平面向量的概念及其线性运算优质学案
学案平面向量的基本概念及线性运算PPT演示课件

D.
4 a+
5
3 5
b
【分析】利用角平分线的性质可解出AD与DB的关 系,再利用向量的线性运算求解.
•12
【解析】如图所示,∠1=∠2,
∴
CB BD 1
CA DA 2
∴ BD 1 BA
3
1 (CACB) 1 (ba)
3
3
∴CD=CB+BD=a+ 1 (b-a)= 2 a+ 1 b.
3
3
3
故应选B.
④不正确,如b=0时,则a与c不一定共线.
故应选D.
•8
【评析】 (1)向量是区别于数量的一种量,既有大小, 又有方向,任意两个向量不能比较大小,只可以判断它 们是否相等,但它们的模可以比较大小.
(2)由向量相等的定义可知,对于一个向量,只要不改 变它的大小和方向,它是可以任意平行移动的,因此用 有向线段表示向量时,可以任意选取有向线段的起点, 由此也可得到:任意一组平行向量都可以移到同一条直 线上.
)
A.1 B.2
C.3 D.0
•7
【分析】正确理解向量的有关概念是解决本题的关 键.注意到特殊情况,否定某个命题只要举出一个反例即 可.
【解析】①不正确,向量可以用有向线段表示,但向 量不是有向线段;
②不正确,若a与b中有一个为零向量时,零向量的方向 是不确定的,故两向量方向不一定相同或相反;
③不正确,共线向量所在的直线可以重合,也可以平行;
向量a与b(b≠0)平行的充要条件是 有且只有一个实
数λ, 使得a=λb
.
•6
考点1 向量的有关概念
下列命题中:
①有向线段就是向量,向量就是有向线段;
②向量a与向量b平行,则a与b的方向相同或相反;
平面向量的概念教案导学案 (4)

平面向量的概念一、教学目的1、理解向量的有关概念及向量的几何表示.2、理解共线向量、相等向量的概念.3、正确区分向量平行与直线平行二、教学重点1、理解向量的有关概念及向量的几何表示2、理解共线向量、相等向量的概念三、教学难点1、理解共线向量、相等向量的概念.2、正确区分向量平行与直线平行四、教学过程1.向量的概念定义:既有大小,又有方向的量叫做向量.2.向量的表示(1)有向线段:带有方向的线段叫做有向线段.包含三个要素:起点、方向、长度(2)几何表示:用有向线段表示,此时有向线段的方向就是向量的方向.向量AB的大小就是向量的长度(或称模),记作.⑶字母表示:通常在印刷时,用黑体小写字母a,b,c,…表示向量,书写时,可写成带箭头的小写字母7,~b,T,….共线向量不一定是相等向量,而相等向量一定是共线向量思考尝试1.思考判断(正确的打“V”,错误的打“X”)(1)若a=b,b=c,贝U a=c.()⑵若a〃b,则a与b的方向一定相同或相反.()—>—>⑶若非零向量AB〃CD,那么AB^CD.()(4)向量的模是一个正实数.()2.下列各量中不是向量的是:()A.位移B.力C.速度D.质量3.设e1,e2是两个单位向量,则下列结论中正确的是()A.勺=勺B.勺〃勺C.I e1l=l e2lD.以上都不对4.向量a与任一向量b平行,则a一定是.5._______________________________________________________________ 如图,已知B、C是线段AD的两个三等分点,则与AB相等的向量有.IFF丨ABCD类型1向量的概念例1、给出下列命题:—>—>①若AB=DC,则A、B、C、D四点是平行四边形的四个顶点;—>—>②在口ABCD中,一定有AB=DC;^③a=b,b=c,贝9a=c;④若a〃b,b〃c,则allc.其中所有正确命题的序号为.归纳1.明确向量的长度、方向及零向量、平行向量、相等向量的概念及内涵,是正确判断此题的依据.2.向量的相等具有传递性,但向量的平行不具有传递性,即“若a l b,b l c,则a〃c,”是错误的.当b=0时,a,c可以是任意向量,但若b H0,贝寸必有a〃b,b〃c斗a〃c.问题的关键是注意考虑0.变式训练、在下列说法中,正确的是()A.两个有公共起点且共线的向量,其终点必相同B.模为0的向量与任一非零向量平行C.向量就是有向线段D.两个有公共终点的向量一定是共线向量类型2向量的表示例2、一辆汽车从A点出发向西行驶了100千米到达B点,然后又改变方向向西偏北50°走了200千米到达C点,最后又改变方向,向东行驶了100千米到达D点.⑴作出向量AB,BC,CD;—>(2)求I AD I.