2第二章电气主接线3

合集下载

电力工程设计手册一次部分章节汇总

电力工程设计手册一次部分章节汇总
系统枢纽变电所接线(主变压器台数及型式、补偿装置) 二、地区重要变电所接线 三、一般变电所接线(采用简易电器的接线) 四、变电所6-10侧短路电流的限制(变压器分列运行) 2-7 主变压器和发电机中性点接地方式 一、电力网中性点接地方式 二、主变压器中性点接地方式 三、发电机中性点接地方式 2-8 主接线中的设备配置 一、隔离开关的配置 二、接地刀闸或接地器的配置 三、电压互感器的配置 四、电流互感器的配置 五、避雷器的配置 六、阻波器和耦合电容器的配置
电力工程电气设计手册电气一次部分 四级标题及主要内容
第二章 电气主接线
第2-1节 主接线的设计原则
一、主接线的设计依据 ⒈发电厂、变电所在电力系统中的地位和作用 ⒉发电厂、变电所的分期和最终建设规模 ⒊负荷大小和重要性 ⒋系统备用容量大小 二、主接线设计的基本要求 三、大机组超高压主接线可靠性的特殊要求 ㈠对于单机(或扩大单元)容量为300MW及以上的发电厂 ㈡对于500kV变电所(300kV变电所可参照此要求)
页数
45 45 45 45 45 45 45 46 46 46 47 47 47 47 47 47 48 48 48 48 48 48 49 49 50 50 50 51 51 51 51 53 53 53 53 56 57 58 61 61 61 62 62 62 62 63 63 64 65
备 注
65 65 65 67 68 69 69 69 70 71 71 71 71 71 72 72
第2-2节 6~220kV高压配电装置的基本接线及适用范围
6~220kV高压配电装置的接线形式分类 一、单母线接线(优点、缺点、适用范围、接线图) 二、单母线分段接线(优点、缺点、适用范围、接线图) 三、双母线接线(优点、缺点、适用范围、接线图) 四、双母线分段接线(优点、缺点、适用范围、接线图) 五、增设旁路母线或旁路隔离开关的接线 ㈠旁路母线的三种接线方式 ⒈有专用旁路断路器 ⒉母联断路器兼作旁路断路器 ⒊分段断路器兼作旁路断路器 ㈡旁路母线或旁路隔离开关的设置原则 ⒈110kV~220kV配电装置 ⒉35kV~63kV配电装置 ⒊6kV~10kV配电装置 六、变压器线路单元接线(优点、缺点、适用范围、接线图) 七、桥形接线 ㈠内桥形接线(优点、缺点、适用范围、接线图) ㈡外桥形接线(优点、缺点、适用范围、接线图) 八、3~5角形接线(优点、缺点、适用范围、接线图) 九、其它接线 十、6~220kV配电装置接线在220kV/110kV系统中的连接示例 第2-3节 330~500kV超高压配电装置的基本接线及适用范围 一、双母线三分段、四分段带旁路母线接线 二、一台半断路器接线 三、变压器-母线接线 四、3-5角接线、其他接线 2-4 大型电厂的电气主接线 一、发电机-变压器单元接线 二、发电机-变压器扩大单元接线 三、发电机-变压器-线路单元接线 四、一厂两站接线 2-5 中小型电厂的电气主接线 一、发电机的连接方式 二、主变压器的连接方式 三、发电机电压配电装置的接线 四、限流电抗器的连接方式 五、无发电机电压配电装置的中型电厂接线

第二章 电气主接线

第二章 电气主接线

3/2接线
第二章 电气主接线
2-2 电气主接线的基本形式
4、4/3接线:
4/3接线
第二章 电气主接线
2-2 电气主接线的基本形式
5、变压器母线接线:变压器 是高可靠设备,可以直 接接入母线。即使变压 器故障,只断开一条母 线,另一条母线继续工 作。出现采用双母线双 断路器和3/2接线。该 接线可靠性很高,适合 远距离大容量、对系统 稳定和供电可靠性要求 较高的变电所。

