高中物理奥林匹克竞赛专题--相对论习题(有答案)
相对论习题(附答案)

1.狭义相对论的两个基本假设分别是——————————————和——————————————。
2.在S系中观察到两个事件同时发生在x轴上,其间距离是1m。
在S´系中观察这两个事件之间的距离是2m。
则在S´系中这两个事件的时间间隔是—————。
—————————3.宇宙飞船相对于地面以速度v做匀速直线飞行,某一时刻飞船头部的宇航员向飞船尾部发出一个光讯号,经过Δt(飞船上的钟)时间后,被尾部的接受器收到,真空中光速用c表示,则飞船的固有长度为。
——————————————4.一宇航员要到离地球为5 光年的星球去旅行,如果宇航员希望把这路程缩短为 3 光年,真空中光速用c表示,则他所乘的火箭相对地球的速度应是———。
———————————5.在某地发生两件事,静止位于该地的甲测得时间间隔为4s,若相对甲做匀速直线运动的乙测得时间间隔为5s,真空中光速用c表示,则乙相对于甲的运。
动速度是———————————6.一宇宙飞船相对地球以0.8c(c表示真空中光速)的速度飞行。
一光脉冲从船尾传到船头,飞船上的观察者测得飞船长为90m,地球上的观察者测得光脉冲从船尾发出和到达船头两个事件的空间间隔为。
——————————————7.两个惯性系中的观察者O 和O´以0.6c(c为真空中光速)的相对速度互相接近,如果O测得两者的初距离是20m , 则O´测得两者经过时间间隔Δt´=后相遇。
——————————————8.π+介子是不稳定的粒子,在它自己的参照系中测得平均寿命是 2.6×10-8s,如果它相对实验室以0.8c(c为真空中光速)的速度运动,那么实验室坐标。
系中测得的π+介子的寿命是——————————————9.c表示真空中光速,电子的静能m o c2 = 0.5 MeV,则根据相对论动力学,动。
能为1/4 Mev的电子,其运动速度约等于——————————————10.α粒子在加速器中被加速,当其质量为静止质量的5倍时,其动能为静止能倍量的——————————————= 11. 在S系中观察到两个事件同时发生在x轴上,其间距是1000 m。
2020年高中物理竞赛习题十三:狭义相对论(Word版含解析)

高中物理竞赛习题十三:《狭义相对论》1 有下列几种说法:(1) 两个相互作用的粒子系统对某一惯性系满足动量守恒,对另一个惯性系来说,其动量不一定守恒;(2) 在真空中,光的速度与光的频率、光源的运动状态无关;(3) 在任何惯性系中,光在真空中沿任何方向的传播速率都相同.其中哪些说法是正确的? ( )(A) 只有(1)、(2)是正确的 (B) 只有(1)、(3)是正确的(C) 只有(2)、(3)是正确的 (D) 三种说法都是正确的分析与解 物理相对性原理和光速不变原理是相对论的基础.前者是理论基础,后者是实验基础.按照这两个原理,任何物理规律(含题述动量守恒定律)对某一惯性系成立,对另一惯性系也同样成立.而光在真空中的速度与光源频率和运动状态无关,从任何惯性系(相对光源静止还是运动)测得光速均为3×108 m·s -1 .迄今为止,还没有实验能推翻这一事实.由此可见,(2)(3)说法是正确的,故选(C).2 按照相对论的时空观,判断下列叙述中正确的是( )(A) 在一个惯性系中两个同时的事件,在另一惯性系中一定是同时事件(B) 在一个惯性系中两个同时的事件,在另一惯性系中一定是不同时事件(C) 在一个惯性系中两个同时又同地的事件,在另一惯性系中一定是同时同地事件(D) 在一个惯性系中两个同时不同地的事件,在另一惯性系中只可能同时不同地 (E) 在一个惯性系中两个同时不同地事件,在另一惯性系中只可能同地不同时分析与解 设在惯性系S中发生两个事件,其时间和空间间隔分别为Δt 和Δx ,按照洛伦兹坐标变换,在S′系中测得两事件时间和空间间隔分别为221ΔΔΔβx c t t --='v 和 21ΔΔΔβt x x --='v 讨论上述两式,可对题述几种说法的正确性予以判断:说法(A)(B)是不正确的,这是因为在一个惯性系(如S系)发生的同时(Δt =0)事件,在另一个惯性系(如S′系)中是否同时有两种可能,这取决于那两个事件在S 系中发生的地点是同地(Δx =0)还是不同地(Δx≠0).说法(D)(E)也是不正确的,由上述两式可知:在S系发生两个同时(Δt =0)不同地(Δx ≠0)事件,在S′系中一定是既不同时(Δt ′≠0)也不同地(Δx ′≠0),但是在S 系中的两个同时同地事件,在S′系中一定是同时同地的,故只有说法(C)正确.有兴趣的读者,可对上述两式详加讨论,以增加对相对论时空观的深入理解.3 有一细棒固定在S′系中,它与Ox ′轴的夹角θ′=60°,如果S′系以速度u 沿Ox 方向相对于S系运动,S系中观察者测得细棒与Ox 轴的夹角( )(A) 等于60° (B) 大于60° (C) 小于60°(D) 当S′系沿Ox 正方向运动时大于60°,而当S′系沿Ox 负方向运动时小于60°分析与解 按照相对论的长度收缩效应,静止于S′系的细棒在运动方向的分量(即Ox 轴方向)相对S系观察者来说将会缩短,而在垂直于运动方向上的分量不变,因此S系中观察者测得细棒与Ox 轴夹角将会大于60°,此结论与S′系相对S系沿Ox 轴正向还是负向运动无关.