 二次函数,当x<6时随的增大而减小,>6时随的增大而增大,其最小值为-12,其图象与轴的交点的横坐标是8,求此函数的解析式。

10、已知直线y=x-3与x轴交于点A,与y轴交于点B,二次函数的图象经过A、B两点,且对称轴方程为x=1,求这个二次函数的解析式。

11、 已知二次函数y1= ax2+bx+c和一次函数y2=mx+n的图象交于两点A(-2,-5)和B(1,4),且二次函数图象与y轴的交点在直线y=2x+3上,求这两个函数的解析式。

用待定系数法求二次函数的解析式

用待定系数法求二次函数的解析式

确定二次函数的表达式一、用待定系数法求二次函数的解析式步骤:(1)设二次函数的解析式;(2)根据已知条件,得到关于待定系数的方程组。

(3)解方程组,求出待定系数的值,从而写出函数的解析式。

二、二次函数解析式的的常见形式:1.一般式:.已知抛物线上三点或三对、的值,通常选择一般式.2.顶点式:.已知抛物线的顶点或对称轴,通常选择顶点式.3.交点式:。

已知抛物线与轴交点的横坐标、,通常选用交点式。

三、例题选讲例1:根据下列条件,分别求出对应的二次函数的关系式.(1)已知二次函数的图象经过点A(0,-1)、B(1,0)、C(-1,2);(2)已知抛物线的顶点为(1,-3),且与y轴交于点(0,1);(3)已知抛物线与x轴交于点M(-3,0)、(5,0),且与y轴交于点(0,-3);例2:(一题多解)二次函数的图象经过点(1,0),(2,0),(3,4)求函数的解析式四、变式训练例1:已知二次函数y=(m2-2)x2-4mx+n的图象的对称轴是x=2,且最高点在直线y=12x+1上,求这个二次函数的表达式.[变式练习]:将上例中其它条件不变,“最高点”改为“顶点”求二次函数解析式(分a>0和a<0两种情).例2:已知二次函数的图象经过点(0,3),对称轴方程是x-1=0,抛物线与x轴两交点的距离为4,求这个二次函数的解析式.分析∵对称轴方程是x-1=0,抛物线与x轴两交点的距离为4,由抛物线的对称性知,抛物线与x轴的两个交点分别为(-1,0),(3,0).由抛物线的交点式:y=a(x-x1)(x-x2)求出解析式.[变式练习1] 将经过的点与对称轴方程改为顶点坐标.已知二次函数的顶点坐标是(3,2),且图象与x轴的两个交点间距离是4.求这个二次函数的解析式.[变式练习2] 将与x 轴两交点的距离改为已知一交点坐标.已知二次函数y=ax 2+bx+c 的图象与x 轴分别交于A(3,0),B 两点,与y 轴交于(0,3)点,对称轴是x=1,求二次函数的解析式.五、题组训练,拓展迁移:1.根据下列条件,分别求出对应的二次函数的关系式.(1)已知二次函数的图象经过点(0,2)、(1,1)、(3,5);(2)已知抛物线的顶点为(-1,2),且过点(2,1);(3)已知抛物线与x 轴交于点(-1,0)、(2,0),且经过点(1,2).2.二次函数图象的对称轴是x= -1,与y 轴交点的纵坐标是 –6,且经过点(2,10),求此二次函数的关系式.接近中考1、[2008年无锡市]已知抛物线22y ax x c =-+与它的对称轴相交于点(14)A -,,与y 轴交于C ,与x 轴正半轴交于B .(1)求这条抛物线的函数关系式;(2)设直线AC 交x 轴于D P ,是线段AD 上一动点(P 点异于A D ,),过P 作PE x ∥轴交直线AB 于E ,过E 作EF x ⊥轴于F ,求当四边形OPEF 的面积等于72时点P 的坐标.2、[2008佛山]. 如图,某隧道横截面的上下轮廓线分别由抛物线对称的一部分和矩形的一部分构成,最大高度为6米,底部宽度为12米. 现以O 点为原点,OM 所在直线为x 轴建立直角坐标系.(1) 直接写出点M 及抛物线顶点P 的坐标;(2) 求出这条抛物线的函数解析式;(3) 若要搭建一个矩形“支撑架”AD- DC- CB ,使C 、D 点在抛物线上,A 、B 点在地面OM 上,则这个“支撑架”总长的最大值是多少?O x y M 3 第2题图 AB C D P。