第二章 电气主接线
2-3 发电厂和变电所主变压器的选择
4、调压方式: 空载调压:调整范围±5%。只能停电调压。大多数场合,不 适合重要场合。 有载调压:调整范围30%。可以带负载改变电压。用于潮流 交换、联络的变压器。 5、冷却方式:油冷、水冷、风冷。具体有: 油循环自然风冷 油循环强迫风冷 强迫油循环风冷 强迫油循环水冷 强迫油循环导向冷却 水内冷 干式变压器
第二章 电气主接线
2-3 发电厂和变电所主变压器的选择
3、降压变电所: 降压变电所直接面对用户,要留有充分的发展裕量。一般按 照5~10年发展规划考虑。 两台原则。重要的变电所,要考虑两台以上原则。 70%原则。其中一台退出运行时,其它变压器要满足一二类 负荷供电和送出70%以上的容量。 总结:发电厂和变电所变压器容量、台数的选择,要综合考虑多 种因素:电压等级、接线方式、传输容量、接入系统方式、 负荷性质等因素有关。一般的,对于较重要负荷,要考虑2台 以上变压器,容量按70%原则确定。


第二章 电气主接线
2-2 电气主接线的基本形式
对单母线接线的改进方式:单母 线分段和单母线加旁路。 单母线分段:用分段断路器QF1 (或采用隔离开关QS)进行分段。 可减少停电范围,可明显提高供 电可靠性和灵活性。重要用户可 采取双电源进线,满足I、II类供 电负荷。 虽然分段越多,停电影响范围越 小,但使用断路器也越多,增加 投资,运行复杂。一般以2~3段 为宜。

电气主接线

电气主接线

第二章电气主接线第一节电气主接线的基础知识电气主接线是指发电厂、变电站、电力系统中传送电能的通路。

发电厂电气主接线是由各种电气设备通过连接线,按其功能要求组成的接受和分配电能的电路。

它不仅标明了各主要设备的规格、数量,而且反映各设备的作用、连接方式和各回路间的相互联系,构成了发电厂电气部分的主体。

如果用规定的设备文字和图形符号将发电机、变压器、母线、开关、刀闸及测量、保护电器等有关电气设备,按工作顺序排列,详细表示电气设备的组成和连接关系的接线图,称为电气接线图。

电气接线图分为一次接线图和二次接线图。

一次接线图是表示一次设备的连接方式,也称电气主系统图;二次接线图是表示二次设备的连接方式。

发电厂主接线是电气运行人员进行各种操作和事故处理的重要依据之一,因此,发电厂电气运行人员必须熟悉主接线图,了解电路中各种电气设备的用途、性能及维护、检查项目和进行操作的步骤等,以保证安全发供电。

一.对主接线的基本要求电气主接线的连接方式对系统的安全、经济运行和稳定、灵活及配电装置的布置、机电保护和控制方式等有着非常重要的关系。

因此,电气主接线必须满足以下基本要求。

1.运行的可靠性发、供电的安全可靠性,是电力生产和分配的基本要求。

因为电能的发、送、用是在同一时刻进行的,电力系统中任何一个环节故障,都将影响到整体。

所以,主接线若不能保证安全可靠的工作,发电厂就不能完成生产和输送以及保证电能的质量。

主接线的可靠性不是只对发电厂来说的,应考虑到发电厂在系统中的地位、作用以及用户的负荷性质等。

因此,对主接线的可靠性可从以下几个方面分析。

⑴短路器检修时是否影响供电。

⑵设备或线路故障或检修时,停电线路数目的多少和停电时间的长短,以及能否保证对重要用户的供电。

⑶有没有使全厂停电的可能性。

⑷与系统的潮流分布是否合理。

2.具有一定的灵活性主接线不但在正常运行情况下,能根据调度的要求,灵活地改变运行方式,达到调度的目的;而且在各种事故或设备检修时,能尽快地退出设备、切除故障,使停电时间最短、影响范围最小,并且在检修时能保证检修人员的安全。