由此可见应选(C).4 一飞船的固有长度为L ,相对于地面以速度v 1 作匀速直线运动,从飞船中的后端向飞船中的前端的一个靶子发射一颗相对于飞船的速度为v 2 的子弹.在飞船上测得子弹从射出到击中靶的时间间隔是( ) (c 表示真空中光速) (A) 21v v +L (B) 12v -v L (C) 2v L (D) ()211/1c L v v - 分析与解 固有长度是指相对测量对象静止的观察者所测,则题中L 、v 2 以及所求时间间隔均为同一参考系(此处指飞船)中的三个相关物理量,求解时与相对论的时空观无关.故选(C).讨论 从地面测得的上述时间间隔为多少? 建议读者自己求解.注意此处要用到相对论时空观方面的规律了.5 设S′系以速率v =0.60c 相对于S系沿xx′轴运动,且在t =t ′=0时,x =x ′=0.(1)若有一事件,在S系中发生于t =2.0×10-7s,x =50m 处,该事件在S′系中发生于何时刻?(2)如有另一事件发生于S系中t =3.0×10-7 s,x =10m 处,在S′系中测得这两个事件的时间间隔为多少?分析 在相对论中,可用一组时空坐标(x ,y ,z ,t )表示一个事件.因此,本题可直接利用洛伦兹变换把两事件从S系变换到S′系中.解 (1) 由洛伦兹变换可得S′系的观察者测得第一事件发生的时刻为s 1025.1/1721211-⨯=--='c x c t t 2v v (2) 同理,第二个事件发生的时刻为s 105.3/1722222-⨯=--='c x c t t 2v v 所以,在S′系中两事件的时间间隔为s 1025.2Δ712-⨯='-'='t t t 6 设有两个参考系S 和S′,它们的原点在t =0和t ′=0时重合在一起.有一事件,在S′系中发生在t ′=8.0×10-8s ,x ′=60m ,y ′=0,z ′=0处,若S′系相对于S系以速率v =0.6c 沿xx′轴运动,问该事件在S系中的时空坐标各为多少?分析 本题可直接由洛伦兹逆变换将该事件从S′系转换到S系.解 由洛伦兹逆变换得该事件在S 系的时空坐标分别为 m 93/12=-'+'=c t x x 2v vy =y′=0z =z′=0s 105.2/1722-⨯=-'+'=c x c t t 2v v 7 一列火车长0.30 km(火车上观察者测得),以100 km·h -1 的速度行驶,地面上观察者发现有两个闪电同时击中火车的前后两端.问火车上的观察者测得两闪电击中火车前后两端的时间间隔为多少?分析 首先应确定参考系,如设地面为S系,火车为S′系,把两闪电击中火车前后端视为两个事件(即两组不同的时空坐标).地面观察者看到两闪电同时击中,即两闪电在S系中的时间间隔Δt =t 2-t 1=0.火车的长度是相对火车静止的观察者测得的长度(注:物体长度在不指明观察者的情况下,均指相对其静止参考系测得的长度),即两事件在S′系中的空间间隔Δx ′=x ′2 -x ′1=0.30×103m.S′系相对S系的速度即为火车速度(对初学者来说,完成上述基本分析是十分必要的).由洛伦兹变换可得两事件时间间隔之间的关系式为()()21221212/1cx x c t t t t 2v v -'-'+'-'=- (1) ()()21221212/1c x x c t t t t 2v v ----='-' (2) 将已知条件代入式(1)可直接解得结果.也可利用式(2)求解,此时应注意,式中12x x -为地面观察者测得两事件的空间间隔,即S系中测得的火车长度,而不是火车原长.根据相对论,运动物体(火车)有长度收缩效应,即()21212/1c x x x x 2v -'-'=-.考虑这一关系方可利用式(2)求解.解1 根据分析,由式(1)可得火车(S′系)上的观察者测得两闪电击中火车前后端的时间间隔为()s 1026.91412212-⨯-='-'='-'x x ct t v 负号说明火车上的观察者测得闪电先击中车头x ′2 处.解2 根据分析,把关系式()21212/1c x x x x 2v -'-'=- 代入式(2)亦可得 与解1相同的结果.相比之下解1较简便,这是因为解1中直接利用了12x x '-'=0.30 km 这一已知条件.8 在惯性系S中,某事件A 发生在x 1处,经过2.0 ×10-6s后,另一事件B 发生在x 2处,已知x 2-x 1=300 m.问:(1) 能否找到一个相对S系作匀速直线运动的参考系S′,在S′系中,两事件发生在同一地点?(2) 在S′系中,上述两事件的时间间隔为多少?分析 在相对论中,从不同惯性系测得两事件的空间间隔和时间间隔有可能是不同的.它与两惯性系之间的相对速度有关.