朝阳市中考数学试题,2019年辽宁省朝阳市九年级中考数学试卷及答案解析

合集下载

2019-2020学年辽宁省朝阳市中考数学模拟试卷(有标准答案)(Word版)

2019-2020学年辽宁省朝阳市中考数学模拟试卷(有标准答案)(Word版)

辽宁省朝阳市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分,每小题给出的四个选项中,只有一个是正确的.1.在下列实数中,﹣3,,0,2,﹣1中,绝对值最小的数是()A.﹣3 B.0 C.D.﹣12.“互联网+”已全面进入人们的日常生活,据有关部门统计,目前全国4G用户数达到4.62亿,其中4.62亿用科学记数法表示为()A.4.62×104B.4.62×106C.4.62×108D.0.462×1083.如图是由四个大小相同的正方体组成的几何体,那么它的主视图是()A.B.C.D.4.方程2x2=3x的解为()A.0 B.C.D.0,5.如图,已知a∥b,∠1=50°,∠2=90°,则∠3的度数为()A.40° B.50° C.150°D.140°6.若一组数据2,3,4,5,x的平均数与中位数相同,则实数x的值不可能的是()A.6 B.3.5 C.2.5 D.17.如图,分别以五边形ABCDE的顶点为圆心,以1为半径作五个圆,则图中阴影部分的面积之和为()A.B.3πC.D.2π8.如图,直线y=mx(m≠0)与双曲线y=相交于A(﹣1,3)、B两点,过点B作BC⊥x轴于点C,连接AC,则△ABC的面积为()A.3 B.1.5 C.4.5 D.69.如图,△ABC中,AB=6,BC=4,将△ABC绕点A逆时针旋转得到△AEF,使得AF∥BC,延长BC交AE于点D,则线段CD的长为()A.4 B.5 C.6 D.710.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为x=﹣1,与x轴的一个交点在(﹣3,0)和(﹣2,0)之间,其部分图象如图所示,则下列结论:(1)b2﹣4ac>0;(2)2a=b;(3)点(﹣,y1)、(﹣,y2)、(,y3)是该抛物线上的点,则y1<y2<y3;(4)3b+2c<0;(5)t(at+b)≤a﹣b(t为任意实数).其中正确结论的个数是()A.2 B.3 C.4 D.5二、填空题:本大题共6个小题,每小题3分,共18分.只需要将结果直接填写在答题卡对应题号处的横线上,不必写出解答过程,不填、错填,一律得0分.11.函数y=的自变量x的取值范围是.12.已知在平面直角坐标系中,点A(﹣3,﹣1)、B(﹣2,﹣4)、C(﹣6,﹣5),以原点为位似中心将△ABC缩小,位似比为1:2,则点B的对应点的坐标为.13.若方程(x﹣m)(x﹣n)=3(m,n为常数,且m<n)的两实数根分别为a,b(a<b),则m,n,a,b的大小关系是.14.如图,在平面直角坐标系中,矩形ABCO的边CO、OA分别在x轴、y轴上,点E在边BC上,将该矩形沿AE折叠,点B恰好落在边OC上的F处.若OA=8,CF=4,则点E的坐标是.15.通过学习,爱好思考的小明发现,一元二次方程的根完全由它的系数确定,即一元二次方程ax2+bx+c=0(a≠0),当b2﹣4ac≥0时有两个实数根:x1=,x2=,于是:x1+x2=,x1•x2=、这就是著名的韦达定理.请你运用上述结论解决下列问题:关于x的一元二次方程x2+kx+k+1=0的两实数根分别为x1,x2,且x12+x22=1,则k的值为.16.如图,在菱形ABCD中,tanA=,点E、F分别是AB、AD上任意的点(不与端点重合),且AE=DF,连接BF与DE相交于点G,连接CG与BD相交于点H,给出如下几个结论:(1)△AED≌△DFB;(2)CG与BD一定不垂直;(3)∠BGE的大小为定值;(4)S四边形BCDG=CG2;(5)若AF=2DF,则BF=7GF.其中正确结论的序号为.三、解答题:本大题共9小题,共72分,解答应写出必要的步骤,文字说明或证明过程.17.2016+2•cos60°﹣(﹣)﹣2+()0.18.先化简,再求值:,请你从﹣1≤x<3的范围内选取一个你喜欢的整数作为x的值.19.为满足市场需求,新生活超市在端午节前夕购进价格为3元/个的某品牌粽子,根据市场预测,该品牌粽子每个售价4元时,每天能出售500个,并且售价每上涨0.1元,其销售量将减少10个,为了维护消费者利益,物价部门规定,该品牌粽子售价不能超过进价的200%,请你利用所学知识帮助超市给该品牌粽子定价,使超市每天的销售利润为800元.20.如图,一渔船自西向东追赶鱼群,在A处测得某无名小岛C在北偏东60°方向上,前进2海里到达B 点,此时测得无名小岛C在东北方向上.已知无名小岛周围2.5海里内有暗礁,问渔船继续追赶鱼群有无触礁危险?(参考数据:)21.为全面开展“大课间”活动,某校准备成立“足球”、“篮球”、“跳绳”、“踢毽”四个课外活动小组,学校体工处根据七年级学生的报名情况如图,Rt△ABC中,∠ACB=90°,AD为∠BAC的平分线,以AB上一点O为圆心的半圆经过A、D两点,交AB于E,连接OC交AD于点F.(1)判断BC与⊙O的位置关系,并说明理由;(2)若OF:FC=2:3,CD=3,求BE的长.23.(9分)为备战2016年里约奥运会,中国女排的姑娘们刻苦训练,为国争光,如图,已知排球场的长度OD为18米,位于球场中线处球网的高度AB为2.43米,一队员站在点O处发球,排球从点O的正上方1.8米的C点向正前方飞出,当排球运行至离点O的水平距离OE为7米时,到达最高点G建立如图所示的平面直角坐标系.(1)当球上升的最大高度为3.2米时,求排球飞行的高度y(单位:米)与水平距离x(单位:米)的函数关系式.(不要求写自变量x的取值范围).(2)在(1)的条件下,对方距球网0.5米的点F处有一队员,他起跳后的最大高度为3.1米,问这次她是否可以拦网成功?请通过计算说明.(3)若队员发球既要过球网,又不出边界,问排球飞行的最大高度h的取值范围是多少?(排球压线属于没出界)24.小颖在学习“两点之间线段最短”查阅资料时发现:△ABC内总存在一点P与三个顶点的连线的夹角相等,此时该点到三个顶点的距离之和最小.【特例】如图1,点P为等边△ABC的中心,将△ACP绕点A逆时针旋转60°得到△ADE,从而有DE=PC,连接PD得到PD=PA,同时∠APB+∠APD=120°+60°=180°,∠ADP+∠ADE=180°,即B、P、D、E四点共线,故PA+PB+PC=PD+PB+DE=BE.在△ABC中,另取一点P′,易知点P′与三个顶点连线的夹角不相等,可证明B、P′、D′、E四点不共线,所以P′A+P′B+P′C>PA+PB+PC,即点P到三个顶点距离之和最小.【探究】(1)如图2,P为△ABC内一点,∠APB=∠BPC=120°,证明PA+PB+PC的值最小;【拓展】(2)如图3,△ABC中,AC=6,BC=8,∠ACB=30°,且点P为△ABC内一点,求点P到三个顶点的距离之和的最小值.25.如图1,已知抛物线y=(x﹣2)(x+a)(a>0)与x轴从左至右交于A,B两点,与y轴交于点C.(1)若抛物线过点T(1,﹣),求抛物线的解析式;(2)在第二象限内的抛物线上是否存在点D,使得以A、B、D三点为顶点的三角形与△ABC相似?若存在,求a的值;若不存在,请说明理由.(3)如图2,在(1)的条件下,点P的坐标为(﹣1,1),点Q(6,t)是抛物线上的点,在x轴上,从左至右有M、N两点,且MN=2,问MN在x轴上移动到何处时,四边形PQNM的周长最小?请直接写出符合条件的点M的坐标.辽宁省朝阳市中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分,每小题给出的四个选项中,只有一个是正确的.1.在下列实数中,﹣3,,0,2,﹣1中,绝对值最小的数是()A.﹣3 B.0 C.D.﹣1【考点】实数大小比较.【分析】先求出各数的绝对值,再比较大小即可解答.【解答】解:|﹣3|=3,||=,|0|=0,|2|=2,|﹣1|=1,∵3>2>>1>0,∴绝对值最小的数是0,故选:B.【点评】本题考查了实数的大小比较,解决本题的关键是求出各数的绝对值.2.“互联网+”已全面进入人们的日常生活,据有关部门统计,目前全国4G用户数达到4.62亿,其中4.62亿用科学记数法表示为()A.4.62×104B.4.62×106C.4.62×108D.0.462×108【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将4.62亿用科学记数法表示为:4.62×108.故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.3.如图是由四个大小相同的正方体组成的几何体,那么它的主视图是()A.B.C.D.【考点】简单组合体的三视图.【专题】计算题.【分析】从正面看几何体得到主视图即可.【解答】解:根据题意的主视图为:,故选B【点评】此题考查了简单组合体的三视图,主视图是从物体的正面看得到的视图.4.方程2x2=3x的解为()A.0 B.C.D.0,【考点】解一元二次方程-因式分解法.【专题】常规题型;一次方程(组)及应用.【分析】方程整理后,利用因式分解法求出解即可.【解答】解:方程整理得:2x2﹣3x=0,分解因式得:x(2x﹣3)=0,解得:x=0或x=,故选D【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.5.如图,已知a∥b,∠1=50°,∠2=90°,则∠3的度数为()A.40° B.50° C.150°D.140°【考点】平行线的性质.【分析】作c∥a,由于a∥b,可得c∥b.然后根据平行线的性质解答.【解答】解:作c∥a,∵a∥b,∴c∥b.∴∠1=∠5=50°,∴∠4=90°﹣50°=40°,∴∠6=∠4=40°,∴∠3=180°﹣40°=140°.故选D.【点评】本题考查了平行线的性质,作出辅助线是解题的关键.6.若一组数据2,3,4,5,x的平均数与中位数相同,则实数x的值不可能的是()A.6 B.3.5 C.2.5 D.1【考点】中位数;算术平均数.【分析】因为中位数的值与大小排列顺序有关,而此题中x的大小位置未定,故应该分类讨论x所处的所有位置情况:从小到大(或从大到小)排列在中间;结尾;开始的位置.【解答】解:(1)将这组数据从小到大的顺序排列为2,3,4,5,x,处于中间位置的数是4,∴中位数是4,平均数为(2+3+4+5+x)÷5,∴4=(2+3+4+5+x)÷5,解得x=6;符合排列顺序;(2)将这组数据从小到大的顺序排列后2,3,4,x,5,中位数是4,此时平均数是(2+3+4+5+x)÷5=4,解得x=6,不符合排列顺序;(3)将这组数据从小到大的顺序排列后2,3,x,4,5,中位数是x,平均数(2+3+4+5+x)÷5=x,解得x=3.5,符合排列顺序;(4)将这组数据从小到大的顺序排列后2,x,3,4,5,中位数是3,平均数(2+3+4+5+x)÷5=3,解得x=1,不符合排列顺序;(5)将这组数据从小到大的顺序排列后x,2,3,4,5,中位数是3,平均数(2+3+4+5+x)÷5=3,解得x=1,符合排列顺序;∴x的值为6、3.5或1.故选C.【点评】本题考查了确定一组数据的中位数,涉及到分类讨论思想,较难,要明确中位数的值与大小排列顺序有关,一些学生往往对这个概念掌握不清楚,计算方法不明确而解答不完整.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数.7.如图,分别以五边形ABCDE的顶点为圆心,以1为半径作五个圆,则图中阴影部分的面积之和为()A.B.3πC.D.2π【考点】扇形面积的计算;多边形内角与外角.【分析】圆心角之和等于n边形的内角和(n﹣2)×180°,由于半径相同,根据扇形的面积公式S=计算即可求出圆形中的空白面积,再用5个圆形的面积减去圆形中的空白面积可得阴影部分的面积.【解答】解:n边形的内角和(n﹣2)×180°,圆形的空白部分的面积之和S==π=π=π.所以图中阴影部分的面积之和为:5πr2﹣π=5π﹣π=π.故选:C.【点评】此题考查扇形的面积计算,正确记忆多边形的内角和公式,以及扇形的面积公式是解决本题的关键.8.如图,直线y=mx(m≠0)与双曲线y=相交于A(﹣1,3)、B两点,过点B作BC⊥x轴于点C,连接AC,则△ABC的面积为()A.3 B.1.5 C.4.5 D.6【考点】反比例函数与一次函数的交点问题.【专题】用函数的观点看方程(组)或不等式.【分析】因为直线与双曲线的交点坐标就是直线解析式与双曲线的解析式联立而成的方程组的解,故求出直线解析式与双曲线的解析式,然后将其联立解方程组,得点B与C的坐标,再根据三角形的面积公式及坐标的意义求解.【解答】解:∵直线y=mx(m≠0)与双曲线y=相交于A(﹣1,3),∴﹣m=3,,∴m=﹣3,n=﹣3,∴直线的解析式为:y=﹣3x,双曲线的解析式为:y=﹣解方程组得:,则点A的坐标为(﹣1,3),点B的坐标为(1,﹣3)∴点C的坐标为(1,0)∴S△ABC=×1×(3+3)=3故:选A【点评】本题考查了反比例函数与一次函数的交点问题,解题的关键是理解函数的图象的交点与两函数解析式之间的关系.9.如图,△ABC中,AB=6,BC=4,将△ABC绕点A逆时针旋转得到△AEF,使得AF∥BC,延长BC交AE于点D,则线段CD的长为()A.4 B.5 C.6 D.7【考点】旋转的性质;平行线的判定.【专题】计算题.【分析】只要证明△BAC∽△BDA,推出=,求出BD即可解决问题.【解答】解:∵AF∥BC,∴∠FAD=∠ADB,∵∠BAC=∠FAD,∴∠BAC=∠ADB,∵∠B=∠B,∴△BAC∽△BDA,∴=,∴=,∴BD=9,∴CD=BD﹣BC=9﹣4=5,故选B.【点评】本题考查平行线的性质、旋转变换、相似三角形的判定和性质等知识,解题的关键是正确寻找相似三角形,属于中考常考题型.10.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为x=﹣1,与x轴的一个交点在(﹣3,0)和(﹣2,0)之间,其部分图象如图所示,则下列结论:(1)b2﹣4ac>0;(2)2a=b;(3)点(﹣,y1)、(﹣,y2)、(,y3)是该抛物线上的点,则y1<y2<y3;(4)3b+2c<0;(5)t(at+b)≤a﹣b(t为任意实数).其中正确结论的个数是()A.2 B.3 C.4 D.5【考点】二次函数与不等式(组);二次函数图象与系数的关系;抛物线与x轴的交点.【分析】逐一分析5条结论是否正确:(1)由抛物线与x轴有两个不相同的交点结合根的判别式即可得出该结论正确;(2)根据抛物线的对称轴为x=﹣1,即可得出b=2a,即(2)正确;(3)根据抛物线的对称性找出点(﹣,y3)在抛物线上,再结合抛物线对称轴左边的单调性即可得出(3)错误;(4)由x=﹣3时,y<0,即可得出3a+c<0,结合b=2a即可得出(4)正确;(5)由方程at2+bt+a=0中△=b2﹣4a•a=0结合a<0,即可得出抛物线y=at2+bt+a中y≤0,由此即可得出(5)正确.综上即可得出结论.【解答】解:(1)由函数图象可知,抛物线与x轴有两个不同的交点,∴关于x的方程ax2+bx+c=0有两个不相等的实数根,∴△=b2﹣4ac>0,∴(1)正确;(2)∵抛物线y=ax2+bx+c(a≠0)的对称轴为x=﹣1,∴﹣=﹣1,∴2a=b,∴(2)正确;(3)∵抛物线的对称轴为x=﹣1,点(,y3)在抛物线上,∴(﹣,y3).∵﹣<﹣<﹣,且抛物线对称轴左边图象y值随x的增大而增大,∴y1<y3<y2.∴(3)错误;(4)∵当x=﹣3时,y=9a﹣3b+c<0,且b=2a,∴9a﹣3×2a+c=3a+c<0,∴6a+2c=3b+2c<0,∴(4)正确;(5)∵b=2a,∴方程at2+bt+a=0中△=b2﹣4a•a=0,∴抛物线y=at2+bt+a与x轴只有一个交点,∵图中抛物线开口向下,∴a<0,∴y=at2+bt+a≤0,即at2+bt≤﹣a=a﹣b.∴(5)正确.故选C.【点评】本题考查了二次函数图象与系数的关系、二次函数与不等式以及抛物线与x轴的交点,解题的关键是逐一分析5条结论是否正确.本题属于中档题,难度不大,解决该题型题目时,熟练掌握二次函数的图象是关键.