归纳1.准确画出向量的方法是先确定向量的起点,再确定向量的方向,然后根据向量的大小确定向量的终点.2.注意事项:有向线段书写时要注意起点和终点的不同;字母表示在书写时不要忘了字母上的箭头.变式训练、一架飞机从A点向西北飞行200km到达B点,再从B点向东飞行100羽km到达C点,再从C点向东偏南30°飞行50羽km到达D点.问D点在A点的什么方向?D点距A点多远?类型3共线向量与相等向量例3、(1)如图所示,在等腰梯形ABCD中:—>—>—>—>—>—>①AB与CD是共线向量;®AB=CD;®AB>CD.以上结论中正确的个数是()A.0B.1C.2D.3(2)下列说法中,正确的序号是.①若AB与CD是共线向量,则A,B,C,D四点必在一条直线上;②零向量都相等;③任一向量与它的平行向量不相等;—>—>④若四边形ABCD是平行四边形,贝i AB=DC;⑤共线的向量,若始点不同,则终点一定不同.迁移探究、(变换条件)在例(1)中若把“梯形ABCD”改为“口ABCD中”呢?归纳1.判断两个向量的关系应围绕向量的模和向量的方向两个方面进行判断.2.相等向量一定是共线向量,但共线向量不一定是相等向量.3.(1)两个向量平行与两条直线平行是两个不同的概念;两个向量平行包含两个向量有相同基线,但两条直线平行不包含两条直线重合.(2)平行(共线)向量无传递性(因为有0).3.向量与数量的区别在于向量有方向而数量没有方向;向量与向量模的区别在于向量的模是指向量的长度,是数量,可以比较大小,但向量不能比较大小.4.任何一个非零向量a都有与之对应的单位向量|0|五、课题练习:见变式训练六、课堂小结:1.明确向量的长度、方向及零向量、平行向量、相等向量的概念及内涵,是正确判断此题的依据.2.向量的相等具有传递性,但向量的平行不具有传递性,即“若a〃b,b〃c,则a〃c,”是错误的.当b=0时,a,c可以是任意向量,但若b丰0,贝寸必有a〃b,b〃c O a〃c.问题的关键是注意考虑0.3.注意事项:有向线段书写时要注意起点和终点的不同;字母表示在书写时不要忘了字母上的箭头.七、教学反思平面向量的概念一、学习目的1、理解向量的有关概念及向量的几何表示.2、理解共线向量、相等向量的概念.3、正确区分向量平行与直线平行二、教学过程1.向量的概念定义:既有,又有的量叫做向量.2.向量的表示⑴有向线段:的线段叫做有向线段•包含三个要素:起点、_、_、_(2)几何表示:用表示,此时有向线段的方向就是向量的方向.向量的大小就是向量的(或称模),记作.⑶字母表示:通常在印刷时,用黑体小写字母a,b,c,…表示向量,书写时,可写成带箭头的小写字母;,b,C,….共线向量不一定是相等向量,而相等向量一定是共线向量m、"一思考尝试1.思考判断(正确的打“厂,错误的打“X”)(1)若a=b,b=c,则a=c・()(2)若allb,则a与b的方向一定相同或相反.()—>—>⑶若非零向量AB I CD,那么AB I CD・()(4)向量的模是一个正实数.()2•下列各量中不是向量的是:()A.位移B.力C.速度D.质量3.设勺,勺是两个单位向量,则下列结论中正确的是()A.e’=e2B.e、lle2C.I e」=l e2lD.以上都不对1212124.向量a与任一向量b平行,则a一定是.5.____________________________________________________________ 如图,已知B、C是线段AD的两个三等分点,则与AB相等的向量有.1111ABCD类型1向量的概念例1、给出下列命题:—>—>①若AB=DC,则A、B、C、D四点是平行四边形的四个顶点;—>—>②在口ABCD中,一定有AB=DC;③若a=b,b=c,则a=c;④若a l b,b l c,则a〃c其中所有正确命题的序号为.归纳1.明确向量的长度、方向及零向量、平行向量、相等向量的概念及内涵,是正确判断此题的依据.2.向量的相等具有传递性,但向量的平行不具有传递性,即“若a l b,b l c,则a〃c,”是错误的.当b=0时,a,c可以是任意向量,但若b H O,则必有a l b,b〃c O a〃c•问题的关键是注意考虑0.变式训练、在下列说法中,正确的是()A.两个有公共起点且共线的向量,其终点必相同B.模为0的向量与任一非零向量平行C.向量就是有向线段D.