用待定系数法求二次函数表达式的三种形式

用待定系数法求二次函数表达式的三种形式
出该函数表达式。
例题1 已知抛物线过点(1,0)(3,-2)(5,0), 求该抛物线所对应函数的表达式。
例题2 抛物线对称轴为直线x=-1,最高点的纵坐标为4, 且与x 轴两交点之间的距离是6,求次二次函x1 数的解 析式。
巩固练习
• 1.已知抛物线与x轴的两交点为(-1,0)和(3, 0),且过点(2,-3).求抛物线的解析式.
待定系数法求二次函数表达式常见 的三种形式 :
一般式 • 1.
:y=ax²+bx+c (a,b,c为常数,且a≠0)
• 2.顶点式:y=a(x+h)²+k
(a 0)顶点坐标( h, k)
• 3.交点式: y a(x x1)(x x2 )
一、一般式 y ax2 bx c(a )
已知二次函数 y ax2 bx c 图象过某三
14.已知二次函数y=x²+2(n+3)x+16的顶点在坐标 轴上,求该二次函数表达式。
15.已知抛物线y=ax²+bx+c的顶点坐标为P(2,-1), 图象与x轴交于A,B两点。若△PAB的x1 面积为6, 求该抛物线所对应函数的解析式。
•谢谢
14
பைடு நூலகம்
• 3.二次函数y=ax²+bx+c,x=6时,y=0;x=4时, y有最大值为8,求此函数的解析式。
• 4.若二次函数y=ax²+bx+c(a≠0)的最大值是 2,图象经过点(-2,4)且顶点在直线y=-2x上, 试求ab+c的值
三、交点式 y a(x x1)(x x2 )
已知二次函数图象与x轴两交点坐标分别为 (x1,0),(x2,0) 通常选用交点式,再根据其他即可解出a值,从而求

待定系数法求二次函数解析式

待定系数法求二次函数解析式

1 5 即: y x 2 2 x 2 2
例3.已知二次函数的图像过点A(-1,0),B(3,0) 与y轴交于点C,C点坐标(0,3),求这个二次函数的 解析式?
解:设抛物线的解析式为: y a ( x 3)( x 1) 由题得C点坐标为(0, 3) 代入解析式得 a 1 所以抛物线的解析式为 y x2 2x 3
2
例2.已知当x=-1时,抛物线最高点的纵坐标为4, 且与x轴两交点之间的距离为6,求此函数解析式
解: 根据题意得顶点为(-1,4)
由条件得与x轴交点坐标 (2,0);(-4,0) 设二次函数解析式:y=a(x+1)2+4 有0=a(2+1)2+4,得a=
4 9 4 9
y x o
故所求的抛物线解析式为 y=
方 法 小 结
用待定系数法确定二次函数解析式的 基本方法分四步完成: 一设、二代、三解、四还原 一设:指先设出二次函数的解析式 二代:指根据题中所给条件,代入二次函数的 解析式,得到关于a、b、c的方程组 三解:指解此方程或方程组 四还原:指将求出的a、b、c还原回原解析式中
用待定系数法 求二次函数的解析式
练3 抛物线经ቤተ መጻሕፍቲ ባይዱ点(0,4),(1,0),(5,0), 求这条抛物线的解析式。
回 顾与反思

已知图象上三点或三对的对应值,
通常选择一般式
y
已知图象的顶点坐标(对称轴和最值)
通常选择顶点式
o x
已知图象与x轴的两个交点的横坐标x1、x2, 通常选择交点式
确定二次函数的解析式时,应该根据条件的特点, 恰当地选用一种函数表达式.
y x bx c 3.抛物线 两点,则这条抛物线的解析式是

用待定系数法确定二次函数解析式

用待定系数法确定二次函数解析式
一、用待定系数法确定函数解析式的基本方法分四步 完成:一设、二代、三解、四还原。 一设:指先设出二次函数的解析式 二代:指根据题中所给条件,代入二次函数的 解析式,得到关于待定系数的方程或方程组。 三解:指解此方程或方程组 四还原:指将求出的待定系数的值还原回原解析式中
二、求二次函数的解析式 (1)关键是求出待定系数的值. (2)设解析式的形式:解(1)∵图象顶点为(1,-6),
∴设其解析式为 y=a(x-1)2-6.
∵图象经过点(2,-8),
∴-8=a(2-1)2-6.∴a=-2.
∴函数解析式为 y=-2(x-1)2-6.
例3拓展应用:抛物线 y=ax2+bx+c经过A(-2,-4),
O(0,0),B(2,0)三点 (1)求抛物线 y=ax2+bx+c的解析式。 (2)若点M是该抛物线对称轴上的一点,求AM+OM的 最小值。 y
-2
O。 B 。 x
。 M 。
A。
-4
x=1
。 A1 (4,-4)
【变式训练】
1.二次函数y x 2 bx c的图象的最低点为( - 1,3),
此函数解析式 _____________ 2.抛物线 y=-x2+bx+c 的图象如图 所示, 求此抛物线的解析式。 3.已知二次函数 y=ax2+bx+c 中的 x,y 满足下表:
当已知抛物线上三个点时,设一般式
例1 二次函数的图象经过点A(1,3) ,B(0,3) ,C(-1,1)三点 求此函数的解析式;
解:设所求函数关系式为 y=ax2+bx+c,
∵图象经过点 A(1,3), B(0,3), C(-1,1),
c=3, ∴a+b+c=3, a-b+c=1. a=-1, 解得b=1, c=3.