二、填空题:本大题共6个小题,每小题3分,共18分.只需要将结果直接填写在答题卡对应题号处的横线上,不必写出解答过程,不填、错填,一律得0分.11.函数y=的自变量x的取值范围是x≥2且x≠3 .【考点】函数自变量的取值范围;零指数幂.【分析】根据分式、二次根式以及零指数幂有意义的条件解不等式组即可.【解答】解:由题意得,,解得x≥2且x≠3,故答案为x≥2且x≠3.【点评】本题考查了函数自变量的取值范围问题,以及零指数幂有意义的条件:底数不为零.12.已知在平面直角坐标系中,点A(﹣3,﹣1)、B(﹣2,﹣4)、C(﹣6,﹣5),以原点为位似中心将△ABC缩小,位似比为1:2,则点B的对应点的坐标为(1,2)或(﹣1,﹣2).【考点】位似变换;坐标与图形性质.【分析】根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k解答.【解答】解:∵点B的坐标为(﹣2,﹣4),以原点为位似中心将△ABC缩小,位似比为1:2,∴点B的对应点的坐标为(1,2)或(﹣1,﹣2),故答案为:(1,2)或(﹣1,﹣2).【点评】本题考查的是位似变换的概念和性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.13.若方程(x﹣m)(x﹣n)=3(m,n为常数,且m<n)的两实数根分别为a,b(a<b),则m,n,a,b的大小关系是a<m<n<b .【考点】抛物线与x轴的交点.【分析】由方程可得x﹣m和x﹣n同号,根据方程根的定义代入可得到a、b与m、n的关系,从而可得出其大小关系.【解答】解:∵(x﹣m)(x﹣n)=3,∴可得或,∵m<n,∴可解得x>n或x<m,∵方程的两根为a和b,∴可得到a>n或a<m,b>n或b<m,又a<b,综合可得a<m<n<b,故答案为:a<m<n<b.【点评】本题考查了一元二次方程的根与系数之间的关系,难度较大,关键是对m,n,a,b大小关系的讨论是此题的难14.如图,在平面直角坐标系中,矩形ABCO的边CO、OA分别在x轴、y轴上,点E在边BC上,将该矩形沿AE折叠,点B恰好落在边OC上的F处.若OA=8,CF=4,则点E的坐标是(﹣10,3).【考点】勾股定理的应用;矩形的性质;坐标与图形变化-对称;翻折变换(折叠问题).【分析】根据题意可以得到CE、OF的长度,根据点E在第二象限,从而可以得到点E的坐标.【解答】解:设CE=a,则BE=8﹣a,由题意可得,EF=BE=8﹣a,∵∠ECF=90°,CF=4,∴a2+42=(8﹣a)2,解得,a=3,设OF=b,∵△ECF∽△FOA,∴,即,得b=6,即CO=CF+OF=10,∴点E的坐标为(﹣10,3),故答案为(﹣10,3).【点评】本题考查勾股定理的应用,矩形的性质、翻折变化、坐标与图形变化﹣对称,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.15.通过学习,爱好思考的小明发现,一元二次方程的根完全由它的系数确定,即一元二次方程ax2+bx+c=0(a≠0),当b2﹣4ac≥0时有两个实数根:x1=,x2=,于是:x1+x2=,x1•x2=、这就是著名的韦达定理.请你运用上述结论解决下列问题:关于x的一元二次方程x2+kx+k+1=0的两实数根分别为x1,x2,且x12+x22=1,则k的值为﹣1 .【考点】根与系数的关系;根的判别式.【分析】由方程的有两个实数根x1、x2可得△=k2﹣4(k+1)≥0,求得k的范围,又由x1+x2=﹣k,x1x2=k+1及x12+x22=1可求得k的值.【解答】解:∵x1,x2为一元二次方程x2+kx+k+1=0的两实数根,∴△=k2﹣4(k+1)≥0,且x1+x2=﹣k,x1x2=k+1,解得:k≤2﹣2或k≥2+2,又∵x12+x22=1,即(x1+x2)2﹣x1x2=1,∴(﹣k)2﹣(k+1)=1,即k2﹣k﹣2=0,解得:k=﹣1或k=2(舍),故答案为:﹣1.【点评】本题主要考查一元二次方程的根与系数的关系及根的判别式,熟练掌握根的判别式及根与系数的关系的是关键.16.如图,在菱形ABCD中,tanA=,点E、F分别是AB、AD上任意的点(不与端点重合),且AE=DF,连接BF与DE相交于点G,连接CG与BD相交于点H,给出如下几个结论:(1)△AED≌△DFB;(2)CG与BD一定不垂直;(3)∠BGE的大小为定值;(4)S四边形BCDG=CG2;(5)若AF=2DF,则BF=7GF.其中正确结论的序号为(1)(3)(4)(5).【考点】四边形综合题.【分析】(1)正确,先证明△ABD为等边三角形,根据“SAS”证明△AED≌△DFB;(2)错误,只要证明△GDC≌△BGC,利用等腰三角形性质即可解决问题.(3))正确,由△AED≌△DFB,推出∠ADE=∠DBF,所以∠BGE=∠BDG+∠DBG=∠BDG+∠ADE=60°,(4)正确,证明∠BGE=60°=∠BCD,从而得点B、C、D、G四点共圆,因此∠BGC=∠DGC=60°,过点C作CM⊥GB于M,CN⊥GD于N.证明△CBM≌△CDN,所以S四边形BCDG=S四边形CMGN,易求后者的面积.(5)正确,过点F作FP∥AE于P点,根据题意有FP:AE=DF:DA=1:3,则FP:BE=1:6=FG:BG,即BG=6GF,BF=7FG.【解答】解:(1)∵ABCD为菱形,∴AB=AD.∵AB=BD,∴△ABD为等边三角形.∴∠A=∠BDF=60°.又∵AE=DF,AD=BD,在△AED和△DFB中,,∴△AED≌△DFB,故本小题正确;(2)当点E,F分别是AB,AD中点时(如图1),由(1)知,△ABD,△BDC为等边三角形,∵点E,F分别是AB,AD中点,∴∠BDE=∠DBG=30°,∴DG=BG,在△GDC与△BGC中,,∴△GDC≌△BGC,∴∠DCG=∠BCG,∴CH⊥BD,即CG⊥BD,故本选项错误;(3)∵△AED≌△DFB,∴∠ADE=∠DBF,∴∠BGE=∠BDG+∠DBG=∠BDG+∠ADE=60°,故本选项正确.(4)∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,即∠BGD+∠BCD=180°,∴点B、C、D、G四点共圆,∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°.∴∠BGC=∠DGC=60°.过点C作CM⊥GB于M,CN⊥GD于N.(如图2)则△CBM≌△CDN,(AAS)∴S四边形BCDG=S四边形CMGN,S四边形CMGN=2S△CMG,∵∠CGM=60°,∴GM=CG,CM=CG,∴S四边形CMGN=2S△CMG=2××CG×CG=CG2,故本小题正确;(5)过点F作FP∥AE于P点.(如图3)∵AF=2FD,∴FP:AE=DF:DA=1:3,∵AE=DF,AB=AD,∴BE=2AE,∴FP:BE=1:6=FG:BG,即BG=6GF,∴BF=7GF,故本小题正确.综上所述,正确的结论有(1)(3)(4)(5).故答案为:(1)(3)(4)(5).【点评】此题综合考查了菱形的性质,等边三角形的判定与性质,全等三角形的判定和性质,作出辅助线构造出全等三角形,把不规则图形的面转化为两个全等三角形的面积是解题的关键.三、解答题:本大题共9小题,共72分,解答应写出必要的步骤,文字说明或证明过程.17.(﹣1)2016+2•cos60°﹣(﹣)﹣2+()0.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】根据零指数幂和负整数指数幂的运算法则、特殊角的锐角三角函数值计算即可.【解答】解:运算=1+2×﹣4+1=1+1﹣4+1=﹣1.【点评】本题考查的是实数的运算,掌握零指数幂和负整数指数幂的运算法则、熟记特殊角的锐角三角函数值是解题的关键.18.先化简,再求值:,请你从﹣1≤x<3的范围内选取一个你喜欢的整数作为x的值.【考点】分式的化简求值.【专题】计算题;分式.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,确定出x的值,代入计算即可求出值.【解答】解:原式=÷=•=,由﹣1≤x<3,x为整数,得到x=﹣1,0,1,2,经检验x=﹣1,0,1不合题意,舍去,则当x=2时,原式=4.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.为满足市场需求,新生活超市在端午节前夕购进价格为3元/个的某品牌粽子,根据市场预测,该品牌粽子每个售价4元时,每天能出售500个,并且售价每上涨0.1元,其销售量将减少10个,为了维护消费者利益,物价部门规定,该品牌粽子售价不能超过进价的200%,请你利用所学知识帮助超市给该品牌粽子定价,使超市每天的销售利润为800元.【考点】一元二次方程的应用.【专题】销售问题.【分析】设每个粽子的定价为x元,由于每天的利润为800元,根据利润=(定价﹣进价)×销售量,列出方程求解即可.【解答】解:设每个粽子的定价为x元时,每天的利润为800元.根据题意,得(x﹣3)(500﹣10×)=800,解得x1=7,x2=5.∵售价不能超过进价的200%,∴x≤3×200%.即x≤6.∴x=5.答:每个粽子的定价为5元时,每天的利润为800元.【点评】考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.20.如图,一渔船自西向东追赶鱼群,在A处测得某无名小岛C在北偏东60°方向上,前进2海里到达B 点,此时测得无名小岛C在东北方向上.已知无名小岛周围2.5海里内有暗礁,问渔船继续追赶鱼群有无触礁危险?(参考数据:)【考点】解直角三角形的应用-方向角问题.【分析】根据题意可知,实质是比较C点到AB的距离与10的大小.因此作CD⊥AB于D点,求CD的长.【解答】解:作CD⊥AB于D,根据题意,∠CAD=30°,∠CBD=45°,在Rt△ACD中,AD==CD,在Rt△BCD中,BD==CD,∵AB=AD﹣BD,∴CD﹣CD=2(海里),解得:CD=+1≈2.732>2.5,答:渔船继续追赶鱼群没有触礁危险.【点评】本题考查了解直角三角形的应用,“化斜为直”是解三角形的常规思路,常需作垂线(高),构造直角三角形.原则上不破坏特殊角(30°、45°、60°).21.为全面开展“大课间”活动,某校准备成立“足球”、“篮球”、“跳绳”、“踢毽”四个课外活动小组,学校体工处根据七年级学生的报名情况如图,Rt△ABC中,∠ACB=90°,AD为∠BAC的平分线,以AB上一点O为圆心的半圆经过A、D两点,交AB于E,连接OC交AD于点F.(1)判断BC与⊙O的位置关系,并说明理由;(2)若OF:FC=2:3,CD=3,求BE的长.【考点】直线与圆的位置关系;相似三角形的判定与性质.【分析】(1)连接OD,得到∠DOE=2∠DAE,由角平分线得到∠BAC=2∠DAE,得出∠DOE=∠BAC,得到OD∥AC即可;(2)由OD∥AC一个A型和一个X型相似图形,先求出BD,作出DH⊥AB,利用三角函数求出∠B,进而得出OB,利用角平分线的性质得出DH=3,从而求出圆的半径,即可.【解答】解:(1)BC是⊙O的切线,理由:如图,连接OD,∵AD为∠BAC的平分线,∴∠BAC=2∠BAD,∵∠DOE=2∠BAD,∴∠DOE=∠BAC,∴OD∥AC,∴∠ODB=∠ACB=90°,∵点D在⊙O上,∴BC是⊙O的切线.(2)如图2,连接OD,由(1)知,OD∥AC,∴,∵,∴,∵OD∥AC,∴,∴∵CD=3,∴DB=6,过点D作DH⊥AB,∵AD是∠BAC的角平分线,∠ACB=90°,∴DH=CD=3,在Rt△BDH中,DH=3,BD=6,∴sin∠B==,∴∠B=30°,BO==4,∴∠BOD=60°,在Rt△ODB中,sin∠DOH=,∴,∴OD=2∴BE═OB﹣OE=OB﹣OD=4﹣2=2.【点评】此题是直线和圆的位置关系,主要考查了圆的性质,切线的判定,锐角三角函数,相似三角形,解本题的关键是求出BD.23.为备战2016年里约奥运会,中国女排的姑娘们刻苦训练,为国争光,如图,已知排球场的长度OD为18米,位于球场中线处球网的高度AB为2.43米,一队员站在点O处发球,排球从点O的正上方1.8米的C点向正前方飞出,当排球运行至离点O的水平距离OE为7米时,到达最高点G建立如图所示的平面直角坐标系.(1)当球上升的最大高度为3.2米时,求排球飞行的高度y(单位:米)与水平距离x(单位:米)的函数关系式.(不要求写自变量x的取值范围).(2)在(1)的条件下,对方距球网0.5米的点F处有一队员,他起跳后的最大高度为3.1米,问这次她是否可以拦网成功?请通过计算说明.(3)若队员发球既要过球网,又不出边界,问排球飞行的最大高度h的取值范围是多少?(排球压线属于没出界)【考点】二次函数的应用.【分析】(1)根据此时抛物线顶点坐标为(7,3.2),设解析式为y=a(x﹣7)2+3.2,再将点C坐标代入即可求得;(2)由(1)中解析式求得x=9.5时y的值,与他起跳后的最大高度为3.1米比较即可得;(3)设抛物线解析式为y=a(x﹣7)2+h,将点C坐标代入得到用h表示a的式子,再根据球既要过球网,又不出边界即x=9时,y>2.43且x=18时,y≤0得出关于h的不等式组,解之即可得.【解答】解:(1)根据题意知此时抛物线的顶点G的坐标为(7,3.2),设抛物线解析式为y=a(x﹣7)2+3.2,将点C(0,1.8)代入,得:49a+3.2=1.8,解得:a=﹣,∴排球飞行的高度y与水平距离x的函数关系式为y=﹣(x﹣7)2+;(2)由题意当x=9.5时,y=﹣(9.5﹣7)2+≈3.02<3.1,故这次她可以拦网成功;(3)设抛物线解析式为y=a(x﹣7)2+h,将点C(0,1.8)代入,得:49a+h=1.8,即a=,∴此时抛物线解析式为y=(x﹣7)2+h,根据题意,得:,解得:h≥3.025,答:排球飞行的最大高度h的取值范围是h≥3.025.【点评】此题主要考查了二次函数的应用题,求范围的问题,可以利用临界点法求出自变量的值,再根据题意确定范围.24.小颖在学习“两点之间线段最短”查阅资料时发现:△ABC内总存在一点P与三个顶点的连线的夹角相等,此时该点到三个顶点的距离之和最小.【特例】如图1,点P为等边△ABC的中心,将△ACP绕点A逆时针旋转60°得到△ADE,从而有DE=PC,连接PD得到PD=PA,同时∠APB+∠APD=120°+60°=180°,∠ADP+∠ADE=180°,即B、P、D、E四点共线,故PA+PB+PC=PD+PB+DE=BE.在△ABC中,另取一点P′,易知点P′与三个顶点连线的夹角不相等,可证明B、P′、D′、E四点不共线,所以P′A+P′B+P′C>PA+PB+PC,即点P到三个顶点距离之和最小.【探究】(1)如图2,P为△ABC内一点,∠APB=∠BPC=120°,证明PA+PB+PC的值最小;【拓展】(2)如图3,△ABC中,AC=6,BC=8,∠ACB=30°,且点P为△ABC内一点,求点P到三个顶点的距离之和的最小值.【考点】几何变换综合题.【分析】(1)将△ACP绕点A逆时针旋转60°得到△ADE,可得PC=DE,再证△APD为等边三角形得PA=PD、∠APD=∠ADP=60°,由∠APB=∠BPC=120°知B、P、D、E四点共线,根据两点间线段最短即可得答案;(2)分别以AB、BC为边在△ABC外作等边三角形,连接CD、AE交于点P,先证△ABE≌△DBC可得CD=AE、∠BAE=∠BDC,继而知∠APO=∠OBD=60°,在DO上截取DQ=AP,再证△ABP≌△DBQ可得BP=BQ、∠PBA=∠QBD,从而可证△PBQ为等边三角形,得PB=PQ,由PA+PB+PC=DQ+PQ+PC=CD=AE,Rt△ACE中根据勾股定理即可得AE的长,从而可得答案.【解答】解:(1)如图1,将△ACP绕点A逆时针旋转60°得到△ADE,∴∠PAD=60°,△PAC≌△DAE,∴PA=DA、PC=DE、∠APC=∠ADE=120°,∴△APD为等边三角形,∴PA=PD,∠APD=∠ADP=60°,∴∠APB+∠APD=120°+60°=180°,∠ADP+∠ADE=180°,即B、P、D、E四点共线,∴PA+PB+PC=PD+PB+DE=BE.∴PA+PB+PC的值最小.。