设惯性系S′以速度v 相对S系沿x 轴正向运动,因在S 系中两事件的时空坐标已知,由洛伦兹时空变换式,可得 ()()2121212/1c t t x x x x 2v v ----='-' (1) ()()2121212/1c x x t t t t 22v c v ----='-' (2)两事件在S′系中发生在同一地点,即x ′2-x ′1=0,代入式(1)可求出v 值以此作匀速直线运动的S′系,即为所寻找的参考系.然后由式(2)可得两事件在S′系中的时间间隔.对于本题第二问,也可从相对论时间延缓效应来分析.因为如果两事件在S′系中发生在同一地点,则Δt ′为固有时间间隔(原时),由时间延缓效应关系式2/1ΔΔc t t 2v -='可直接求得结果.解 (1) 令x ′2-x ′1=0,由式(1)可得c t t x 50.0s m 1050.11-8121=⋅⨯=--=2x v (2) 将v 值代入式(2),可得()()()s 1073.1/1/162122121212-⨯=--=----='-'c t t c x x t t t t 222v v c v这表明在S′系中事件A 先发生.9 设在正负电子对撞机中,电子和正电子以速度0.90c 相向飞行,它们之间的相对速度为多少?分析 设对撞机为S系,沿x 轴正向飞行的正电子为S′系.S′系相对S系的速度v =0.90c ,则另一电子相对S系速度u x =-0.90c ,该电子相对S′系(即沿x 轴正向飞行的电子)的速度u′x 即为题中所求的相对速度.在明确题目所述已知条件及所求量的物理含义后,即可利用洛伦兹速度变换式进行求解.解 按分析中所选参考系,电子相对S′系的速度为c u cu u u x x x x 994.012-=-'-='v 式中负号表示该电子沿x′轴负向飞行,正好与正电子相向飞行.讨论 若按照伽利略速度变换,它们之间的相对速度为多少?10 设想有一粒子以0.050c 的速率相对实验室参考系运动.此粒子衰变时发射一个电子,电子的速率为0.80c ,电子速度的方向与粒子运动方向相同.试求电子相对实验室参考系的速度.分析 这是相对论的速度变换问题.取实验室为S系,运动粒子为S′系,则S′系相对S系的速度v =0.050c .题中所给的电子速率是电子相对衰变粒子的速率,故u′x =0.80c .解 根据分析,由洛伦兹速度逆变换式可得电子相对S系的速度为c u cu u x x x 817.012='-+'=v v 11 设在宇航飞船中的观察者测得脱离它而去的航天器相对它的速度为1.2×108m·s-1 i .同时,航天器发射一枚空间火箭,航天器中的观察者测得此火箭相对它的速度为1.0×108m·s-1 i .问:(1) 此火箭相对宇航飞船的速度为多少? (2) 如果以激光光束来替代空间火箭,此激光光束相对宇航飞船的速度又为多少? 请将上述结果与伽利略速度变换所得结果相比较,并理解光速是运动体的极限速度.分析 该题仍是相对论速度变换问题.(2)中用激光束来替代火箭,其区别在于激光束是以光速c 相对航天器运动,因此其速度变换结果应该与光速不变原理相一致.解 设宇航飞船为S系, 航天器为S′系, 则S′系相对S系的速度v =1.2 ×108m·s-1 ,空间火箭相对航天器的速度为u ′x =1.0×108m·s-1,激光束相对航天器的速度为光速c .由洛伦兹变换可得:(1) 空间火箭相对S 系的速度为 1-82s m 1094.11⋅⨯='++'=x x x u cu u v v (2) 激光束相对S 系的速度为 c c c c u x =++=21v v 即激光束相对宇航飞船的速度仍为光速c ,这是光速不变原理所预料的.如用伽利略变换,则有u x =c +v >c .这表明对伽利略变换而言,运动物体没有极限速度,但对相对论的洛伦兹变换来说,光速是运动物体的极限速度.12 以速度v 沿x 方向运动的粒子,在y 方向上发射一光子,求地面观察者所测得光子的速度.分析 设地面为S系,运动粒子为S′系.与上题不同之处在于,光子的运动方向与粒子运动方向不一致,因此应先求出光子相对S系速度u 的分量u x 、u y 和u z ,然后才能求u 的大小和方向.根据所设参考系,光子相对S′系的速度分量分别为u ′x =0,u ′y =c ,u ′z =0.解 由洛伦兹速度的逆变换式可得光子相对S系的速度分量分别为v v v ='++'=x x x u cu u 21222/11/1c c u cc u u x y y 22v v v -='+-'= 0=z u所以,光子相对S系速度u 的大小为c u u u u z y x =++=222速度u 与x 轴的夹角为vv 22arctan arctan -==c u u θx y 讨论 地面观察者所测得光子的速度仍为c ,这也是光速不变原理的必然结果.但在不同惯性参考系中其速度的方向却发生了变化.13 在惯性系S 中观察到有两个事件发生在同一地点,其时间间隔为4.0 s ,从另一惯性系S′中观察到这两个事件的时间间隔为6.0 s ,试问从S′系测量到这两个事件的空间间隔是多少? 设S′系以恒定速率相对S系沿xx′轴运动.