电气主接线

电气主接线
缺点:每个母线段都相当 于一个单母线,所以仍有 可靠性的低的方面 当母线某分段检修或故 障时,仍必须断开该段母 线上的全部回路。部分用 户供电受到限制和中断。
(一)单母线接线形式
3.单母线(分段)带旁路接线
断路器经过长期运行或者开断一定次数的短路电流之后, 其机械性能和灭弧性能都会下降,必须进行检修以恢复 其性能。一般情况下,该回路必须停电才能检修。 为了解决在检修断路器期间该回路必须停电的问题,可 采用加装“旁路母线”的方法即: 增加一条称为“旁路母线”的母线。该母线由“旁路断 路器”供电。在检修出线断路器时。就可以将该条线路 转移到旁路母线上,旁路断路器就代替出线断路器工作。
一、有汇流母线的基本接线形式
有汇流母线的接线形式可分为两大类: 1:单母线
(一)单母线: 2:单母线分段 3:单母线(分段)带旁路
1:双母线 2:双母线分段 (二)双母线: 3:双母线(分段)带旁路 4:3/2断路器接线
的接线
WB:母线 WL:线路(出线) QS1/QS2:电源隔离开关 QS3:母线侧隔离开关 QS4:线路隔离开关 QF1/QF2:电源断路器 QF3:出线断路器 QS5:接地开关
(一)单母线接线形式
2.单母线分段
为了解决纯粹单母线接线 的缺点,提高母线故障时 供电可靠性,可以用断路 器(分段断路器)将母线 分段,从而形成 单母线分段接线。 如图:
(一)单母线接线形式
2.单母线分段
母线分段的数目取决于 电源的数目和功率、电 网的接线和电气主接线 的工作形式。分段的数 目一般在2—3段(I、 Ⅱ、Ⅲ段)。 引出线在各个母线段上 分配时.应尽量使各分 段的功率平衡。
(一)单母线接线形式(不讲)
(2)单母线分段带旁路 ①专设旁路断路器QFd 正常运行时: 旁路断路器QFp及两侧隔离 开关和每条出线的QSp均断 开.为单母线分段运行 检修出线断路器时: 倒闸操作与前类似。 ·

第二章 常用高压电气设备及电气主接线

第二章 常用高压电气设备及电气主接线

断 路 器 能 通 断 任 何 性 质 电 流 电 路
3、高压断路器的分类
按安装地点分类 屋内式断路器 屋外式断路器 按采用的灭弧介质分类
多油断路器 少油断路器
油断路器(油即作灭弧介质又作绝缘介质) 压缩空气断路器(空气即作灭弧介质又作绝 缘介质,20×105Pa空气压力) 真空断路器(真空的介电强度高) SF6断路器(SF6 即为灭弧介质又为绝缘介质)
2、高压电器的基本技术参数
• • • • • • • • • •
1、额定电压UN(有效值); 3、额定电流IN(有效值); 4、额定开断电流INk (有效值); 5、动稳定电流(峰值耐受电流)IF(有效值); 6、热稳定电流(短时耐受电流) Ik(有效值); 7、燃弧时间trh 8、固有分闸时间tgf 10、合闸时间thz 11、额定短路关合电流INg 12、额定操作顺序
7.真空灭弧法 将开关触头装在真空容器内,产生的电弧(真空电弧)较小,且在电流第 一次过零时就能将电弧熄灭。真空断路器就是利用这种原理来熄灭电弧的。 8.六氟化硫(SF6)灭弧法 SF6气体具有优良的绝缘性能和灭弧性能,绝缘强度约为空气的3倍,而绝 缘强度的恢复速度约比空气快100倍,可极大的提高开关的断流容量和减少 灭弧所需时间。 注:电气设备的灭弧性能往往是衡量其运行可靠性和安全性的重要指 标之一。
各种触头实物图
全球核电站分布图
全球核电站分布图
全球核电站分布图
沸水堆核电站工作原理
沸水堆核电站工作流程是:冷却剂(水)从堆芯下部流进,在沿堆芯上升的过 程中,从燃料棒那里得到了热量,使冷却剂变成了蒸汽和水的混合物,经过汽 水分离器和蒸汽干燥器,将分离出的蒸汽来推动汽轮发电机组发电。
压水堆核电站工作原理