辽宁省朝阳市2019-2020学年中考第一次质量检测数学试题含解析

辽宁省朝阳市2019-2020学年中考第一次质量检测数学试题含解析

辽宁省朝阳市2019-2020学年中考第一次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,已知正五边形 ABCDE 内接于O e ,连结BD ,则ABD ∠的度数是( )A .60︒B .70︒C .72︒D .144︒2.如图,在平面直角坐标系中,△ABC 位于第二象限,点B 的坐标是(﹣5,2),先把△ABC 向右平移4个单位长度得到△A 1B 1C 1,再作与△A 1B 1C 1关于于x 轴对称的△A 2B 2C 2,则点B 的对应点B 2的坐标是( )A .(﹣3,2)B .(2,﹣3)C .(1,2)D .(﹣1,﹣2)3.某市初中学业水平实验操作考试,要求每名学生从物理,化学、生物三个学科中随机抽取一科参加测试,小华和小强都抽到物理学科的概率是( )A .19B .14C .16D .134.如果实数a=11,且a 在数轴上对应点的位置如图所示,其中正确的是( )A .B .C .D .5.一个不透明的盒子里有n 个除颜色外其他完全相同的小球,其中有9个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n 为( )A.20 B.24 C.28 D.306.下列各数是不等式组32123xx+⎧⎨--⎩fp的解是()A.0 B.1-C.2 D.37.下列运算正确的是( )A.4x+5y=9xy B.(−m)3•m7=m10C.(x3y)5=x8y5D.a12÷a8=a48.将一副三角板(∠A=30°)按如图所示方式摆放,使得AB∥EF,则∠1等于()A.75°B.90°C.105°D.115°9.平面直角坐标系中的点P(2﹣m ,12m )在第一象限,则m的取值范围在数轴上可表示为()A .B.C.D.10.多项式ax2﹣4ax﹣12a因式分解正确的是()A.a(x﹣6)(x+2)B.a(x﹣3)(x+4)C.a(x2﹣4x﹣12)D.a(x+6)(x﹣2)11.某校为了了解七年级女同学的800米跑步情况,随机抽取部分女同学进行800米跑测试,按照成绩分为优秀、良好、合格、不合格四个等级,绘制了如图所示统计图. 该校七年级有400名女生,则估计800米跑不合格的约有( )A.2人B.16人C.20人D.40人12.如图是某几何体的三视图及相关数据,则该几何体的全面积是()A.15πB.24πC.20πD.10π二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知x+y=8,xy=2,则x2y+xy2=_____.14.对于任意非零实数a、b,定义运算“⊕”,使下列式子成立:3122⊕=-,3212⊕=,()212510-⊕=,()21525⊕-=-,…,则a⊕b=.15.下面是甲、乙两人10次射击成绩(环数)的条形统计图,通常新手的成绩不太确定,根据图中的信息,估计这两人中的新手是_____.16.如图,点A、B、C 在⊙O 上,⊙O 半径为1cm,∠ACB=30°,则»AB的长是________.17.在我国著名的数学书《九章算术》中曾记载这样一个数学问题:“今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设羊价为x钱,则可列关于x的方程为______.18.一个多边形,除了一个内角外,其余各角的和为2750°,则这一内角为_____度.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)计算:(﹣1)2﹣2sin45°+(π﹣2018)0+|﹣|20.(6分)如图所示,某校九年级(3)班的一个学习小组进行测量小山高度的实践活动.部分同学在山脚A点处测得山腰上一点D的仰角为30°,并测得AD的长度为180米.另一部分同学在山顶B点处测得山脚A点的俯角为45°,山腰D点的俯角为60°,请你帮助他们计算出小山的高度BC.(计算过程和结果都不取近似值)21.(6分)在平面直角坐标系xOy中,二次函数y=ax2+bx+c(a≠0)的图象经过A(0,4),B(2,0),C(-2,0)三点.(1)求二次函数的表达式;(2)在x轴上有一点D(-4,0),将二次函数的图象沿射线DA方向平移,使图象再次经过点B.①求平移后图象顶点E的坐标;②直接写出此二次函数的图象在A,B两点之间(含A,B两点)的曲线部分在平移过程中所扫过的面积.22.(8分)已知圆O的半径长为2,点A、B、C为圆O上三点,弦BC=AO,点D为BC的中点,(1)如图,连接AC、OD,设∠OAC=α,请用α表示∠AOD;(2)如图,当点B为AC n的中点时,求点A、D之间的距离:(3)如果AD的延长线与圆O交于点E,以O为圆心,AD为半径的圆与以BC为直径的圆相切,求弦AE 的长.23.(8分)随着通讯技术迅猛发展,人与人之间的沟通方式更多样、便捷.某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次统计共抽查了_____名学生,最喜欢用电话沟通的所对应扇形的圆心角是____°;(2)将条形统计图补充完整;(3)运用这次的调查结果估计1200名学生中最喜欢用QQ进行沟通的学生有多少名?(4)甲、乙两名同学从微信,QQ,电话三种沟通方式中随机选了一种方式与对方联系,请用列表或画树状图的方法求出甲乙两名同学恰好选中同一种沟通方式的概率.24.(10分)已知:关于x的方程x2﹣(2m+1)x+2m=0(1)求证:方程一定有两个实数根;(2)若方程的两根为x1,x2,且|x1|=|x2|,求m的值.25.(10分)如图,某人在山坡坡脚C处测得一座建筑物顶点A的仰角为63.4°,沿山坡向上走到P处再测得该建筑物顶点A的仰角为53°.已知BC=90米,且B、C、D在同一条直线上,山坡坡度i=5:1.(1)求此人所在位置点P的铅直高度.(结果精确到0.1米)(2)求此人从所在位置点P走到建筑物底部B点的路程(结果精确到0.1米)(测倾器的高度忽略不计,参考数据:tan53°≈43,tan63.4°≈2)26.(12分)小昆和小明玩摸牌游戏,游戏规则如下:有3张背面完全相同,牌面标有数字1、2、3的纸牌,将纸牌洗匀后背面朝上放在桌面上,随机抽出一张,记下牌面数字,放回后洗匀再随机抽出一张.请用画树形图或列表的方法(只选其中一种),表示出两次抽出的纸牌数字可能出现的所有结果;若规定:两次抽出的纸牌数字之和为奇数,则小昆获胜,两次抽出的纸牌数字之和为偶数,则小明获胜,这个游戏公平吗?为什么?27.(12分)孔明同学对本校学生会组织的“为贫困山区献爱心”自愿捐款活动进行抽样调查,得到了一组学生捐款情况的数据.如图是根据这组数据绘制的统计图,图中从左到右各长方形的高度之比为3:4:5:10:8,又知此次调查中捐款30元的学生一共16人.孔明同学调查的这组学生共有_______人;这组数据的众数是_____元,中位数是_____元;若该校有2000名学生,都进行了捐款,估计全校学生共捐款多少元?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】根据多边形内角和定理、正五边形的性质求出∠ABC 、CD=CB ,根据等腰三角形的性质求出∠CBD ,计算即可.【详解】∵五边形ABCDE 为正五边形 ∴()1552180108ABC C ∠=∠=-⨯︒=︒ ∵CD CB = ∴181(8326)010CBD ∠=︒-︒=︒ ∴72ABD ABC CBD ∠=∠-∠=︒故选:C .【点睛】本题考查的是正多边形和圆、多边形的内角和定理,掌握正多边形和圆的关系、多边形内角和等于(n-2)×180°是解题的关键.2.D【分析】首先利用平移的性质得到△A1B1C1中点B的对应点B1坐标,进而利用关于x轴对称点的性质得到△A2B2C2中B2的坐标,即可得出答案.【详解】解:把△ABC向右平移4个单位长度得到△A1B1C1,此时点B(-5,2)的对应点B1坐标为(-1,2),则与△A1B1C1关于于x轴对称的△A2B2C2中B2的坐标为(-1,-2),故选D.【点睛】此题主要考查了平移变换以及轴对称变换,正确掌握变换规律是解题关键.3.A【解析】【分析】作出树状图即可解题.【详解】解:如下图所示一共有9中可能,符合题意的有1种,故小华和小强都抽到物理学科的概率是1 9 ,故选A.【点睛】本题考查了用树状图求概率,属于简单题,会画树状图是解题关键.4.C【解析】11.详解:49 911,4 <<Q由被开方数越大算术平方根越大,49911,4<<即7 311,2 <<故选C.的大小.【分析】【详解】 试题解析:根据题意得9n=30%,解得n=30, 所以这个不透明的盒子里大约有30个除颜色外其他完全相同的小球.故选D .考点:利用频率估计概率.6.D【解析】【分析】求出不等式组的解集,判断即可.【详解】32123x x ①②+>⎧⎨-<-⎩, 由①得:x >-1,由②得:x >2,则不等式组的解集为x >2,即3是不等式组的解,故选D .【点睛】此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.7.D【解析】【分析】各式计算得到结果,即可作出判断.【详解】解:A 、4x+5y=4x+5y ,错误;B 、(-m )3•m 7=-m 10,错误;C 、(x 3y )5=x 15y 5,错误;D 、a 12÷a 8=a 4,正确;故选D .【点睛】分析:依据AB∥EF,即可得∠BDE=∠E=45°,再根据∠A=30°,可得∠B=60°,利用三角形外角性质,即可得到∠1=∠BDE+∠B=105°.详解:∵AB∥EF,∴∠BDE=∠E=45°,又∵∠A=30°,∴∠B=60°,∴∠1=∠BDE+∠B=45°+60°=105°,故选C.点睛:本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.9.B【解析】【分析】【详解】根据第二象限中点的特征可得:2-m0 1m0 2>⎧⎪⎨>⎪⎩,解得:m2 m0<⎧⎨>⎩.在数轴上表示为:故选B.考点:(1)、不等式组;(2)、第一象限中点的特征10.A【解析】试题分析:首先提取公因式a,进而利用十字相乘法分解因式得出即可.解:ax2﹣4ax﹣12a=a(x2﹣4x﹣12)=a(x﹣6)(x+2).故答案为a(x﹣6)(x+2).点评:此题主要考查了提取公因式法以及十字相乘法分解因式,正确利用十字相乘法分解因式是解题关键.11.C【分析】先求出800米跑不合格的百分率,再根据用样本估计总体求出估值.【详解】 400×2201216102=+++人. 故选C .【点睛】考查了频率分布直方图,以及用样本估计总体,关键是从上面可得到具体的值.12.B【解析】解:根据三视图得到该几何体为圆锥,其中圆锥的高为4,母线长为5,圆锥底面圆的直径为6,所以圆锥的底面圆的面积=π×(62)2=9π,圆锥的侧面积=12×5×π×6=15π,所以圆锥的全面积=9π+15π=24π.故选B .点睛:本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的半径等于圆锥的母线长,扇形的弧长等于圆锥底面圆的周长.也考查了三视图.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1【解析】【分析】将所求式子提取xy 分解因式后,把x+y 与xy 的值代入计算,即可得到所求式子的值.【详解】∵x+y=8,xy=2,∴x 2y+xy 2=xy (x+y )=2×8=1.故答案为:1.【点睛】本题考查的知识点是因式分解的应用,解题关键是将所求式子分解因式. 14.22a b ab- 【解析】试题分析:根据已知数字等式得出变化规律,即可得出答案: ∵2231212212-⊕=-=⨯,2232121221-⊕==⨯,()()()222521251025---⊕==-⨯,()()()22522152552--⊕-=-=⨯-,…, ∴22a b a b ab-⊕=。

2019年辽宁省朝阳市建平县实验初中中考数学考试试卷(4月)(解析版)

2019年辽宁省朝阳市建平县实验初中中考数学考试试卷(4月)(解析版)