分析 这是相对论中同地不同时的两事件的时空转换问题.可以根据时间延缓效应的关系式先求出S′系相对S 系的运动速度v ,进而得到两事件在S′系中的空间间隔Δx′=v Δt′(由洛伦兹时空变换同样可得到此结果).解 由题意知在S系中的时间间隔为固有的,即Δt =4.0s,而Δt′=6.0 s.根据时间延缓效应的关系式2/1ΔΔc tt 2v -=',可得S′系相对S系的速度为c t t c 35ΔΔ12=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛'-=v 两事件在S′系中的空间间隔为m 1034.1ΔΔ9⨯='='t x v14 在惯性系S中, 有两个事件同时发生在xx′轴上相距为1.0×103m 的两处,从惯性系S′观测到这两个事件相距为2.0×103m ,试问由S′系测得此两事件的时间间隔为多少?分析 这是同时不同地的两事件之间的时空转换问题.由于本题未给出S′系相对S 系的速度v ,故可由不同参考系中两事件空间间隔之间的关系求得v ,再由两事件时间间隔的关系求出两事件在S′系中的时间间隔.解 设此两事件在S系中的时空坐标为(x 1 ,0,0,t 1)和(x 2 ,0,0,t 2 ),且有x 2 -x 1 =1.0×103m , t 2 -t 1 =0.而在S′系中, 此两事件的时空坐标为(x′1 ,0,0,t′1 )和(x′2 ,0,0,t′2 ),且|x′2 -x′1| =2.0×103m ,根据洛伦兹变换,有 ()()2121212/1c t t x x x x 2v v ----='-' (1) ()()2121212/1c x x t t t t 22v c v ----='-' (2)由式(1)可得 ()()c x x x x c 231212212=⎥⎦⎤⎢⎣⎡'-'--=v 将v 值代入式(2),可得s 1077.5612-⨯='-'t t 15 若从一惯性系中测得宇宙飞船的长度为其固有长度的一半,试问宇宙飞船相对此惯性系的速度为多少? (以光速c 表示)解 设宇宙飞船的固有长度为l 0 ,它相对于惯性系的速率为v ,而从此惯性系测得宇宙飞船的长度为2/0l ,根据洛伦兹长度收缩公式,有200/12/c l l 2v -=可解得v =0.866 c16 一固有长度为4.0 m 的物体,若以速率0.60c 沿x 轴相对某惯性系运动,试问从该惯性系来测量,此物体的长度为多少?解 由洛伦兹长度收缩公式m 2.3/120=-=c l l 2v17 若一电子的总能量为5.0MeV ,求该电子的静能、动能、动量和速率.分析 粒子静能E 0是指粒子在相对静止的参考系中的能量,200c m E =,式中为粒子在相对静止的参考系中的质量.就确定粒子来说,E 0 和m 0均为常数(对于电子,有m 0 =9.1 ×10-31kg,E 0=0.512 MeV).本题中由于电子总能量E >E 0 ,因此,该电子相对观察者所在的参考系还应具有动能,也就具有相应的动量和速率.由相对论动能定义、动量与能量关系式以及质能关系式,即可解出结果.解 电子静能为 MeV 512.0200==c m E电子动能为 Ek =E -E 0 =4.488 MeV由20222E c p E +=,得电子动量为 ()1-21202s m kg 1066.21⋅⋅⨯=-=-E E c p 由2201c vE E -=可得电子速率为c E E c 995.01220=⎪⎪⎭⎫ ⎝⎛-=v 18 一被加速器加速的电子,其能量为3.00 ×109eV.试问:(1) 这个电子的质量是其静质量的多少倍? (2) 这个电子的速率为多少?解 (1) 由相对论质能关系2mc E =和200c m E =可得电子的动质量m 与静质量m 0之比为320001086.5⨯===cm E E E m m (2) 由相对论质速关系式2201c vm m -=可解得c m m c 985999999.01220=⎪⎪⎭⎫ ⎝⎛-=v 可见此时的电子速率已十分接近光速了.19 在电子偶的湮没过程中,一个电子和一个正电子相碰撞而消失,并产生电磁辐射.假定正负电子在湮没前均静止,由此估算辐射的总能量E .分析 在相对论中,粒子的相互作用过程仍满足能量守恒定律,因此辐射总能量应等于电子偶湮没前两电子总能之和.按题意电子偶湮没前的总能只是它们的静能之和.解 由分析可知,辐射总能量为MeV 1.02J 1064.121320=⨯==-c m E20 如果将电子由静止加速到速率为0.10c ,需对它作多少功? 如将电子由速率为0.80c 加速到0.90c ,又需对它作多少功?分析 在相对论力学中,动能定理仍然成立,即12ΔΔk k k E E E W -==,但需注意动能E k 不能用2v m 21表示. 解 由相对论性的动能表达式和质速关系可得当电子速率从1v 增加到2v 时,电子动能的增量为()()⎪⎪⎪⎪⎭⎫ ⎝⎛---=---=-=2212222020212022121111Δc v c v c m c m c m c m c m E E E k k k根据动能定理,当v 1=0,v 2=0.10c 时,外力所作的功为 eV 1058.2Δ3⨯==k E W当v 1=0.80 c ,v 2=0.90 c 时,外力所作的功为eV 1021.3Δ5⨯='='kE W 由计算结果可知,虽然同样将速率提高0.1 c ,但后者所作的功比前者要大得多,这是因为随着速率的增大,电子的质量也增大.。