《电气主接线》PPT课件

《电气主接线》PPT课件

5
精选课件
衡量电气主接线可靠性的标志
1)断路器检修时能否不影晌供电;
2)断路器或母线故障以及母线检修时, 尽量减少停运的回路数和停运时间, 并要保证对重要用户的供电;
3)尽量避免发电厂、变电所全部停运的 可能性;
4)大机组、超高压电气主接线应满足可 靠性的特殊要求。
6
精选课件
选择电气主接线可靠性的因素:
8
精选课件
对灵活性和方便性的要求
当需要进行检修时,应能够很方 便地使断路器、母线及继电保护 设备退出运行进行检修,而不致 影响电力网的运行或停止对用户 供电;。
必须能够容易地从初期接线过渡 到最终接线,以满足扩建的要求。
9
精选课件
对经济性的要求
电气主接线的经济性是指: 投资省 占地面积小 电能损耗少
10
精选课件
对经济性的具体要求
应力求简单,以节省断路器、隔离开 关、电流互感器、电压互感器及避雷 器等一次设备的投资;
要尽可能的简化继电保护和二次回路, 以节省二次设备和控制电缆;
应采取限制短路电流的措施,以便选 择轻型的电器和小截面的载流导体;
11
精选课件
对经济性的具体要求
要为配电装置的布置创造条件,以节 约用地和节省有色金属、钢材和水泥 等基建材料;
检修进(出)线断路器(如图中QF2)时, 可利用旁路断路器1QFP代替QF2的工作。
24
精选课件
利用旁路断路器1QFP代替2QF 的操作步骤
(1)合旁路断路器1QFP两侧的隔离开关QS2和QS1; (2)合旁路断路器1QFP ; (3)使旁路母线PW充电,检查PW是否完好; (4)在PW完好的情况下,断开旁路断路器1QFP ; (5)合旁路隔离开关QS3,形成与2QF并联供电的

电力系统的接线

电力系统的接线
第二章 电力系统的接线
第一节 电气主接线 第二节 电力设备及其选择的一般原则 第三节 电力网接线及中性点接地方式 第四节 直流输电
本章重点:电气主接线、电力网 接线及中性点接地方式
电力系统的接线
1
• 无论电力系统在正常工况下运行的经济性, 调度操作的灵活性、方便性,供电的可靠 性,还是系统在故障工况下进行故障隔离、 检修,修复后的供电恢复操作甚至电气设 备的选择等,都与电力系统接线方式密切 相关。
双母线带旁母
– (a)设专用的旁路断路器 – (b)旁路断路器兼作母联断路器 – (c)母联断路器兼作旁路断路器
电力系统的接线
15
第一节 电气主接线(有汇流母线)
一台半断路器接线(3/2接线)
– 每两个回路用三台断路器串成 一串接在两组母线上
• 完整串运行——两组母线和同一 串的三台断路器都投入工作,形 成多环路状供电
– 双母线接线的优点:
• (1)供电可靠——通过两组母线、隔离开关的倒换 操作,可以轮流检修一组母线而不致供电中断;一 组母线故障后能迅速恢复供电,检修任一回路的母
线隔离开关,只停该回路
• (2)调度灵活——各个电源和负荷可以任意分配到 某一组母线上,能灵活地适应系统各种运行方式调
度和潮流变化的需要。
• 合母线隔离开关QS21 • 合线路隔离开关QS22 • 投入断路器QF2
– 切断电路时:
• 断开断路器QF2 • 断线路隔离开关QS22 • 断母线隔离开关QS21
电力系统的接线
第一节 电气主接线(有汇流母线)
6
第一节 电气主接线(有汇流母线)
– 单母线接线的适用范围
• 只适用于可靠性、灵活性要求不高,小容量的配电 装置,若采用成套开关柜可相应地提高可靠性