两个有公共终点的向量一定是共线向量类型2向量的表示例2、一辆汽车从A点出发向西行驶了100千米到达B点,然后又改变方向向西偏北50°走了200千米到达C点,最后又改变方向,向东行驶了100千米到达D—>—>—>—>点.⑴作出向量AB,BC,CD;(2)求AD I.归纳1.准确画出向量的方法是先确定向量的起点,再确定向量的方向,然后根据向量的大小确定向量的终点.2.注意事项:有向线段书写时要注意起点和终点的不同;字母表示在书写时不要忘了字母上的箭头.变式训练、一架飞机从A点向西北飞行200km到达B点,再从B点向东飞行100羽km到达C点,再从C点向东偏南30°飞行50、f2km到达D点.问D点在A点的什么方向?D点距A点多远?类型3共线向量与相等向量例3、(1)如图所示,在等腰梯形ABCD中:—>—>—>—>—>—>①AB与CD是共线向量;®AB=CD;③AB>CD・以上结论中正确的个数是()A.0B.1C.2D.3(2)下列说法中,正确的序号是.①若AB与CD是共线向量,则A,B,C,D四点必在一条直线上;②零向量都相等;③任一向量与它的平行向量不相等;④若四边形ABCD是平行四边形,贝U AB=DC;⑤共线的向量,若始点不同,则终点一定不同.迁移探究、(变换条件)在例(1)中若把“梯形ABCD”改为“^ABCD中”呢?归纳1.判断两个向量的关系应围绕向量的模和向量的方向两个方面进行判断2.相等向量一定是共线向量,但共线向量不一定是相等向量.3.(1)两个向量平行与两条直线平行是两个不同的概念;两个向量平行包含两个向量有相同基线,但两条直线平行不包含两条直线重合.(2)平行(共线)向量无传递性(因为有0).3.向量与数量的区别在于向量有方向而数量没有方向;向量与向量模的区别在于向量的模是指向量的长度,是数量,可以比较大小,但向量不能比较大小.4.任何一个非零向量a都有与之对应的单位向量O i五、课题练习:见变式训练六、课堂小结:1.明确向量的长度、方向及零向量、平行向量、相等向量的概念及内涵,是正确判断此题的依据.2.向量的相等具有传递性,但向量的平行不具有传递性,即“若a〃b,b〃c,则a#c,”是错误的.当b=0时,a,c可以是任意向量,但若b工0,则必有a〃b,HEallc•问题的关键是注意考虑0.3.注意事项:有向线段书写时要注意起点和终点的不同;字母表示在书写时不要忘了字母上的箭头.七、教学反思。
教学设计1:5.1 平面向量的概念与线性运算

5.1平面向量的概念及其线性运算1.向量的有关概念(1)向量:既有大小,又有方向的量叫向量;向量的大小叫做向量的模. (2)零向量:长度为0的向量,其方向是任意的. (3)单位向量:长度等于1个单位的向量.(4)平行向量:方向相同或相反的非零向量,又叫共线向量,规定:0与任一向量共线. (5)相等向量:长度相等且方向相同的向量. (6)相反向量:长度相等且方向相反的向量. 2.向量的线性运算三角形法则平行四边形法则三角形法则 (1)|λa |=|λ||a |;向量a (a≠0)与b 共线的充要条件是存在唯一一个实数λ,使得b =λa .1.作两个向量的差时,要注意向量的方向是指向被减向量的终点;2.在向量共线的重要条件中易忽视“a ≠0”,否则λ可能不存在,也可能有无数个;3.要注意向量共线与三点共线的区别与联系. [试一试]1.(2013·苏锡常镇二调)如下图,在△OAC 中,B 为AC 的中点,若OC =x OA +y OB (x ,y ∈R ),则x -y =________.解析:法一:(直接法)根据图形有⎩⎪⎨⎪⎧OC =OA +AC , AC =2AB ,AB =OB -OA ,所以OC =OA +2(OB -OA ),所以OC =-OA +2OB ,而OC =x OA +y OB,所以⎩⎪⎨⎪⎧ x =-1,y =2,故x -y =-3.法二:(间接法)由B 为AC 的中点得OC +OA =2OB ,所以OC =-OA +2OB ,而OC =x OA +y OB ,所以⎩⎪⎨⎪⎧x =-1,y =2,故x -y =-3.答案:-32.若菱形ABCD 的边长为2,则|AB -CB +CD |=________. 解析:|AB -CB +CD |=|AB +BC +CD |=|AD |=2. 答案:21.向量的中线公式若P 为线段AB 的中点,O 为平面内一点,则OP =12(OA +OB ).2.