2019年辽宁省朝阳市建平县实验初中中考数学试卷(4月)一.选择题(共10小题,满分30分,每小题3分)1.﹣的倒数是()A.B.2C.﹣D.﹣22.三个大小相同的正方体搭成的几何体如图所示,其俯视图是()A.B.C.D.3.下列计算正确的是()A.2a2+4a2=6a4B.(a+1)2=a2+1C.(a2)3=a5D.x÷x2=4.下列事件中,是必然事件的是()A.掷一枚硬币,正面朝上B.购买一张彩票,一定中奖C.任意画一个三角形,它的内角和等于180°D.掷两枚质地均匀的正方体骰子,点数之和一定大于75.如图,DE∥BC,AD:DB=2:3,EC=6,则AE的长是()A.3B.4C.6D.106.元宵节又称灯节,我国各地都有挂灯笼的习俗.灯笼又分为宫灯,纱灯、吊灯等.若购买1个宫灯和1个纱灯共需75元,小田用690元购买了6个同样的宫灯和10个纱灯.若设每个宫灯x元,每个纱灯为y元,由题可列二元一次方程组得()A.B.C.D.7.某篮球运动员在连续7场比赛中的得分(单位:分)依次为20,18,23,17,20,20,18,则这组数据的众数与中位数分别是()A.18分,17分B.20分,17分C.20分,19分D.20分,20分8.如图,把长方形纸片ABCD沿对角线折叠,设重叠部分为△EBD,那么,有下列说法:①△EBD 是等腰三角形,EB=ED;②折叠后∠ABE和∠CBD一定相等;③折叠后得到的图形是轴对称图形;④△EBA和△EDC一定是全等三角形.其中正确的是()A.①②③B.①③④C.①②④D.①②③④9.已知二次函数y=ax2+bx+c的y与x的部分对应值如表:下列结论错误的是()A.该函数有最大值B.该函数图象的对称轴为直线x=1C.当x>2时,函数值y随x增大而减小D.方程ax2+bx+c=0有一个根大于310.如图,正方形ABCD的对角线相交于点O,点M,N分别是边BC,CD上的动点(不与点B,C,D重合),AM,AN分别交BD于E,F两点,且∠MAN=45°,则下列结论:①MN=BM+DN;②△AEF∽△BEM;③;④△FMC是等腰三角形.其中正确的有()A.1个B.2个C.3个D.4个二.填空题(共6小题,满分18分,每小题3分)11.58万千米用科学记数法表示为:千米.12.如图,⊙O的两条弦AB和CD相交于点P,若弧AC、弧BD的度数分别为60°、40°,则∠APC的度数为.13.七巧板是一种古老的中国传统智力玩具.如图,在正方形纸板ABCD中,BD为对角线,E,F 分别为BC,CD的中点,AP⊥EF分别交BD,EF于O,P两点,M,N分别为BO,DO的中点,连接MP,NF,沿图中实线剪开即可得到一副七巧板.在剪开之前,随机向正方形ABCD内投一粒米,则米粒落在四边形BMPE内的概率为.14.观察以下一列数:3,,,,,…则第20个数是.15.如图,y=x+b(b为常数)的图象与x轴,y轴分别交于点A,B与反比例函数y=(x>0)的图象交于点C.若AC•BC=4,则k的值为.16.一辆快车从甲地开往乙地,一辆慢车从乙地开往甲地,两车同时出发,设快车离乙地的距离为y1(km),慢车离乙地的距离为y2(km),慢车行驶时间为x(h),两车之间的距离为s(km).y1,y2与x的函数关系图象如图1所示,s与x的函数关系图象如图2所示.则下列判断:①图1中a=3;②当x=h时,两车相遇;③当x=时,两车相距60km;④图2中C点坐标为(3,180);⑤当x=h或h时,两车相距200km.其中正确的有(请写出所有正确判断的序号)三.解答题(共9小题,满分72分)17.(5分)计算:﹣12018+﹣(π﹣3)0﹣|tan60°﹣2|.18.(5分)(1)求不等式组的整数解;(2)先化简,后求值(1﹣)÷,其中a=+1.19.(7分)某学校在倡导学生大课间活动中,随机抽取了部分学生对“我最喜爱课间活动”进行了一次抽样调查,分别从打篮球、踢足球、自由活动、跳绳、其它、等5个方面进行问卷调查(每人只能选一项),根据调查结果绘制了如图的不完整统计图,请你根据图中信息,解答下列问题(1)本次调查共抽取了学生多少人?(2)求本次调查中喜欢踢足球人数,并补全条形统计图;(3)若全校共有中学生1200人,请你估计我校喜欢跳绳学生有多少人.20.(7分)如图,某轮船在海上向正东方向航行,上午8:00在点A处测得小岛O在北偏东60°方向的16km处;上午8:30轮船到达B处,测得小岛O在北偏东30°方向.(1)求轮船从A处到B处的航速;(2)如果轮船按原速继续向东航行,还需经过多少时间轮船才恰好位于小岛的东南方向?21.(8分)有四张正面分别标有数字1,2,﹣3,﹣4的不透明卡片,它们除了数字之外其余全部相同,将它们背面朝上,洗匀后从四张卡片中随机地抽取一张不放回,将该卡片上的数字记为m,再随机地抽取一张,将卡片上的数字记为n.(1)请用画树状图或列表法写出(m,n)所有的可能情况;(2)求所选的m,n能使一次函数y=mx+n的图象经过第一、三、四象限的概率.22.(8分)如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的直线PC垂直,垂足为点D,直线DC与AB的延长线相交于点P,AC平分∠DAB,弦CE平分∠ACB,交AB于点F.(1)求证:直线PC是⊙O的切线;(2)当∠P=30°,AB=10时,求PF的长.23.(10分)某公司设计了一款产品,每件成本是50元,在试销期间,据市场调查,销售单价是60元时,每天的销量是250件,而销售单价每增加1元,每天会少售出5件,公司决定销售单价x(元)不低于60元,而市场要求x不得超过100元.(1)求出每天的销售量y(件)与销售单价x(元)之间的函数关系式,并写出x的取值范围;(2)求出每天的销售利润W(元)与销售单价x(元)之间的函数关系式,并求出当x为多少时,每天的销售利润最大,并求出最大值;(3)若该公司要求每天的销售利润不低于4000元,但每天的总成本不超过6250元,则销售单价x最低可定为多少元?24.(10分)如图,在梯形ABCD中,AD∥BC,BC=18,DB=DC=15,点E、F分别在线段BD、CD上,DE=DF=5.AE的延长线交边BC于点G,AF交BD于点N、其延长线交BC的延长线于点H.(1)求证:BG=CH;(2)设AD=x,△ADN的面积为y,求y关于x的函数解析式,并写出它的定义域;(3)联结FG,当△HFG与△ADN相似时,求AD的长.25.(12分)如图1,抛物线y=﹣x2+bx+c交x轴于点A(,0)和点B,交y轴于点C(0,4),一次函数y=kx+m的图象经过点B,C,点P是抛物线上第二象限内一点.(1)求二次函数和一次函数的表达式;(2)过点P作x轴的平行线交BC于点D,作BC的垂线PM交BC于点M,设点P的横坐标为t,△PDM的周长为l.①求l关于t的函数表达式;②求△PDM的周长的最大值及此时点P的坐标;(3)如图2,连接PC,是否存在点P,使得以P,M,C为顶点的三角形与△CBO相似?若存在,直接写出点P的横坐标;若不存在,请说明理由.2019年辽宁省朝阳市建平县实验初中中考数学试卷(4月)参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】根据乘积为1的两个数互为倒数,直接解答即可.【解答】解:∵﹣×(﹣2)=1,∴﹣的倒数是﹣2,故选:D.【点评】本题主要考查倒数的定义,解决此类题目时,只要找到一个数与这个数的积为1,那么此数就是这个数的倒数,特别要注意:正数的倒数也一定是正数,负数的倒数也一定是负数.2.【分析】根据俯视图的定义和空间想象,得出图形即可.【解答】解:俯视图从左到右分别是,1,个正方形,如图所示:.故选:C.【点评】此题考查了简单组合体的俯视图,关键是对几何体的三种视图的空间想象能力.3.【分析】直接利用合并同类项法则以及幂的乘方运算法则、完全平方公式分别分析得出答案.【解答】解:A、2a2+4a2=6a2,故此选项错误;B、(a+1)2=a2+2a+1,故此选项错误;C、(a2)3=a6,故此选项错误;D、x÷x2=,故此选项正确;故选:D.【点评】此题主要考查了合并同类项以及幂的乘方运算、完全平方公式等知识,正确掌握相关运算法则是解题关键.4.【分析】必然事件就是一定发生的事件,即发生的概率是1的事件.根据定义即可解决.【解答】解:A.掷一枚硬币,正面朝上是随机事件;B.购买一张彩票,一定中奖是随机事件;C.任意画一个三角形,它的内角和等于180°是必然事件;D.掷两枚质地均匀的正方体骰子,点数之和一定大于7是不可能事件;故选:A.【点评】该题考查的是对必然事件的概念的理解;解决此类问题,要学会关注身边的事物,并用数学的思想和方法去分析、看待、解决问题.用到的知识点为:必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.【分析】利用平行线分线段成比例定理得到=,然后利用比例的性质可计算出AE的长.【解答】解:∵DE∥BC,∴=,即=,∴AE=4.故选:B.【点评】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.也考查了平行线分线段成比例定理.6.【分析】设每个宫灯x元,每个纱灯y元,根据“购买1个宫灯和1个纱灯共需75元,购买6个宫灯和10个纱灯共需690元”,即可得出关于x,y的二元一次方程组,此题得解.【解答】解:设每个宫灯x元,每个纱灯y元,依题意,得:.故选:B.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.7.【分析】根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:将数据重新排列为17、18、18、20、20、20、23,所以这组数据的众数为20分、中位数为20分,故选:D.【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两个数的平均数.8.【分析】根据矩形的性质得到∠BAE=∠DCE,AB=CD,再由对顶角相等可得∠AEB=∠CED,推出△AEB≌△CED,根据等腰三角形的性质即可得到结论,依此可得①③④正确;无法判断∠ABE和∠CBD是否相等.【解答】解:∵四边形ABCD为矩形,∴∠BAE=∠DCE,AB=CD,在△AEB和△CED中,,∴△AEB≌△CED(AAS),∴BE=DE,∴△EBD为等腰三角形,∴折叠后得到的图形是轴对称图形,无法判断∠ABE和∠CBD是否相等.故其中正确的是①③④.故选:B.【点评】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.9.【分析】已知函数的三点,代入y=ax2+bx+c分别求出a,b,c对应的值,解出解析式即可以判断【解答】解:依题意,已知点(﹣1,1),(0,2)(2,2)在y=ax2+bx+c上,则有,解得故,二次函数解析式为:选项A,∵a<0,∴该函数有最大值,选项正确选项B,对称轴x==,选项正确选项C,∵a<0,函数先增大后减小,对称轴x=1,∴当x>2时,函数值y随x增大而减小.选项正确选项D,,可解得方程两根,两根均小于3,选项错误故选:D.【点评】此题考查的是二次函数与一元二次方程的应用,二次函数中由a的情况即可判断是否存在最大(小)值.要熟记一元二次方程的求根公式.10.【分析】将△ABM绕点A逆时针旋转90°至△ADM′,根据正方形的性质和且∠MAN=45°可证明MN=BM+DN;根据三角形的内角和得到∠M′+∠AFD=180°,得到∠AFE=∠M′,推出∠AMB=∠AFE,于是得到△AEF∽△BEM,故②正确;根据相似三角形的判定定理得到△AEB∽△FEM,根据相似三角形的性质得到∠EMF=∠ABE=45°,推出△AFM是等腰直角三角形,于是得到;故③正确;根据全等三角形的性质得到AF=CF,等量代换得到△FMC 是等腰三角形,故④正确.【解答】解:将△ABM绕点A逆时针旋转90°至△ADM′,∵∠M′AN=∠DAN+∠MAB=45°,AM′=AM,BM=DM′,∵∠M′AN=∠MAN=45°,AN=AN,∴△AMN≌△AM′N′(SAS),∴MN=NM′,∴M′N=M′D+DN=BM+DN,∴MN=BM+DN;故①正确;∵∠FDM′=135°,∠M′AN=45°,∴∠M′+∠AFD=180°,∵∠AFE+∠AFD=180°,∴∠AFE=∠M′,∵∠AMB=∠M′,∴∠AMB=∠AFE,∵∠EAF=∠EBM=45°,∴△AEF∽△BEM,故②正确;∴,即=,∵∠AEB=∠MEF,∴△AEB∽△FEM,∴∠EMF=∠ABE=45°,∴△AFM是等腰直角三角形,∴;故③正确;在△ADF与△CDF中,,∴△ADF≌△CDF(SAS),∴AF=CF,∵AF=MF,∴FM=FC,∴△FMC是等腰三角形,故④正确;故选:D.【点评】本题考查了相似三角形的判定和性质,全等三角形的判定和性质,正方形的性质,旋转的性质,等腰直角三角形的判定和性质,正确的识别图形是解题的关键.二.填空题(共6小题,满分18分,每小题3分)11.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:根据58万=580000,用科学记数法表示为:5.8×105.故答案为:5.8×105.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.