2电气主接线(3主接线及限制短路电流)

2电气主接线(3主接线及限制短路电流)
1. 单元接线的主变
1) 单元接线中变压器容量
S=(发电机容量-厂用负荷)×1.1
2) 扩大单元接线中变压器容量
尽量采用分裂绕组变压器
按单元接线的原则计算出的两台机容量之和来确定
1.2 具有发电机电压母线接线的主变
选择条件:
1)发电机全部投入运行时,在满足发电机电压供电的最小日负
荷,并扣除厂用负荷后,主变压器应保证能将发电厂全部剩余功 率送入系统。 2)当接在发电机电压母线上最大一台机组检修或者因供热机组 热负荷变动而需要限制本厂出力时,主变压器应能从电力系统倒 送功率,保证发电机电压母线上最大负荷的需要。 3) 当变电所采用两台以上主变时,每台容量的选择应考虑一台
电气主接线及限制短路电流的措施
典型电气主接线分析
火力发电厂电气主接线 水力发电厂电气主接线 变电站电气主接线
限制短路电流的措施 主变压器的选择 电气主接线设计举例
火力发电厂电气主接线
1、地方性火力发电厂
特点:
单机容量和总装机容量都较小,一般都建在负荷中
心附近(城市边缘),因而有大量发电机电压负荷。 所发出的电能有较大部分以发电机电压(10kV)经线 路直接送到附近的用户,或升至35kV送到稍远些的用 户。在满足这些地方负荷后,剩余的电能才升压到 110kV或220kV电压送入系统。在本厂发电机故障或检 修时,可由系统倒送电能给地方负荷。多为热电厂。
损耗大,配电装置复杂。
考虑到制造能力和运输条件时,可以用两台小容
量三相变压器或单相变压器组。
600MW机组和500kV以上的系统,可靠性要求特别高,
应综合考虑,进行技术经济比较来确定,可以采用单 相组成三相变压器。
2 主变型式和结构的选择原则
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

适用:小容量发电厂或变电所; 但可以发展为单母线或双 母线接线。
35
9、角形接线
特点:母线闭合成环形;断路器数目等于回 路数;每回路都与两台断路器相连。 优点:检修任一台断路器都不致中断供电。 具有较高的可靠性和灵活性。 缺点:不便于扩建和电器设备的选择。 适用:最终规模明确的110kV