三点共线等价关系A ,P ,B 三点共线⇔AP =λAB (λ≠0)⇔ OP =(1-t )·OA +t OB (O 为平面内异于A ,P ,B 的任一点,t ∈R )⇔ OP =x OA +y OB (O 为平面内异于A ,P ,B 的任一点,x ∈R ,y ∈R ,x +y =1). [练一练]1.D 是△ABC 的边AB 上的中点,若CD =x BA +y BC ,则x +y =________.解析:∵CD =BD -BC =12BA -BC ,则x =12,y =-1∴x +y =-12.答案:-122.已知a 与b 是两个不共线向量,且向量a +λb 与-(b -3a )共线,则λ=________.解析:由题意知a +λb =k [-(b -3a )],所以⎩⎪⎨⎪⎧λ=-k ,1=3k ,解得⎩⎨⎧k =13,λ=-13.答案:-13考点一向量的有关概念1.①若|a |=|b |,则a =b ;②若A ,B ,C ,D 是不共线的四点,则AB =CD 是四边形ABCD 为平行四边形的充要条件; ③若a =b ,b =c ,则a =c ; ④a =b 的充要条件是|a |=|b |且a ∥b ; ⑤若a ∥b ,b ∥c ,则a ∥c . 其中正确命题的序号是________.解析:①不正确.两个向量的长度相等,但它们的方向不一定相同. ②正确.∵AB =DC ,∴|AB |=|DC |且AB ∥DC ,又A ,B ,C ,D 是不共线的四点,∴四边形ABCD 为平行四边形; 反之,若四边形ABCD 为平行四边形,则AB ∥DC 且|AB |=|DC |,因此,AB =DC . ③正确.∵a =b ,∴a ,b 的长度相等且方向相同, 又b =c ,∴b ,c 的长度相等且方向相同, ∴a ,c 的长度相等且方向相同,故a =c .④不正确.当a ∥b 且方向相反时,即使|a |=|b |,也不能得到a =b ,故|a |=|b |且a ∥b 不是a =b 的充要条件,而是必要不充分条件. ⑤不正确.考虑b =0这种特殊情况. 综上所述,正确命题的序号是②③. 答案:②③.2.设a 0为单位向量,①若a 为平面内的某个向量,则a =|a |a 0;②若a 与a 0平行,则a =|a |a 0;③若a 与a 0平行且|a |=1,则a =a 0.上述命题中,假命题的个数是________.解析:向量是既有大小又有方向的量,a 与|a |a 0的模相同,但方向不一定相同,故①是假命题;若a 与a 0平行,则a 与a 0的方向有两种情况:一是同向,二是反向,反向时a =-|a |a 0,故②③也是假命题.综上所述,假命题的个数是3. 答案:3[备课札记] [类题通法]平面向量中常用的几个结论(1)相等向量具有传递性,非零向量的平行也具有传递性.(2)向量可以平移,平移后的向量与原向量是相等向量.解题时不要把它与函数图像的平移混为一谈.(3)a |a |是与a 同向的单位向量,-a|a |是与a 反向的单位向量.向量的线性运算[典例] (2013·江苏高考)设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC .若DE =λ1AB +λ2AC (λ1,λ2为实数),则λ1+λ2的值为________.[解析] 由题意DE =DB +BE =12AB +23BC =12AB +23(BA +AC )=-16AB +23AC ,所以λ1=-16,λ2=23,即λ1+λ2=12.[答案] 12[备课札记]则λ=________.解析:∵CD =CA +AD ,CD =CB +BD , ∴2CD =CA +CB +AD +BD .又∵AD =2BD ,∴2CD =CA +CB +13AB =CA +CB +13(CB -CA )=23CA +43CB .∴CD =13CA +23CB ,即λ=23.答案:23[类题通法]在向量线性运算时,要尽可能转化到平行四边形或三角形中,运用平行四边形法则、三角形法则,利用三角形中位线、相似三角形对应边成比例等平面几何的性质,把未知向量转化为与已知向量有直接关系的向量来求解. [针对训练]若A ,B ,C ,D 是平面内任意四点,给出下列式子: ①AB +CD =BC +DA ;②AC +BD =BC +AD ; ③AC -BD =DC +AB .其中正确的有________个.