全国高中物理竞赛相对论专题训练题答案

练习1解析 (1)设电子处于静止状态时的质量为m 0,光子的频率为ν,假定电子能完全吸收光子的能量,吸收光子后,电子以速度υ运动,则这一过程应遵循动量守恒定律,有h cν= ①碰撞后系统的总能量为22E mc ==②由①、②式消去υ,得E =③碰撞前电子与光子的总能量为200E h m c ν=+ ④由③、④式有222422222000020E E m c h h m c h m c ννν-=+-+=-≠()() ⑤ 这表明,所假设的过程不符合能量守恒定律,因此这一过程实际上不可能发生。
(2)束缚在金属中的电子和射入金属的光子二者构成的系统在发生光电效应的过程中动量不守恒,只需考虑能量转换问题。
设电子摆脱金属的束缚而逸出,需要对它做功至少为W (逸出功),逸出金属表面后电子的速度为υ,入射光子的能量为h ν,电子的静止质量为m 0,若能产生光电效应,则有220h m c W ν⎡⎤⎢⎥⎥≥-+⎥⎥⎦⑥逸出电子的速度υ一般都比光速小很多,故有22112c υ≈++⋅⋅⋅ ⑦ 忽略高阶小量,只取⑦式中的前两项,代入⑥式,可得到2012h m W νυ≥+ ⑧ 可见,只要h W ν≥⑧式就能成立,光电效应就能产生。
练习2解析 1)(a )设光子被吸前的动量为1k h e cν,k e 为一单位矢量,光子被吸收后原子核的动量为1P ,则由动量守恒定律得11k h P e cν=,即222211P c h ν=21hMc ν=+ 两边平方2222211()()()Pc Mc E h Mc ν++∆=+ 代入222211P c h ν=,可得2212(2)Mc hE Mc E ν=∆+∆ 于是得到所求光子频率为12(1)E E h Mc ν∆∆=+ (b )设发射的光子动量为2k h e cν,发射后原子核的动量2P ,则由动量守恒定律得220k h P e cν+=,即222222P c h ν=222()E h M c cν∆=+由以上两式得2222()(2)Mc E h E Mc E ν+∆=∆+∆于是求得所求光子频率为22(1)E Eh Mcν∆∆=- (2)由上面的结果可见。
高中物理《相对论简介》练习题(附答案解析)

高中物理《相对论简介》练习题(附答案解析)学校:___________姓名:___________班级:___________一、单选题1.下列说法中正确的是()A.牛顿测出了引力常量,他被称为“称量地球质量”第一人B.相对论时空观认为物体的长度会因物体的速度不同而不同C.所有行星的轨道半长轴的二次方跟公转周期的三次方的比值都相同D.丹麦天文学家第谷经过多年的天文观测和记录,提出了“日心说”的观点2.2005年被联合国定为“世界物理年”,以表彰爱因斯坦对物理学的贡献。
爱因斯坦对物理学的贡献之一是()A.建立“电磁场理论”B.创立“相对论”C.发现“能量守恒定律”D.发现“万有引力定律”3.下列说法不符合相对论的观点的是()A.时间和空间都是绝对的,在任何参考系中一个事件发生的时间和一个物体的长度总不会改变B.一条沿自身长度方向运动的杆,其长度总比杆静止时的长度小C.相对论认为时间和空间与物体的运动状态有关D.当物体运动的速度v远小于c时,“长度收缩”和“时间膨胀”效果可忽略不计4.相对论已成为迄今人们认知并描述高速世界的最好理论工具。
创建相对论的科学家是()A.牛顿B.伽利略C.开普勒D.爱因斯坦5.如图所示,地面上A、B两处的中点处有一点光源S,甲观察者站在光源旁,乙观察者乘坐速度为v(接近光速)的火箭沿AB方向飞行,两观察者身边各有一个事先在地面校准了的相同的时钟,下列对相关现象的描述中,正确的是()A.甲测得的光速为c,乙测得的光速为c vB.甲认为飞船中的钟变慢了,乙认为甲身边的钟变快了C.甲测得的AB间的距离小于乙测得的AB间的距离D.当光源S发生一次闪光后,甲认为A、B两处同时接收到闪光,乙则认为B先接收到闪光6.1905年到1915年,爱因斯坦先后发表的狭义相对论和广义相对论在20世纪改变了理论物理学和天文学,取代了主要由牛顿创立的有200年历史的力学理论。
狭义相对论适用于基本粒子及其相互作用,描述了除引力以外的所有物理现象。
高二物理竞赛课件:相对论习题

一、选择题
1 下列说法哪种(些)正确: (A) 一切运动物体相对于观察者的速度都不 能大于真空的光速. (B) 质量、长度、时间的测量结果都随物体 与 观察者的相对运动状态而改变. (C) 在一切惯性系中发生于同一时刻、不同地 点的两个事件,在其它惯性系中也同时发生.
(D) 惯性系中的观察者观察一个对它作匀速 相对运动的时钟时,会看到该钟走慢了.