共九种接线形式 有汇流母线或无汇流母线 单母线或双母线接线 有分段或有带旁路母线接线 灵活性可靠性与投资的经济性
37
第二节 发电厂电气主接线
火力发电厂电气主接线概述 热电厂电气主接线示例 凝汽式火电厂电气主接线示例 水力发电厂的电气主接线概述 中等容量水电厂电气主接线示例 大容量水电厂电气主接线示例
30
a
b
(d)发电机—变压器—线路组成的单元接线,也 称为线路变压器组接线。
(2-11)两台发电机—变压器或分裂绕组变压组 成的扩大单元接线。可减少变压器和断路器的 台数,节省投资和占地面积。
31
8、桥形接线
当只有两台变压器和两条输电线路时,采用 桥形接线,使用的断路器数目最少。 当有三台变压器和三回出线时,采用扩大桥 形接线。 32
22
优点:
可靠性和灵活 性大大提高。
1)可以轮流检修母线,而不中断供电; 2)一组母线故障后,可将接在其上的回路倒 闸到另一组母线上; 3)检修任一回路的母线隔离开关时,只需断 开该回路和与此相连的母线;
23
图2-5 双母线接线 QF─母线联络断路器
4)可用母联断路器代替任一回路的需要检 修的断路器,而只需短时停电;加跨条 5)在个别回路需要单独进行试验时,可以 将其接至备用母线上; 6)当线路利用短路方式熔冰时,可以将其 接至备用母线上; 7)便于扩建。
38
1、火电厂电气主接线概述
选址:
1)煤矿附近的矿口电厂,多为凝汽式火电厂。
不运输燃料、主要是输送电力;
装机容量大,设备年利用小时数高。 2)城市负荷中心(工业中心),多为热电厂。 电力就地消化,只送出剩余电力;
同时兼供热水或蒸汽。
39
接线特点:
1)一般要设机端电压母线,供本地负荷;
图2-14 热电厂主接线
适用:进出线不多,容量不大的中、小型 发电厂、和35~110 kV的变电所较实用,具 有足够的可靠性和灵活性。
20
作业:
1、画一个单母线分段的电气主接线 图。要求进线2回(有两台主变压器), 出线6回。 2、设要对第一条出线的断路器进行 检修停电操作,写出倒闸操作的过程。 要用A3号纸画。 要求一周之内完成。
图2-2 单母线分段接线
但造价增加了!
12
图2-2
单母线分段接线
优点: 1)对重要用户可以从不 同段引出两回馈线,由 两个电源供电; 2)当一段母线发生故障 (或检修),仅停该段 母线,非故障段母线仍 可继续工作。
缺点: 1)当母线或母线隔离开关故障或检修时, 接在该段母线上的回路必须全部停电 ; 2)当任一出线断路器检修时,必须停止该 回路的工作。
3)功率流向: G1、G2设机压母线主要供给地区 负荷,剩余功率通过变压器T1、T2升压送往 系统; G3、G4通过升压直接将电能送入系统。
4)限流措施:为了限制短路电流,出线装有电 抗器,在母线分段处也装设母线电抗器。
43
3、凝汽式火电厂电气主接线示例
T2
MW
作为厂用电备用电源和启动电源
!P38
母线:保证电源并列 工作,又能使任一出 线都可以从两个电源 获得电能。
断路器:具有灭弧功 能,可用来开断或闭 合负荷电流、开断短 路电流。 隔离开关:没有灭弧 功能,开合电流能力 极低,设备检修时起 着明显的隔离作用。
接地开关:在检修设备时 合上,让设备(线路)可 靠接地。
6
L1
L2
L3
L4
QS4
44
接线特点:
1)没有机压母线,其电能主要以升高电压送往系统; 2)发电机G1、G2 分别与变压器接成单元接线未采用封 闭母线,在发电机与变压器之间装设了隔离开关,而 在厂用变压器分支回路装设了断路器; 3)发电机G3、G4 、G5、G6也分别与变压器接成单元接 线,采用分相封闭母线,主回路及厂用分支回路均未 装设隔离开关和断路器; 4) T01至T08为厂用高压变压器,采用低压分裂绕组变 压器; 5) 220kV采用双母线带旁路接线,并且变压器进线回路 亦接入旁路母线; 6)500kV采用一台半断路器接线; 7)两种升高电压级之间采用联络变压器T7。联络变压器 选用三绕组自耦变压器(有载调压)。
21
5、双母线接线
QF:母联断路器 QS1、QS2:母联隔 离开关 W1:工作母线(正 常时带电) W2:备用母线(正 常时不带电)
1)每回出线路都经一台断路器和两组隔离开关分别与两 图2-5 双母线接线 组母线连接; QF─母线联络断路器 2)母线之间通过母线联络断路器QF连接, 3)每一个电源回路也是通过一台断路器和两组隔离开关 与两组母线连接 4)正常运行时,两组母线隔离开关总是一台工作一台备 用。
28
具有较高的供电可靠性和运行调 度灵活性,操作检修方便,但投资 较大,继电保护配置复杂。 适用:大型发电厂和变电所超高压配电装置
注意:同名回路应避免接在同一串上。
29
7、单元接线
a
b
(a)发电机—双绕组变压器组成的单元接线,发 电机出口不设断路器(检修发电机可以停变压器)。 (b) 、(c)发电机—自耦变压器或三绕组变压 器组成的单元接线,为了在发电机停止工作 时,另外两级电网间能保持联系,在发电机 出口应设断路器。
正常运行时, QF2和QS3断开, 旁母不用。
当任一出线断路 器检修时,不中断 该回路供电。
15
操作示例:
不停电检修出 线断路器QF1
1)先合QF2两侧的隔离开关,再合QF2,让W2充电; 2)合上QS3(等电位操作);
3)断开QF1,再打开QS2、QS1;
(即:通过 QF2和QS3向线路L2供电) QF1就可退出检修!
10
改进: 1)单母线分段; 2)单母线带旁路接 线。
适用情况: 1)6~10kV配电装置的出线回路数不 超过5回; 2)35~63kV配电装置的出线回路数 不超过3回; 3)110~220kV配电装置的出线回路 数不超过2回。
11
2、单母线分段接线
用分段断路器QF1 进行分段! 分段数目:2—3; 分段数越多,故障 时停电的范围就越小。
第二章 电气主接线