用待定系数法求二次函数解析式(专题复习)

用待定系数法求二次函数解析式(专题复习)
y= -1(x+1)(x-3) = -x2+2x+3
知识回顾 Knowledge Review
放映结束 感谢各位的批评指导!
谢 谢!
让我们共同进步
3.交点式 y=a(x-x1)(x-x2) 知道抛物线与x轴的两个交点的坐
标,或一个交点的坐标及对称轴方程或顶 点的横坐标时选用两根式比较简便. (1)当△=b2- 4ac≥0 ,抛物线与x轴相交
y=ax2+bx+c=a(x-x1)(x-x2) △=b2- 4ac>0 ,交点有两个, 分别是: (x1, 0)和(x2, 0) △=b2- 4ac =0,交点只有一个 即顶点[-b/2a,(4ac-b2)/4a] △=b2- 4ac <0 ,无交点
解:设二次函数解析式为y=ax2+bx+c ∵ 图象过B(0,2) ∴ c=2 ∴ y=ax2+bx+2 ∵ 图象过A(2,-4),C(-1,2)两点 ∴ -4=4a+2b+2
2=a-b+2 解得 a=-1,b=-1 ∴ 函数的解析式为:
y=-x2-x+2
2. 顶点式 y=a(x-h)2+k (a≠0)已知对称轴
y=a(x-1)2+4 ∵抛物线过点(-1, 0) ∴ 0=a(-1-1)2+4 得 a= -1
∴ 函数的解析式为: y= -1(x-1)2+4= -x2+2x+3
解法3:(交点式) 由题意可知两根为x1=-1、x2=3 设二次函数解析式为y=a(x-x1)(x-x2) 则有: y=a(x+1)(x-3) ∵ 函数图象过点(1,4) ∴ 4 =a(1+1)(1-3) 得 a= -1 ∴ 函数的解析式为:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用待定系数法求二次函数的解析式
【学习目标】
1.能根据已知条件选择合适的二次函数解析式;
2.会用待定系数法求二次函数的解析式。

【学习过程】 例题解析
例1. 已知一个二次函数的图象过点(0,1),它的顶点坐标是(8,9),求这个二次函数的关系式.
例2. 已知二次函数的图象过(0,1)、(2,4)、(3,10)三点,求这个二次函数的关系式.
例3、已知抛物线与x 轴交于A (-1,0),B (2,0)并经过点M(0,1),求抛物线的解析式?
四、知识梳理
用待定系数法求二次函数的解析式通常用以下2种方法:设顶点式()k h x a y +-=2
和一般式
2y ax bx c =++。

1.已知抛物线过三点,通常设函数解析式为 ;
2.已知抛物线顶点坐标及其余一点,通常设函数解析式为 。

3、当已知抛物线与x 轴的交点或交点横坐标时,通常设函数解析式为 。

五、跟踪练习:
1.已知二次函数的图象的顶点坐标为(-2,-3),且图像过点(-3,-1),求这个二次函数的解析式.
2.已知二次函数m x x y ++=2
的图象过点(1,2),则m 的值为________________.
3.一个二次函数的图象过(0,1)、(1,0)、(2,3)三点,求这个二次函数的解析式。

4、已知二次函数的图象经过点(-1,-5),(0,-4)和(1,1).求这个二次函数的解析式.
5、在平面直角坐标系中,抛物线A (-1,0),B (3,0)C (0,-1)三点。

求该抛物线的表达式;
6、已知抛物线y=ax 2+bx+c=0(a ≠0的顶点坐标为(4,-1),与轴交于点(0,3) ,求这条抛物线的解析式。

7、已知抛物线经过A ,B ,C 三点,当 X ≥0 时,其图象如图1所示。

求抛物线的解析式,写出顶点坐标。

8、已知二次函数的图象与x 轴交点的横坐标分别是x 1=-3,x 2=1,且与y 轴交点为(0,-3),求这个二次函数解析式。

9、 已知抛物线顶点(1,16),且抛物线与x 轴的两交点间的距离为8;求二次函数的解析式。

10. 已知双曲线x
k y =与抛物线2
y
ax bx c =++交于A(2,3)、B (m ,2)、c (-3, n )三点.
(1)求双曲线与抛物线的解析式;
(2)在平面直角坐标系中描出点A 、点B 、点C,并求出△ABC 的面积,
11.如图,直线33+=x y 交x 轴于点A ,交y 轴于点B ,过A,B 两点的抛物线交x 轴于另一点C (3,0), (1)求该抛物线的解析式;
⑵ 在抛物线的对称轴上是否存在点Q ,使△ABQ 是等腰三角形?若存在,求出符合条件的Q 点坐标;若不存在,请说明理由.
不同抛物线的设法:
(1) (2)
(3) (4)
x
y -1-2-3-4123-1
-2-3-4
1
234O x
y C B A O。

相关文档
最新文档