t t t 1 0.62 5 0.8s 4s
L 1L
1
u2 c2
L
0.6 90
54m
解二:飞船系中 x 90 t 90 c
地球系中
x x ut 1 90 0.8c 90 270 m
1 0.82
c
解三:设飞船系为S系,地球系为S 系,
S 相对S以-0.8c运动,地球系中
x x ut 1 90 (0.8c) 90 270 m
(2)_____________________________ 。 狭义相对论时空观认为:时空与 ____________是不可分割的;对不同的 惯性系而言,长度与时间的测量是 ________的,在运动方向上将出现长度 ________和时间________。
• 1.物理定律对所有惯性系都是一样的,即所有惯性系对一 切物理定律等价;
• 在所有惯性系中,真空中的光速相同,且与光源运动无 关;
• 运动 相对 缩短 延缓
2. 介子是不稳定的粒子,在它自己的 参照系中测得平均寿命是 2.6108s , 如果它相对实验室以 0.8c 的速度运动, 那么实验室坐标系中测得的 介子的 寿命是___________s。
4.33 10 ) 2 c (D) 1 c
3
3
相对论习题及答案解析

在 K 系中细杆的长度为
l = ∆x 2 + ∆y 2 = l0 1 − (u / c ) cos 2 θ ′ + si n 2 θ ′ = l0 1 − (u cos θ ′ / c )
(A) α > 45° ; (B) α < 45° ; (C) α = 45° ; (D) 若 u 沿 X ′ 轴正向,则 α > 45° ;若 u 沿 X ′ 轴反向,则 α < 45° 。 答案:A 4.电子的动能为 0.25MeV ,则它增加的质量约为静止质量的? (A) 0.1 倍 答案:D 5. E k 是粒子的动能, p 是它的动量,那么粒子的静能 m0 c 等于 (A) ( p c − E k ) / 2 Ek
13. 静止质量为 9.1 × 10 −31 kg 的电子具有 5 倍于它的静能的总能量,试求它的动量和速率。 [提示:电子的静能为 E0 = 0.511 MeV ] 解:由总能量公式
夹角 θ 。 解:光线的速度在 K ′ 系中两个速度坐标上的投影分别为
⎧V x′ = c cos θ ′ ⎨ ′ ⎩V y = c sin θ ′
由速度变换关系
Vx =
u + Vx′ , Vx′ ⋅ u 1+ 2 c
V y′ 1 − Vy =
1+
u2 c2
u V x′ c2
则在 K 系中速度的两个投影分别为
7.论证以下结论:在某个惯性系中有两个事件同时发生在不同的地点,在有相对运动的其他
惯性系中,这两个事件一定不同时发生 。 证明:令在某个惯性系中两事件满足
高中物理奥林匹克竞赛专题重点习题(有答案)

8-6 长=15.0cm 的直导线AB 上均匀地分布着线密度=5.0x10-9C ·m -1的正电荷.试求:(1)在导线的延长线上与导线B 端相距=5.0cm 处点的场强;(2)在导线的垂直平分线上与导线中点相距=5.0cm 处点的场强.解: 如题8-6图所示(1)在带电直线上取线元,其上电量在点产生场强为用,, 代入得 方向水平向右(2)同理方向如题8-6图所示由于对称性,即只有分量,以, ,代入得,方向沿轴正向8-7 一个半径为的均匀带电半圆环,电荷线密度为,求环心处点的场强.解: 如8-7图在圆上取题8-7图,它在点产生场强大小为方向沿半径向外则积分∴,方向沿轴正向.8-9 (1)点电荷位于一边长为a 的立方体中心,试求在该点电荷电场中穿过立方体的一个面的电通量;(2)如果该场源点电荷移动到该立方体的一个顶点上,这时穿过立方体各面的电通量是多少?*(3)如题8-9(3)图所示,在点电荷的电场中取半径为R 的圆平面.在该平面轴线上的点处,求:通过圆平面的电通量.() l λ1a P 2d Q x d q d P 15=l cm 9100.5-⨯=λ1m C -⋅5.12=a cm 21074.6⨯=P E 1C N -⋅2220d d π41d +=x x E Q λε⎰=lQx E 0d QE ϖy 9100.5-⨯=λ1cm C -⋅15=l cm 5d 2=cm 21096.14⨯==Qy Q E E 1C N -⋅y R λO ϕRd dl =ϕλλd d d R l q ==O 20π4d d R R E εϕλ=ϕϕελϕd sin π4sin d d 0RE E x ==RR E x 000π2d sin π4ελϕϕελπ==⎰R E E x 0π2ελ==x q q q A x Rarctan=α解: (1)由高斯定理立方体六个面,当在立方体中心时,每个面上电通量相等∴ 各面电通量.(2)电荷在顶点时,将立方体延伸为边长的立方体,使处于边长的立方体中心,则边长的正方形上电通量对于边长的正方形,如果它不包含所在的顶点,则,如果它包含所在顶点则.如题8-9(a)图所示.题8-9(3)图题8-9(a)图 题8-9(b)图 题8-9(c)图 (3)∵通过半径为的圆平面的电通量等于通过半径为的球冠面的电通量,球冠面积**关于球冠面积的计算:见题8-9(c)图8-10 均匀带电球壳内半径6cm ,外半径10cm ,电荷体密度为2×C ·m -3求距球心5cm ,8cm ,12cm各点的场强.解: 高斯定理,当时,,时, ∴, 方向沿半径向外. cm 时,∴ 沿半径向外.8-11 半径为和(>)的两无限长同轴圆柱面,单位长度上分别带有电量和-,试求:(1)<;(2) <<;(3) >处各点的场强. 