【分析】连接AD,根据三角形的外角的性质、圆周角定理计算即可【解答】解:连接AD,∵∠APC=∠BAD+∠ADC=×(+)的度数,∴∠APC=(40°+60°)=50°.故答案为50°.【点评】本题考查的是圆周角定理、三角形的外角的性质,掌握圆周角定理和三角形的外角的性质定理是解题的关键.13.【分析】设BE=a,根据三角形的中位线的性质得到EF∥BD,EF=BD,推出点P在AC上,得到PE=EF,得到四边形BMPES平行四边形,过M作MH⊥BC于H,于是得到结论.【解答】解:设BE=a,∵E,F分别为BC,CD的中点,∴EF∥BD,EF=BD,BC=2a,∴BD=2a,∵AP⊥EF,∴AP⊥BD,∴BO=OD,∴点P在AC上,∴PE=EF,∴PE=BM,∴四边形BMPE 是平行四边形,∴BO =BD ,∵M 为BO 的中点,∴BM =BD ,∵E 为BC 的中点,∴BC =2a ,∴BD =2a ,∴BM =a ,过M 作MH ⊥BC 于H ,∴MH =BM =a ,∴S 正方形ABCD =4a 2,S 四边形BMPE =a 2,∴米粒落在四边形BMPE 内的概率为=,故答案为:.【点评】本题考查了几何概率,七巧板,正方形的性质,平行四边形的判定和性质,三角形的中位线的性质,正确的识别图形是解题的关键.14.【分析】观察已知数列得到一般性规律,写出第20个数即可.【解答】解:观察数列得:第n 个数为,则第20个数是,故答案为: 【点评】此题考查了规律型:数字的变化类,弄清题中的规律是解本题的关键.15.【分析】作CD⊥x轴于D,则OB∥CD,得出=,进一步得出=,由勾股定理得出AC2=AD2+CD2=2(x+b)2,整理得出,即可得出k=x(x+b)=2.【解答】解:作CD⊥x轴于D,则OB∥CD,∴=,∵y=x+b(b为常数)的图象与x轴,y轴分别交于点A,B,∴A(﹣b,0),B(0,b),∴OA=OB=b,∵△AOB是等腰直角三角形,∴△ADC也是等腰直角三角形,∴AD=CD,∴C(x,x+b),∴k=x(x+b),∴=,∵AC•BC=4,∴BC=,∴=,∴=,∵AC2=AD2+CD2=2(x+b)2,∴=,即,∴x(x+b)=2,∴k=2.故答案为2.【点评】本题属于反比例函数与一次函数的交点问题,涉及的知识有:平行线分线段成比例定理,勾股定理的应用,熟练掌握图象上点的坐标特征是解本题的关键.16.【分析】根据S与x之间的函数关系式可以得到当位于C点时,两人之间的距离增加变缓,此时快车到站,此时a=3,故①正确;根据相遇可知y1=y2,列方程求解可得x的值为,故②正确;分两种情况考虑,相遇前和相遇后两车相距60km,是相遇前的时间,故③不正确;先确定b的值,根据函数的图象可以得到C的点的坐标,故④正确;分两车相遇前和两车相遇后两种情况讨论,即可求得x的值,故⑤正确.【解答】解:∵由S与x之间的函数的图象可知:当位于C点时,两车之间的距离增加变缓,∴由此可以得到a=3,故①正确;设y1=kx+b,将(0,300)、(3,0)代入,得:,解得:,∴y1=﹣100x+300,设y2=mx,将点(5,300)代入,得:5m=300,解得:m=60,∴慢车离乙地的距离y2解析式为:y2=60x;∴当y1=y2时,两车相遇,可得:﹣100x+300=60x,解得:x=h,故②正确;分两种情况考虑,相遇前两车相距60km,﹣100x+300﹣60x=60,解得,h,相遇后两车相距60km,60x﹣(﹣100x+300)=60,解得,h,∴当x=h或h时,两车相距60km,故③不正确;快车每小时行驶=100千米,慢车每小时行驶60千米,两地之间的距离为300千米,∴b=300÷(100+60)=,由函数的图象可以得到C的点的横坐标为3,即快车到达乙地,此时慢车所走的路程为3×60=180千米,∴C点坐标为(3,180),故④正确;分两种情况考虑,相遇前两车相距200km,﹣100x+300﹣60x=200,解得,h,相遇后两车相距60km,60x﹣(﹣100x+300)=200,解得,h,∴当x=h或h时,两车相距200km,故⑤正确.故答案为:①②④⑤.【点评】本题考查了一次函数的应用、二元一次方程组的解法、一次函数解析式的求法;主要根据待定系数法求一次函数解析式,根据图象准确获取信息是解题的关键,要注意要分情况讨论.三.解答题(共9小题,满分72分)17.【分析】直接利用特殊角的三角函数值以及负指数幂的性质和绝对值的性质分别化简得出答案.【解答】解:原式===3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.【分析】(1)分别解每个不等式,再根据“大小小大中间找”确定不等式组的解集,从而得出答案;(2)先根据分式混合运算顺序和运算法则化简原式,再将a的值代入计算可得.【解答】解:(1)解不等式①,得:x≥﹣1,解不等式②,得:x<1,则不等式组的解集为﹣1≤x<1,∴不等式组的整数解为﹣1、0;(2)原式=(﹣)÷=•=,当a=+1时,原式==.【点评】本题主要考查分式的化简求值与解一元一次不等式组,解题的关键是熟练掌握分式的混合运算顺序和运算法则及解不等式的能力.19.【分析】(1)根据打篮球的人数和百分比即可解决问题;(2)求出本次调查中喜欢踢足球人数即可解决问题;(3)总人数乘以样本中喜欢跳绳学生人数所占比例可得;【解答】解:(1)总人数=5÷10%=50(人);(2)本次调查中喜欢踢足球人数=50﹣5﹣20﹣8﹣5=12(人),条形图如图所示:(3)估计我校喜欢跳绳学生有1200×=192(人).【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.【分析】(1)过点O作OD⊥AB,垂足为D,构造直角三角形利用特殊角的三角函数值先求出AB,再利用路程、速度和时间间关系求出轮船的航速;(2)过点O作∠DOE=45°交AD的延长线与点E.求出BE的长,再求轮船航行的时间.【解答】解:(1)如图,过点O作OD⊥AB,垂足为D.有题意知:∠OAD=30°,∠OBD=60°.在Rt△OAD中,∵OA=16,∠OAD=30°,∴OD=8,AD=24.在Rt△OBD中,∵OD=8,∠OBD=60°.∴BD===8,∴AB=AD﹣BD=24﹣8=16(km),∴v==32(km/h)答:轮船从A处到B处的航速为32km/h.(2)过点O作∠DOE=45°交AD的延长线与点E.∵∠DOE=45°,∠ODE=90°,∴DE=OD=8km,BE=BD+DE=8+8(km),∵=(h),答:轮船按原速继续向东航行,还需要航行小时才恰好位于小岛的东南方向.【点评】本题考查的是解直角三角形的应用﹣方向角问题,根据题意作出辅助线,构造出直角三角形,利用锐角三角函数求解是解答此题的关键.21.【分析】(1)根据题意画出树状图,即可求出(m,n)所有的可能情况;(2)求出所选的m,n能使一次函数y=mx+n的图象经过第一、三、四象限的情况数,再根据概率公式列式计算即可.【解答】解:(1)画树状图如下:则(m,n)所有的可能情况是(1,2)(1,﹣3)(1,﹣4)(2,1)(2,﹣3)(2,﹣4)(﹣3,1)(﹣3,2)(﹣3,﹣4)(﹣4,1)(﹣4,2);(﹣4,﹣3).(2)所选的m,n能使一次函数y=mx+n的图象经过第一、三、四象限的情况有:(1,﹣3)(1,﹣4)(2,﹣3)(2,﹣4)共4种情况,则能使一次函数y=mx+n的图象经过第一、三、四象限的概率是=.【点评】此题考查的是用列表法或树状图法求概率和一次函数的性质.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.22.【分析】(1)连接OC,根据角平分线的定义和等腰三角形的性质得到∠DAC=∠ACO,推出AD∥OC,求得OC⊥CD,于是得到直线PC是⊙O的切线;(2)连接AE,BE,根据圆周角定理得到∠ACB=90°,根据角平分线的定义得到∠ACE=∠BCE =45°,求得∠POC=60°,推出∠CAB=∠ACO=30°,证得PC=PF,得到△OBC是等边三角形,求得PB=OB=5,根据相似三角形性质即可得到结论.【解答】(1)证明:连接OC,∵AC平分∠DAB,∴∠DAC=∠BAC,∵OA=OC,∴∠BAC=∠ACO,∴∠DAC=∠ACO,∴AD∥OC,∵AD⊥CD,∴OC⊥CD,∴直线PC是⊙O的切线;(2)解:连接AE,BE,∵AB是⊙O的直径,∴∠ACB=90°,∵CE平分∠ACB,∴∠ACE=∠BCE=45°,∵∠P=30°,∠PCO=90°,∴∠POC=60°,∴∠CAB=∠ACO=30°,∴∠OCF=15°,∴∠PCF=∠PFC=75°,∴PC=PF,∵∠BOC=60°,OC=OB,∴△OBC是等边三角形,∴BC=OB=OC=OP,∴PB=OB=5,∵∠P=∠P,∠PCB=∠PAC,∴△PCB∽△PAC,∴,∴PC==5,∴PF=5.【点评】本题考查了切线的判定定理,相似三角形的判定和性质,等边三角形的判定和性质,圆周角定理,正确的作出辅助线是解题的关键.23.【分析】(1)由“每增加1元,销量减少5件”可知,单价为x元时增加5(x﹣60)件,用增加的件数加上原销量即可表示出销售量y;(2)根据“每天利润=(售价﹣成本)×销售量”列出函数解析式,再对二次函数进行配方即可求出利润的最大值;(3)令W=400求出x的值,再根据抛物线图象写出W≤4000时x的取值范围;再根据总成本不超过5250列出不等式,联立两个不等式即可求出x的取值范围,从而确定x的最小值.【解答】解:(1)y=250﹣5(x﹣60),即y=﹣5x+550.(60≤x≤100);(2)W=(x﹣50)(﹣5x+550),即y=﹣5x2+800x﹣27500.配方得,W=﹣5(x﹣80)2+4500.∵a=﹣5,∴抛物线开口向下,∴当x=80时,y有最大值为4500元;(3)令W=4000时,﹣5(x﹣80)2+4500=4000,解得,x1=70,x2=90.由抛物线图象可知,当W≥4000元时,x的取值范围为70≤x≤90.又∵50(﹣5x+550)≤6250,解得,x≥85.∴x取值范围为85≤x≤90,∴单价x最低可定为85元.【点评】本题考查了一次函数、二次函数的应用,弄清题目中包含的数量关系是解题关键.24.【分析】(1)由AD∥BC知,,结合DB=DC=15,DE=DF=5知,从而得,据此可得答案;(2)作DP⊥BC,NQ⊥AD,求得BP=CP=9,DP=12,由知BG=CH=2x,BH=18+2x,根据得,即,再根据知,由三角形的面积公式可得答案;(3)分∠ADN=∠FGH和∠ADN=∠GFH两种情况分别求解可得.【解答】解:(1)∵AD∥BC,∴,.∵DB=DC=15,DE=DF=5,∴,∴.∴BG=CH.(2)过点D作DP⊥BC,过点N作NQ⊥AD,垂足分别为点P、Q.∵DB=DC=15,BC=18,∴BP=CP=9,DP=12.∵,∴BG=CH=2x,∴BH=18+2x.∵AD∥BC,∴,∴,∴,∴.∵AD∥BC,∴∠ADN=∠DBC,∴sin∠ADN=sin∠DBC,∴,∴.∴.(3)∵AD∥BC,∴∠DAN=∠FHG.(i)当∠ADN=∠FGH时,∵∠ADN=∠DBC,∴∠DBC=∠FGH,∴BD∥FG,∴,∴,∴BG=6,∴AD=3.(ii)当∠ADN=∠GFH时,∵∠ADN=∠DBC=∠DCB,又∵∠AND=∠FGH,∴△ADN∽△FCG.∴,∴,整理得x2﹣3x﹣29=0,解得,或(舍去).综上所述,当△HFG与△ADN相似时,AD的长为3或.【点评】本题是相似三角形的综合问题,解题的关键是掌握平行线分线段成比例定理及相似三角形的判定与性质、分类讨论思想的运用等知识点.25.【分析】(1)把点A、B、C的坐标代入抛物线或直线表达式,即可求解;(2)设点P坐标为(t,﹣t2﹣t+4),令﹣t2﹣t+4=x+4,解得:x=,PD=,利用△PDM∽△CBO,即可求解;(3)分∠PCM=∠CBO、∠PCM=∠BCO,两种情况求解即可.【解答】解:(1)把点A、C的坐标代入抛物线表达式得:,解得:,故抛物线的表达式为:y=﹣x2﹣x+4…①,令y=0,则x=﹣3或,则点B(﹣3,0),把B、C的坐标代入一次函数表达式:y=mx+n得:,解得:,故直线BC的表达式为:y=x+4;(2)由题意得:OB=3,OC=4,则BC=5,设点P坐标为(t,﹣t2﹣t+4),令﹣t2﹣t+4=x+4,解得:x=,∴PD=﹣t=,∵PD∥x轴,∴∠PDM=∠CBO,∵PM⊥BC,∴∠PMD=∠COB=90°,∴△PDM∽△CBO,∴,l=﹣t2﹣t=﹣(t+)2+,∴当t=﹣时,△PDM的周长的最大值为,此时点P(﹣,);(3)存在,理由:①如图,当∠PCM=∠CBO时,即:△PCM∽△CBO,则PC∥AB,令4=﹣x2﹣x+4,解得:x=0或﹣(舍去0);②如图,当∠PCM=∠BCO时,即:△PCM∽△BCO,作点O关于直线BC的对称点D,直线CD与抛物线的另外一个点即为P点,作DH⊥x轴于点H,则OD=2OC sin∠BCO=2OC×=2×4×=,DH=OD sin∠DCH=OD sin∠DOH=OD sin∠BCO=×=,同理可得:OH=,即点D的坐标为(﹣,),将CD坐标代入一次函数表达式并解得:直线CD的表达式为:y=x+4…②,联立①②并解得:x=﹣,故:点P的横坐标为:﹣或﹣.【点评】本题考查的是二次函数综合运用,涉及到三角形相似、点的对称性,解直角三角形等知识,其中(3)②,用点的对称性求解是本题解题的新颖点.。