电气主接线的基本形式 发电厂电气主接线 变电所电气主接线 高压配电网接线方式 低压配电系统接线 工厂供电系统的主接线 建筑配电系统接线 配电装置
1
什么是电气主接线?
电气主接线: 是由高压电器通过连接线,组成接 受和分配电能的电路。 也称为一次接线或电气主系统。
图2-5 双母线接线 QF─母线联络断路器
24
1)倒闸操作比较复杂,在运行中隔离开关作为操 图2-5 双母线接线 作电器,容易发生误操作; QF─母线联络断路器 2)尤其当母线出现故障时,须短时切换较多电源 和负荷;当检修出线断路器时,仍然会使该回 路停电; 3)配电装置复杂,投资较多、经济性差。
QS3 QF2 QS2 W QS1 QF1 G1 G2
补充:
故障时保护跳 闸的概念
7
L1
L2
L3
L4
QS4
QS3 QF2 QS2 W QS1 QF1 G1 G2
倒闸操作原则: 隔离开关相对断路器而 言,“先通后断”。 母线(电源侧)隔离开关相 对线路(负荷侧)隔离开关 而言,“先通后断”。
操作实例:馈线1的运行操作!!!
45
4、水力发电厂的电气主接线概述
接线特点与要求:
1)一般距负荷中心较远,当地负荷很小甚至没 有,电能大多数都是通过高压输电线送入电 力系统;
2)地形比较复杂,接线应力求简单 ;
3)担负系统的调峰、调频、调相等任务,启停 频繁、设备年利用小时数少,其接线应具有 较好的灵活性 ; 4)根据水能利用条件一次确定的,一般不考虑 发展和扩建 。
4
第一节 主接线的基本形式
有汇流母线的接线
单母线、单母线分段 双母线、双母线分段
无汇流母线的接线
单元接线
桥型接线 角型接线
一台半断路器接线 带 旁路母线的接线

5
1、单母线接线
只有一组母线,进出线都并接在这组母线上。
L1 L2 L3 L4 QS4 QS3 QF2 QS2 W QS1 QF1 G1 G2
13
适用:中、小容量发电厂的6~10kV接线和 6~220kV变电所配电装置中。 1)用于6~10kV接线时,每段容量不宜超过 25MW,出线回路过多,影响供电可靠性 ; 2)用于35kV接线时,出线回路数为4~8回 为宜; 3)用于110~220kV接线时,出线回路数为 2~4回为宜。
14
3、单母线带旁路母线接线
送电:先合QS2,再合QS3,最后合QF2 。 停电:先断开QF2,然后断QS3,最后断开QS2 。
!P30
8
L1
L2
L3
L4
QS4
QS3 QF2 QS2 W QS1 QF1 G1 G2
?
9
L1
L2
L3
L4
QS4
QS3 QF2 QS2 W QS1 QF1 G1 G2
优点:简单清晰、设备 少、投资小、运行操作 方便,且有利于扩建 。 缺点:可靠性和灵活 性较差 。 1)当母线或母线隔离开 关故障或检修时,造成 全厂(所)停电; 2)当出线断路器检修时, 必须停止该回路的工作。
46
接线形式:
40
接线特点:
1)一般要设机端电压母线,供本地负荷;
相关文档
最新文档