解: 高斯定理取同轴圆柱形高斯面,侧面积d εq S E s⎰=⋅ϖϖq 06εq e =Φa 2q a 2a 206εq e =Φa q 024εqe =Φq0=Φe R 22x R +510-0d ε∑⎰=⋅q S E sϖϖ02π4ε∑=qr E 5=r cm 0=∑q 0=E ϖ8=r cm ∑q 3π4p =3(r )3内r -()2023π43π4r r r E ερ内-=41048.3⨯≈1C N -⋅12=r 3π4∑=ρq -3(外r )内3r ()420331010.4π43π4⨯≈-=r r r E ερ内外1C N -⋅1R 2R 2R 1R λλr1R 1R r 2R r 2R 0d ε∑⎰=⋅q S E s ϖϖrl S π2=则对(1)(2)∴沿径向向外(3)8-16 如题8-16图所示,在,两点处放有电量分别为+,-的点电荷,间距离为2,现将另一正试验点电荷从点经过半圆弧移到点,求移动过程中电场力作的功.解: 如题8-16图示8-17 如题8-17图所示的绝缘细线上均匀分布着线密度为的正电荷,两直导线的长度和半圆环的半径都等于.试求环中心点处的场强和电势.解: (1)由于电荷均匀分布与对称性,和段电荷在点产生的场强互相抵消,取则产生点如图,由于对称性,点场强沿轴负方向题8-17图(2)电荷在点产生电势,以同理产生半圆环产生8-24 半径为的金属球离地面很远,并用导线与地相联,在与球心相距为处有一点电荷+,试求:金属球上的感应电荷的电量. 解: 如题8-24图所示,设金属球感应电荷为,则球接地时电势8-24图由电势叠加原理有:得9-6 已知磁感应强度Wb ·m -2的均匀磁场,方向沿轴正方向,如题9-6图所示.试求:(1)通过图中面的磁通量;(2)通过图中面的磁通量;(3)通过图中面的磁通量.解: 如题9-6图所示题9-6图(1)通过面积的磁通是(2)通过面积的磁通量 (3)通过面积的磁通量(或曰)rlE S E Sπ2d =⋅⎰ϖϖ1R r <0,0==∑E q 21R r R <<λl q =∑rE 0π2ελ=2R r >0=∑q A B q q AB R 0q O C λR O AB CD O θd d R l =θλd d R q =O E ϖd O y AB O 0=∞U CD 2ln π402ελ=U 0034π4πελελ==R R U R R d 3=q q '0=O U -='q 3q0.2=B x abcd befc aefd abcd 1S befc 2S aefd 3S 24.0545.03.02cos 5.03.0233=⨯⨯⨯=θ⨯⨯⨯=⋅=S B ϖϖΦWb 24.0-Wb题9-7图9-7 如题9-7图所示,、为长直导线,为圆心在点的一段圆弧形导线,其半径为.若通以电流,求点的磁感应强度.解:如题9-7图所示,点磁场由、、三部分电流产生.其中产生产生,方向垂直向里 段产生 ,方向向里∴,方向向里. 9图9-9 如题9-9图所示,两根导线沿半径方向引向铁环上的,两点,并在很远处与电源相连.已知圆环的粗细均匀,求环中心的磁感应强度. 解: 如题9-9图所示,圆心点磁场由直电流和及两段圆弧上电流与所产生,但和在点产生的磁场为零。
高中物理奥林匹克竞赛专题--相对论

介子衰变前通过的平均距离应为
这和实验结果相符,从而验证了相对论的时间膨 胀效应。
4.3.3 长度的收缩
往返时间: 入射路程:
解得
反射路程: 解得
全程所用时间: 即
根据时间的延缓,有
所以 解得:
解:根据题意,飞船的固有长度为60m,地面上的观 测者测得飞船的长度为测长,
例4-4A、B两飞船的固有长度均为L0=100m,同向匀 速飞行。B的驾驶员测得A的头部和尾部经过B头部的 时间为5/3×10-7s。求A中的观察者测得的上述过程的 时间。
解:原长L0=100m;原时=(5/3) ×10-7s
如在飞船上的钟测得一人吸烟用了3分钟。 在地面上测得这个人吸烟可能用了5分钟。
动钟变慢CAI
双
a.
生
子
佯
谬
慢
慢
.
.
.
例4-2带正电的 介子是一种不稳定的粒子,以其自身 为参考系测得的平均寿命为2.5×10-8s,此后衰变为一 个 子和一个中微子。今产生一束 介子,在实验室 测得它的速度 u=0.99c,它在衰变前通过的平均距离 为53 m。试问:这些测量结果是否一致? 解:按经典理论计算, 介子在衰变前通过的距离为
讨论动能:
例4-7在一种热核反应中,反应式为
其中各粒子的静质量分别为: 氘核( ): 氚核( ): 氦核( ): 中子( ): 求这一热核反应所释放出的能量。
解:在这反应过程中,反应前、后质量变化为 释放出相应的能量: 1kg 这种燃料所释放出的能量:
4.5.4 相对论能量和动量的关系:
相对论动量与能量的关系:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在S系中观察得到该尺与o x轴成45°角,则 S 系相对于 S系的速
度是 6 c 。
3
yc o4t5 1uc22yc o3t0
大学物理
3. 一宇宙飞船相对地球以0.8 c(表示真空中光速)的速度飞行。 一光脉冲从船尾传到船头,飞船上的观察者测得飞船为90m,地 球上的观察者测得光脉冲从船尾发出和到达船头两个事件的空间 间隔为 270m 。
9.某核电站年发电量为100亿度.如果这些能量是由核材料的全部 静止能转化产生的,则需要消耗的核材料的质量为 (A)0.4kg; (B)0.8kg; (C)12×107kg;(D)8.3×105kg.