辽宁省朝阳市2019届九年级数学中考模拟试卷(3月)及参考答案

辽宁省朝阳市2019届九年级数学中考模拟试卷(3月)及参考答案

组别
正确字数x
人数
A
0≤x<8
10
B
8≤x<16
15
C
16≤x<24
25
D
24≤x<32
m
E
32≤x<40
n
根据以上信息完成下列问题:
(1) 统计表中的m=,n=,并补全条形统计图;
(2) 扇形统计图中“C组”所对应的圆心角的度数是;
(3) 已知该校共有900名学生,如果听写正确的字的个数少于24个定为不合格,请你估计该校本次听写比赛不合格的
9. 若0<m<2,则关于x的一元二次方程﹣(x+m)(x+3m)=3mx+37根的情况是( )
A . 无实数根 B . 有两个正根 C . 有两个根,且都大于﹣3m D . 有两个根,其中一根大于﹣m
10. 矩形
中,
, 是 的中点,
顶点与点 重合,将
绕点
的两边分别交
(或它们的延长线)于点
,设
,有下列结论:①
金额/元
5
10
20
50
100
人数
4
16
15
9
6
A . 20.6元和10元 B . 20.6元和20元 C . 30.6元和10元 D . 30.6元和20元
7. 如图, 的半径为5,
是圆上任意两点,且
,以
).若 边绕点 旋转一周,则 边扫过的面积为( )
为边作正方形
(点
在直线 两侧
A. B. C. D. 8. “凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共 互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是( ) A . x(x+1)=210 B . x(x﹣1)=210 C . 2x(x﹣1)=210 D . x(x﹣1)=210

2019年辽宁朝阳中考数学试卷及答案

2019年辽宁朝阳中考数学试卷及答案

【导语】⽆忧考中考频道⼩编提醒参加2019中考的所有考⽣,辽宁朝阳2019年中考将于6⽉中旬陆续开始举⾏,辽宁朝阳中考时间具体安排考⽣可点击进⼊“”栏⽬查询,请⼴⼤考⽣提前准备好准考证及考试需要的⽤品,然后顺顺利利参加本届初中学业⽔平考试,具体如下:为⽅便考⽣及时估分,⽆忧考中考频道将在本次中考结束后陆续公布2019年辽宁朝阳中考数学试卷及答案信息。

考⽣可点击进⼊辽宁朝阳中考频道《、》栏⽬查看辽宁朝阳中考数学试卷及答案信息。

中考科⽬语⽂、数学、英语、物理、化学、政治、历史、地理、⽣物、体育(各地区有所不同,具体以地区教育考试院公布为准。

)考试必读可以在中考前⼀天下午去考场看看,熟悉⼀下考场环境。

确定去考场的⽅式,是坐公共汽车、出租车还是骑⾃⾏车等;确定去考场的⾏车路线。

在校内去考场的路上,⼀旦发⽣意外,要及时求助于监考⽼师或警察。

中考所⽤的2B铅笔、0.5mm⿊⾊墨⽔签字笔、橡⽪、垫板、圆规、尺⼦以及准考证等,都应归纳在⼀起,在前⼀天晚上就准备好,放⼊⼀个透明的塑料袋或⽂件袋中。

涂答题卡的2B铅笔要提前削好(如果是⾃动笔,要防⽌买到假冒产品)。

不要⾃⼰夹带草稿纸,不要把⼿机、⼩灵通等通讯⼯具带⼊考场,如果带了的话⼀定要关机(以免对⾃⼰造成影响)。

有些地区禁⽌携带⼿机等通讯⼯具进⼊考场,否则将以作弊论处。

中考数学⽆忧考为了能让⼴⼤考⽣及时⽅便获取辽宁朝阳中考数学试卷答案信息,特别整理了《2019辽宁朝阳中考数学试卷及答案》发布⼊⼝供⼴⼤考⽣查阅。

数学真题/答案[解析]专题推荐参加2019中考的考⽣可直接查阅各科2019年辽宁朝阳中考试题及答案信息!考试须知⼀、考⽣凭《准考证》(社会⼈员须持准考证及⾝份证)提前15分钟进⼊指定试室(英语科提前20分钟)对号⼊座,并将《准考证》放在桌⼦左上⾓,以便查对。

考⽣除带必要的⽂具,如2B铅笔、⿊⾊字迹的钢笔或签字笔、直尺、圆规、三⾓板、橡⽪外,禁⽌携带任何书籍、笔记、资料、报刊、草稿纸以及各种⽆线通讯⼯具(如寻呼机、移动电话)、电⼦笔记本等与考试⽆关的物品(数学科考试可带指定型号的计算器)。

2019年辽宁省朝阳市中考数学试卷-学生版+解析版(无水印)

2019年辽宁省朝阳市中考数学试卷-学生版+解析版(无水印)

2019年辽宁省朝阳市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)(2019•朝阳)3的相反数是( ) A .3B .3-C .13D .13-2.(3分)(2019•朝阳)如图是由5个相同的小立方块搭成的几何体,这个几何体的左视图是( )A .B .C .D .3.(3分)(2019•朝阳)一元二次方程210x x --=的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根D .无法判断4.(3分)(2019•朝阳)下列调查中,调查方式最适合普查(全面调查)的是( ) A .对全国初中学生视力情况的调查 B .对2019年央视春节联欢晚会收视率的调查 C .对一批飞机零部件的合格情况的调查 D .对我市居民节水意识的调查5.(3分)(2019•朝阳)若点1(1,)A y -,2(2,)B y -,3(3,)C y 在反比例函数8y x=-的图象上,则1y ,2y ,3y 的大小关系是( ) A .123y y y <<B .213y y y <<C .132y y y <<D .321y y y <<6.(3分)(2019•朝阳)关于x ,y 的二元一次方程组2mx y n x ny m +=⎧⎨-=⎩的解是02x y =⎧⎨=⎩,则m n+的值为( ) A .4B .2C .1D .07.(3分)(2019•朝阳)把Rt ABC ∆与Rt CDE ∆放在同一水平桌面上,摆放成如图所示形状,使两个直角顶点重合,两条斜边平行,若25B ∠=︒,58D ∠=︒,则BCE ∠的度数是()A .83︒B .57︒C .54︒D .33︒8.(3分)(2019•朝阳)李老师为了了解本班学生每周课外阅读文章的数量,抽取了7名同学进行调查,调查结果如下(单位:篇/周):,其中有一个数据不小心被墨迹污损.已知这组数据的平均数为4,那么这组数据的众数与中位数分别为( ) A .5,4B .3,5C .4,4D .4,59.(3分)(2019•朝阳)如图,在矩形ABCD 中对角线AC 与BD 相交于点O ,CE BD ⊥,垂足为点E ,5CE =,且2EO DE =,则AD 的长为( )A .B .C .10D .10.(3分)(2019•朝阳)已知二次函数2(0)y ax bx c a =++≠的图象如图所示,现给出下列结论:①0abc >;②930a b c ++=;③248b ac a -<;④50a b c ++>. 其中正确结论的个数是( )A .1B .2C .3D .4二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)(2019•朝阳)2019年5月20日,第15届中国国际文化产业博览交易会落下帷幕.短短5天时间,有7800000人次参观数据7800000用科学记数法表示为 . 12.(3分)(2019•朝阳)因式分解:2122x -+= .13.(3分)(2019•朝阳)从点(1,6)M -,1(2N ,12),(2,3)E -,(3,2)F --中任取一点,所取的点恰好在反比例函数6y x=的图象上的概率为 . 14.(3分)(2019•朝阳)不等式组620240x x -⎧⎨+>⎩…的解集是 .15.(3分)(2019•朝阳)如图,把三角形纸片折叠,使点A 、点C 都与点B 重合,折痕分别为EF ,DG ,得到60BDE ∠=︒,90BED ∠=︒,若2DE =,则FG 的长为 .16.(3分)(2019•朝阳)如图,直线113y x =+与x 轴交于点M ,与y 轴交于点A ,过点A作AB AM ⊥,交x 轴于点B ,以AB 为边在AB 的右侧作正方形1ABCA ,延长1A C 交x 轴于点1B ,以11A B 为边在11A B 的右侧作正方形1112A B C A ⋯按照此规律继续作下去,再将每个正方形分割成四个全等的直角三角形和一个小正方形,每个小正方形的每条边都与其中的一条坐标轴平行,正方形1ABCA ,1112A B C A ,⋯,111n n n n A B C A ---中的阴影部分的面积分别为1S ,2S ,⋯,n S ,则n S 可表示为 .三、解答题(本大题共9小题,共72分,解答应写出必要的文字说明、证明过程或演算步骤) 17.(5分)(2019•朝阳)先化简,再求值:2232624288a a a a a a a ++-÷+--+,其中11|6|()2a -=--.18.(6分)(2019•朝阳)佳佳文具店购进A,B两种款式的笔袋,其中A种笔袋的单价比B种袋的单价低10%.已知店主购进A种笔袋用了810元,购进B种笔袋用了600元,且所购进的A种笔袋的数量比B种笔袋多20个.请问:文具店购进A,B两种款式的笔袋各多少个?19.(7分)(2019•朝阳)某校组织学生开展为贫困山区孩子捐书活动,要求捐赠的书籍类别为科普类、文学类、漫画类、哲学故事类、环保类,学校图书管理员对所捐赠的书籍随机抽查了部分进行统计,并对获取的数据进行了整理,根据整理结果,绘制了如图所示的两幅不完整的统计图.已知所统计的数据中,捐赠的哲学故事类书籍和文学类书籍的数量相同.请根据以上信息,解答下列问题:(1)本次被抽查的书籍有册.(2)补全条形统计图.(3)若此次捐赠的书籍共1200册,请你估计所捐赠的科普类书籍有多少册.20.(7分)(2019•朝阳)有5张不透明的卡片,除正面上的图案不同外,其他均相同.将这5张卡片背面向上洗匀后放在桌面上.(1)从中随机抽取1张卡片,卡片上的图案是中心对称图形的概率为.(2)若从中随机抽取1张卡片后不放回,再随机抽取1张,请用画树状图或列表的方法,求两次所抽取的卡片恰好都是轴对称图形的概率.21.(7分)(2019•朝阳)小明同学在综合实践活动中对本地的一座古塔进行了测量.如图,他在山坡坡脚P处测得古塔顶端M的仰角为60︒,沿山坡向上走25m到达D处,测得古塔顶端M的仰角为30︒.已知山坡坡度3:4i=,即3tan4θ=,请你帮助小明计算古塔的高度ME.(结果精确到0.1m 1.732)≈22.(8分)(2019•朝阳)如图,四边形ABCD为菱形,以AD为直径作O交AB于点F,连接DB交O于点H,E是BC上的一点,且BE BF=,连接DE.(1)求证:DE 是O 的切线.(2)若2BF =,DH =O 的半径.23.(10分)(2019•朝阳)网络销售是一种重要的销售方式.某乡镇农贸公司新开设了一家网店,销售当地农产品.其中一种当地特产在网上试销售,其成本为每千克10元.公司在试销售期间,调查发现,每天销售量()y kg 与销售单价x (元)满足如图所示的函数关系(其中1030)x <….(1)直接写出y 与x 之间的函数关系式及自变量的取值范围.(2)若农贸公司每天销售该特产的利润要达到3100元,则销售单价x 应定为多少元? (3)设每天销售该特产的利润为W 元,若1430x <…,求:销售单价x 为多少元时,每天的销售利润最大?最大利润是多少元?24.(10分)(2019•朝阳)如图,四边形ABCD 是正方形,连接AC ,将ABC ∆绕点A 逆时针旋转α得AEF ∆,连接CF ,O 为CF 的中点,连接OE ,OD .(1)如图1,当45α=︒时,请直接写出OE 与OD 的关系(不用证明). (2)如图2,当4590α︒<<︒时,(1)中的结论是否成立?请说明理由.(3)当360α=︒时,若AB =O 经过的路径长.25.(12分)(2019•朝阳)如图,在平面直角坐标系中,直线26y x =+与x 轴交于点A ,与y 轴交点C ,抛物线22y x bx c =-++过A ,C 两点,与x 轴交于另一点B . (1)求抛物线的解析式.(2)在直线AC 上方的抛物线上有一动点E ,连接BE ,与直线AC 相交于点F ,当12E F B F=时,求sin EBA ∠的值.(3)点N 是抛物线对称轴上一点,在(2)的条件下,若点E 位于对称轴左侧,在抛物线上是否存在一点M ,使以M ,N ,E ,B 为顶点的四边形是平行四边形?若存在,直接写出点M 的坐标;若不存在,请说明理由.2019年辽宁省朝阳市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)(2019•朝阳)3的相反数是( ) A .3B .3-C .13D .13-【解答】解:根据相反数的概念及意义可知:3的相反数是3-. 故选:B .2.(3分)(2019•朝阳)如图是由5个相同的小立方块搭成的几何体,这个几何体的左视图是( )A .B .C .D .【解答】解:从左边看,从左往右小正方形的个数依次为:2,1.左视图如下:故选:C .3.(3分)(2019•朝阳)一元二次方程210x x --=的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根D .无法判断【解答】解:△2(1)4(1)50=--⨯-=>,∴方程有两个不相等的两个实数根.故选:A .4.(3分)(2019•朝阳)下列调查中,调查方式最适合普查(全面调查)的是( )A .对全国初中学生视力情况的调查B .对2019年央视春节联欢晚会收视率的调查C .对一批飞机零部件的合格情况的调查D .对我市居民节水意识的调查【解答】解:A 、对全国初中学生视力情况的调查,适合用抽样调查,A 不合题意;B 、对2019年央视春节联欢晚会收视率的调查,适合用抽样调查,B 不合题意;C 、对一批飞机零部件的合格情况的调查,适合全面调查,C 符合题意;D 、对我市居民节水意识的调查,适合用抽样调查,D 不合题意;故选:C .5.(3分)(2019•朝阳)若点1(1,)A y -,2(2,)B y -,3(3,)C y 在反比例函数8y x=-的图象上,则1y ,2y ,3y 的大小关系是( ) A .123y y y <<B .213y y y <<C .132y y y <<D .321y y y <<【解答】解:点1(1,)A y -、2(2,)B y -、3(3,)C y 在反比例函数8y x =-的图象上,1881y ∴=-=-,2842y =-=-,383y =-, 又8483-<<,321y y y ∴<<.故选:D .6.(3分)(2019•朝阳)关于x ,y 的二元一次方程组2mx y n x ny m +=⎧⎨-=⎩的解是02x y =⎧⎨=⎩,则m n+的值为( ) A .4B .2C .1D .0【解答】解:把02x y =⎧⎨=⎩代入得:222n n m =⎧⎨-=⎩,解得:22m n =-⎧⎨=⎩,则0m n +=, 故选:D .。