答案(A) Em 0c2110 03.6160 J
大学物理
二、填空题
1. S 系相对 S系以速度0.8 c沿 x轴正向运动。两参考系的原点 在 tt0时重合。一事件在 S 系中发生在 x 3m 0 (y 0 z 0 )
大学物理
• E k 是粒子的动能,p是它的动量,那么粒子的静能 m0 c 2等于
•
• (p2c2Ek2)/2Ek; (B) (p2c2Ek)/2Ek; (C) (p2c2Ek2)/2Ek; (D) (pcEk)2/2Ek 。
答案(A) p 2 c 2 (m 0 c 2 )2 m 2 ( c E k m 0 c 2 )2
以飞船为S 系,以地面为 S系
法一
法二 xxut
0.8ct901(0.8c)2/c2ct ct27m0
5(900.8c(90))27m 0
3
c
4. 牛郎星距离地球约16光年,宇宙飞船若以
4 17
17 c 的匀速飞行,
将用4年时间(宇宙飞船上的钟指示的时间)抵达牛郎星。
0 80
8.静止质量为 m 0,运动速度为0.1c 的粒子,其动能为0.0050m40c。2
Ekm2c m 0c21(m 00.1c)2c2m 0c20.005 m 00 c24 c
大学物理
4. 宇宙飞船相对于地面以速度 v作匀速直线飞行,某一时刻飞船 头部的宇航员向飞船尾部发出一光讯号,经过 t(飞船上的钟) 的时间后,被尾部的接收器收到,则由此可知地面上某一观测者 测得飞船的长度为 (A)ct;(B)vt ; ( C) ct 1v2/c2;(D)ct/ 1v2/c2
1c 6v 4 v4 1c 7
1v2/c2
17
大学物理
5速. 度一体v运积动为,V ,则质观量察为者mA测0的得立密方度体为沿某一m棱0 方向。相对观察者A以
V(1 v2 / c2)
m
ቤተ መጻሕፍቲ ባይዱ
m0
1
v2 c2
V V
v2 1 c2
v 6. (1)在速度 = 3 c
量的两倍。
2
(2)在速度v= 3 c
,t21 07s。则该事件在S系中发生的空间位置 x580m和
时间t 1.33106s。
x (x ut)
t
(t
ux c2 )
其中
1
1
u2 c2
2. S和 S是坐标轴相互平行的两个惯性系, S相对于 S 沿o x轴正方
向匀速运动,一根刚性尺静止在 S 系中,与 ox轴成30°角,今
Lv(21 0 8)(31 0 8)6
5
5
大学物理
6.假定在地球上观察到一颗脉冲星(看作发出周期性脉冲无线电 波的星)的脉冲周期为0.50s,且这颗星正以速度0.8c离我们而去, 那么这颗星的固有脉冲周期应是 (A)0.10s; (B)0.30s ; (C)0.50s; (D)0.83s
生的事件沿运动方向空间距离为1m,在 S 系中测得这两个事件
的空间间隔为2m。则在S 系中测得这两个事件的时间间隔为
(A) 3c
; (B)1 c 3
;
(C) 3 c
; (D)3 c
xx 1u c2 2
答案(C)
u 3c 2
tt1t2
1 1uc22
(tcu2x)
大学物理
大学物理作业四参考答案
一、选择题
1. 一刚性直尺固定在S 系中,它与 X 轴正向夹角4,5
在相对 S 系以速度 u沿 X 轴作匀速直线运动的 S系中,
测得该尺与 X轴正向夹角为
(A)45;(B) 45; (C) 45; (D)不知道
答案(A)
大学物理
2. 惯性系 S、S 沿 X轴做相对运动,在 S系中测得两个同时发
答案(B)
01 1(0.c82c)20.50.3s0
• 粒子在加速器中被加速到动能为静止能量的4倍时,其质量 m
与静止质量 m 0 的关系为:
(A)m4m0;(B) m5m0;(C) m6m0; (D) m8m0
答案(B) m 2 E c k m 0 c 2 4 m 0 c 2 m 0 c 2 5 m 0 c 2
3 c
3. 两火箭A、B沿同一直线相向运动,测得两者相对地球的速度
大小分别是 vA 0.9c,vB 0.8c。则两者互测的相对运动速度为
(A)1.7c ; (B) 0.988c ; (C) 0.956c ; (D) 0.975c
答案(B)
v1vvcu2u10 .9 0c.9 c(c ( 200 .8.8 cc))0.98c8
量。
2
m0
1
u c
2 2
u
2m0u
情况下,粒子的动量等于非相对论动 情况下,粒子的动能等于它的静止能
m0 1uc22
c2 m0c2
m0c2
大学物理
7. 某一宇宙射线中 介子的动能Ek=7m0c2,m0为 介子的静止质量,
则实验室中观察到它的寿命是它的固有寿命的
倍8 。
E m 2 m c 0 c 2 E k m 0 c 2 8 m 0 c 2 8
答案(C)
5. 某种介子静止时的寿命为108 s,质量为 10 25 g。如它在实验
室中的速度为 2108m/s,则它的一生中能飞行多远(以 m为单
位)?
(A) 10 3 ; (B)2; (C) 5 ; (D) 6 / 5 。
答案(D)
0
1 1(2c1280)2
1 0831 08s 5