辽宁省朝阳市中考数学试卷及答案

辽宁省朝阳市中考数学试卷及答案

辽宁省朝阳市中考数学试卷及答案一、选择题(下列各题的备选答案中,只有一个答案是正确的,将正确答案的序号填入题后的括号内,每小题2 分,共20 分)1.下列二次根式中与是同类二次根式的是()2.若∠ A 是锐角,有sin A =cos A ,则∠ A 的度数是()A.30°B.45°C.60°D.90°3.函数中,自变量x 的取值范围是()A.x ≥-1 B.x >-1 且x ≠2C.x ≠2 D.x ≥-1 且x ≠24.在Rt△ ABC 中,C =90°,∠ A =30°,b=,则此三角形外接圆半径为()5.半径分别为1 cm 和5 cm 的两个圆相交,则圆心距d 的取值范围是()A.d <6 B.4<d <6 C.4≤ d <6 D.1<d <56.面积为2 的△ ABC ,一边长为x ,这边上的高为y ,则y 与x 的变化规律用图象表示大致是()7.已知关于x 的方程x2-2 x +k =0 有实数根,则k 的取值范围是()A.k <1 B.k ≤1 C.k ≤-1 D.k ≥18.如图,PA 切⊙ O 于点A ,PBC 是⊙ O 的割线且过圆心,PA =4,PB =2,则⊙ O 的半径等于()A.3 B.4 C.6 D.89.两个物体A 、B 所受压强分别为P A(帕)与P B(帕)(P A、P B为常数),它们所受压力F (牛)与受力面积S(米2)的函数关系图象分别是射线l A、l B,如图所示,则()A.P A<P B B.P A=P B C.P A>P B D.P A≤ P B10.若x1,x 2是方程2x2-4x+1=0 的两个根,则的值为()A.6 B.4 C.3 D.二、填空题(每小题 2 分,共20 分)11.看图,描出点A 关于原点的对称点A′ ,并标出坐标.12.解方程时,设y=,则原方程化成整式方程是__________.13.计算=__________.14.如图,在Rt△ABC中,∠ C=90°,以AC 所在直线为轴旋转一周所得到的几何体是__________.15.一组数据6,2,4,2,3,5,2,3 的众数是__________.16.已知圆的半径为6.5 cm ,圆心到直线l 的距离为4 cm,那么这条直线l 和这个圆的公共点的个数有_____个.17.要用圆形铁片截出边长为4 cm的正方形铁片,则选用的圆形铁片的直径最小要_____cm.18.圆内两条弦AB和CD 相交于P 点,AB 把CD分成两部分的线段长分别为2和6,那么AP =__________ .19.△ ABC 是半径为2 cm的圆内接三角形,若BC =,则∠A 的度数为_______.20.如图,已知OA、OB 是⊙ O的半径,且OA =5,∠ AOB =15°,AC ⊥ OB 于C ,则图中阴影部分的面积(结果保留π )S =__________.三、(第21 小题6 分,第22、23 小题各10 分,共26 分)21.对于题目“化简并求值:甲.乙两人的解答不同.甲的解答是:乙的解答是:谁的解答是错误的?为什么?22.看图,解答下列问题.(1)求经过A 、B 、C 三点的抛物线解析式;(2)通过配方,求该抛物线的顶点坐标和对称轴;(3)用平滑曲线连结各点,画出该函数图象.23.初中生的视力状况受到全社会的广泛关注,某市有关部门对全市3 万名初中生视力状况进行了一次抽样调查,下图是利用所得数据绘制的频数分布直方图(长方形的高表示该组人数),根据图中提供的信息回答下列问题:(1)本次调查共抽测了解多少名学生;(2)在这个问题中的样本指什么;(3)如果视力在4.9∽5.1(含4.9、 5.1)均属正常,那么全市有多少初中生的视力正常?四、(8 分)24.如图,在小山的东侧A 处有一热气球,以每分钟28 米的速度沿着与垂直方向夹角为30°的方向飞行,半小时后到达C 处,这时气球上的人发现,在A 处的正西方向有一处着火点B ,5 分钟后,在D 处测得着火点B 的俯角是15°,求热气球升空点A 与着火点B 的距离.(结果保留根号,参照数据:sin15°=,cos15°=,)五、(10 分)25.已知:如图,AB 是⊙ O 的半径,C 是⊙ O 上一点,连结AC ,过点C 作直线CD ⊥ AB 于D(AD<DB ),点E 是DB 上任意一点(点D 、B 除外),直线CE 交⊙ O 于点 F ,连结AF 与直线CD 交于点G .(1)求证:AC2=AG · AF ;(2)若点E 是AD (点A 除外)上任意一点,上述结论是否仍然成立?若成立,请画出图形并给予证明;若不成立,请说明理由.六、(10 分)26.随着我国人口增加速度的减慢,小学入学儿童数量有所减少,下表中的数据近似地呈现了某地区入学儿童的变化趋势.试用你所学的函数知识解决下列问题:(1)求入学儿童人数y (人)与年份x (年)的函数关系试;(2)利用所求函数关系式,预测试地区从哪一年起入学儿童的人数不超过1000 人?七、(12 分)27.某书店老板去批发市场购买某种图书,第一次购用100 元,按该书定价2.8 元现售,并快售完.由于该书畅销,第二次购书时,每本的批发价已比第一次高0.5 元,用去了150 元,所购数量比第一次多10 本.当这批书售出4/5时,出现滞销,便以定价的5 折售完剩余的图书,试问该老板第二次售书是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少?八、(14 分)28.已知:如图,⊙ P 与x 轴相切于坐标原点O ,点A (0,2)是⊙ P 与x 轴的交点,点B (,0)在x 轴上,连结BP 交⊙ P 于点C ,连结AC 并延长交际x 轴于点D .(1)求线段BC 的长;(2)求直线AC 的函数解析式;(3)当点B 在x 轴上移动时,是否存在点B,使△BOP 相似于△AOD?若存在,求出符合条件的点的坐标;若不存在,说明理由.参照答案及评分标准一、选择题(每题2 分,共20 分)二、填空题(每题2 分,共20 分)11.A ′ (3,-2)(图略)12.2 y2-5y+2=013.114.圆锥15.216.217.18.3 或419.60°或120°20.注:两个答案的,答出一个给1 分.三、(26 分)21.(6 分)解:乙的解答是错误的.23.(10 分)解:(1)本次调查共抽测了240 名学生(2)样本是指240 名学生的视力(3)全市有7500 名初中生的视力正常四、(8 分)24.解:由解可知AD=(30+5)×28=980 过D 作DH ⊥ BA 于H在Rt△ DAH 中,DH =AD · sin 60°=五、(10 分)25.(1)证明:六、(10 分)(1)解法一:设y =kx+b由于直线y =kx + b 过(2000,2520),(2001,2330)两点∴ y =-190x +382520又因为y =190 x+382520 过点(2002,2140),所以y =-190 x +382520 较好的描述了这一变化趋势.故所求函数关系式为y =-190x +382520.解法二:设y =ax2+bx +c由于y =ax2+bx +c 过(2000,2520),(2001,2330),(2002,2140)三点,解得a =0,b=-190,c =382520,∴y=-190 x +382520因为y =-190 x +382520 过(2000,2520),(2001,2330),(2002,2140)三点,所以y =-190 x+382520 较好的描述了这一变化趋势.故所求函数关系式为y =-190x +382520.(2)设x年时,入学人数为1000 人,由题意得:-190 x +382520=1000 人,解得x =2008答:从2008 年起入学儿童的人数不超过1000 人.七、(12 分)27.。

辽宁省朝阳市2019-2020学年中考数学教学质量调研试卷含解析

辽宁省朝阳市2019-2020学年中考数学教学质量调研试卷含解析

辽宁省朝阳市2019-2020学年中考数学教学质量调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.cos45°的值是( )A .12B .32C .22D .1 2.下列说法正确的是( )A .对角线相等且互相垂直的四边形是菱形B .对角线互相平分的四边形是正方形C .对角线互相垂直的四边形是平行四边形D .对角线相等且互相平分的四边形是矩形3.整数a 、b 在数轴上对应点的位置如图,实数c 在数轴上且满足a c b ≤≤,如果数轴上有一实数d ,始终满足0c d +≥,则实数d 应满足( ).A .d a ≤B .a d b ≤≤C .d b ≤D .d b ≥4.某小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如图的折线图,则符合这一结果的实验最有可能的是( )A .在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B .掷一枚质地均匀的正六面体骰子,向上一面的点数是4C .一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌,抽中红桃D .抛掷一枚均匀的硬币,前2次都正面朝上,第3次正面仍朝上5.如图,等腰直角三角形纸片ABC 中,∠C=90°,把纸片沿EF 对折后,点A 恰好落在BC 上的点D 处,点CE=1,AC=4,则下列结论一定正确的个数是( )①∠CDE=∠DFB ;②BD >CE ;③2CD ;④△DCE 与△BDF 的周长相等.A.1个B.2个C.3个D.4个6.如图,图1是由5个完全相同的正方体堆成的几何体,现将标有E的正方体平移至如图2所示的位置,下列说法中正确的是( )A.左、右两个几何体的主视图相同B.左、右两个几何体的左视图相同C.左、右两个几何体的俯视图不相同D.左、右两个几何体的三视图不相同7.如图所示是由相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上小正方体的个数,那么该几何体的主视图是( )A.B.C.D.8.如图1,在△ABC中,AB=BC,AC=m,D,E分别是AB,BC边的中点,点P为AC边上的一个动点,连接PD,PB,PE.设AP=x,图1中某条线段长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是()A.PD B.PB C.PE D.PC9.-2的绝对值是()A.2 B.-2 C.±2 D.1 210.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为( )A .8×1012B .8×1013C .8×1014D .0.8×101311.如图,在Rt ABC ∆中,90ACB ∠=︒,3tan 3CAB ∠=,3AB =,点D 在以斜边AB 为直径的半圆上,点M 是CD 的三等分点,当点D 沿着半圆,从点A 运动到点B 时,点M 运动的路径长为( )A .π或2πB .2π或3πC .3π或πD .4π或3π 12.已知抛物线y=x 2-2mx-4(m >0)的顶点M 关于坐标原点O 的对称点为M′,若点M′在这条抛物线上,则点M 的坐标为( )A .(1,-5)B .(3,-13)C .(2,-8)D .(4,-20)二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,线段 AB 是⊙O 的直径,弦 CD ⊥AB ,AB=8,∠CAB=22.5°,则 CD 的长等于___________________________.14.一天晚上,小伟帮助妈妈清洗两个只有颜色不同的有盖茶杯,突然停电了,小伟只好把杯盖和茶杯随机地搭配在一起,则颜色搭配正确的概率是_____.15.如图,在△ABC 中,AD 、BE 分别是边BC 、AC 上的中线,AB=AC=5,cos ∠C=45,那么GE=_______.16.已知n >1,M =1n n -,N =1n n-,P =1n n +,则M 、N 、P 的大小关系为 . 17.如图,矩形ABCD 中,AB=2AD ,点A(0,1),点C 、D 在反比例函数y=k x (k >0)的图象上,AB 与x 轴的正半轴相交于点E ,若E 为AB 的中点,则k 的值为_____.18.如图,已知圆O的半径为2,A是圆上一定点,B是OA的中点,E是圆上一动点,以BE为边作正方形BEFG(B、E、F、G四点按逆时针顺序排列),当点E绕⊙O圆周旋转时,点F的运动轨迹是_________图形三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图1,在平面直角坐标系中,一次函数y=﹣1x+8的图象与x轴,y轴分别交于点A,点C,过点A作AB⊥x轴,垂足为点A,过点C作CB⊥y轴,垂足为点C,两条垂线相交于点B.(1)线段AB,BC,AC的长分别为AB=,BC=,AC=;(1)折叠图1中的△ABC,使点A与点C重合,再将折叠后的图形展开,折痕DE交AB于点D,交AC于点E,连接CD,如图1.请从下列A、B两题中任选一题作答,我选择题.A:①求线段AD的长;②在y轴上,是否存在点P,使得△APD为等腰三角形?若存在,请直接写出符合条件的所有点P的坐标;若不存在,请说明理由.B:①求线段DE的长;②在坐标平面内,是否存在点P(除点B外),使得以点A,P,C为顶点的三角形与△ABC全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.20.(6分)在平面直角坐标系xOy中,点A在x轴的正半轴上,点B的坐标为(0,4),BC平分∠ABO 交x轴于点C(2,0).点P是线段AB上一个动点(点P不与点A,B重合),过点P作AB的垂线分别与x轴交于点D,与y轴交于点E,DF平分∠PDO交y轴于点F.设点D的横坐标为t.(1)如图1,当0<t<2时,求证:DF∥CB;(2)当t<0时,在图2中补全图形,判断直线DF与CB的位置关系,并证明你的结论;(3)若点M的坐标为(4,-1),在点P运动的过程中,当△MCE的面积等于△BCO面积的58倍时,直接写出此时点E的坐标.21.(6分)在“双十二”期间,,A B两个超市开展促销活动,活动方式如下:A超市:购物金额打9折后,若超过2000元再优惠300元;B超市:购物金额打8折.某学校计划购买某品牌的篮球做奖品,该品牌的篮球在,A B两个超市的标价相同,根据商场的活动方式:(1)若一次性付款4200元购买这种篮球,则在B商场购买的数量比在A商场购买的数量多5个,请求出这种篮球的标价;(2)学校计划购买100个篮球,请你设计一个购买方案,使所需的费用最少.(直接写出方案)22.(8分)我市某学校在“行读石鼓阁”研学活动中,参观了我市中华石鼓园,石鼓阁是宝鸡城市新地标.建筑面积7200平方米,为我国西北第一高阁.秦汉高台门阙的建筑风格,追求稳定之中的飞扬灵动,深厚之中的巧妙组合,使景观功能和标志功能融为一体.小亮想知道石鼓阁的高是多少,他和同学李梅对石鼓阁进行测量.测量方案如下:如图,李梅在小亮和“石鼓阁”之间的直线BM上平放一平面镜,在镜面上做了一个标记,这个标记在直线BM上的对应位置为点C,镜子不动,李梅看着镜面上的标记,她来回走动,走到点D时,看到“石鼓阁”顶端点A在镜面中的像与镜面上的标记重合,这时,测得李梅眼睛与地面的高度ED=1.6米,CD=2.2米,然后,在阳光下,小亮从D点沿DM方向走了29.4米,此时“石鼓阁”影子与小亮的影子顶端恰好重合,测得小亮身高1.7米,影长FH=3.4米.已知AB⊥BM,ED⊥BM,GF⊥BM,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“石鼓阁”的高AB的长度.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档