解析:①式的等价式是AB -BC =DA -CD ,左边=AB +CB ,右边=DA +DC ,不一定相等;②式的等价式是AC -BC =AD -BD ,AC +CB =AD +DB =AB 成立;③式的等价式是AC -DC =AB +BD ,AD =AD 成立. 答案:2共线向量定理的应用[典例] a 与b 不共线,(1)若AB =a +b ,BC =2a +8b ,CD =3(a -b ), 求证:A ,B ,D 三点共线.(2)试确定实数k ,使k a +b 和a +k b 共线.[解] (1)证明:∵AB =a +b ,BC =2a +8b ,CD =3(a -b ),∴BD =BC +CD =2a +8b +3(a -b )=2a +8b +3a -3b =5(a +b )=5AB . ∴AB ,BD 共线,又∵它们有公共点B ,∴A ,B ,D 三点共线. (2)∵k a +b 与a +k b 共线,∴存在实数λ,使k a +b =λ(a +k b ),即k a +b =λa +λk b .∴(k -λ)a =(λk -1)b .∵a ,b 是不共线的两个非零向量, ∴k -λ=λk -1=0,∴k 2-1=0.∴k =±1.[备课札记] [类题通法]1.共线向量定理及其应用(1)可以利用共线向量定理证明向量共线,也可以由向量共线求参数的值.(2)若a ,b 不共线,则λa +μb =0的充要条件是λ=μ=0,这一结论结合待定系数法应用非常广泛.2.证明三点共线的方法若AB =λAC ,则A 、B 、C 三点共线. [针对训练]已知a ,b 不共线,OA =a ,OB =b ,OC =c ,OD =d ,OE =e ,设t ∈R ,如果3a =c,2b =d ,e =t (a +b ),是否存在实数t 使C ,D ,E 三点在一条直线上?若存在,求出实数t 的值,若不存在,请说明理由.解:由题设知,CD =d -c =2b -3a ,CE =e -c =(t -3)a +t b ,C ,D ,E 三点在一条直线上的充要条件是存在实数k ,使得CE =k CD ,即(t -3)a +t b =-3k a +2k b , 整理得(t -3+3k )a =(2k -t )b .因为a ,b 不共线,所以有⎩⎪⎨⎪⎧t -3+3k =0,t -2k =0,解之得t =65.故存在实数t =65使C ,D ,E 三点在一条直线上.[课堂练通考点]1.给出下列命题:①两个具有公共终点的向量,一定是共线向量. ②两个向量不能比较大小,但它们的模能比较大小. ③λa =0(λ为实数),则λ必为零.④λ,μ为实数,若λa =μb ,则a 与b 共线. 其中错误的命题的有________个.解析:①错误,两向量共线要看其方向而不是起点或终点.②正确,因为向量既有大小,又有方向,故它们不能比较大小,但它们的模均为实数,故可以比较大小.③错误,当a =0时,不论λ为何值,λa =0.④错误,当λ=μ=0时,λa =μb =0,此时,a 与b 可以是任意向量. 答案:32.如下图,已知AB =a ,AC =b ,BD =3DC ,用a ,b 表示AD ,则AD =________.解析:∵CB =AB -AC =a -b ,又BD =3DC ,∴CD =14CB =14(a -b ),∴AD =AC +CD =b +14(a -b )=14a +34b .答案:14a +34b3.(2013·苏锡常镇二调)已知点P 在△ABC 所在的平面内,若2PA +3PB +4PC =3AB ,则△P AB 与△PBC 的面积的比值为________.解析:因为2PA +3PB +4PC =3AB ,所以2PA +3PB +4PC =3PB -3PA , 即5PA +4PC =0,所以△P AB 与△PBC 的面积的比为P A ∶PC =4∶5. 答案:454.(2014·“江南十校”联考)如下图,在△ABC 中,∠A =60°,∠A 的平分线交BC 于D ,若AB =4,且AD =14AC +λAB (λ∈R ),则AD 的长为________.解析:因为B ,D ,C 三点共线,所以有14+λ=1,解得λ=34,如下图,过点D 分别作AC ,AB 的平行线交AB ,AC 于点M ,N ,则AN =14AC ,AM =34AB ,经计算得AN =AM =3,AD =3 3.答案:335.在▱ABCD 中,AB =a ,AD =b ,AN =3NC ,M 为BC 的中点,则MN =________(用a ,b 表示).解析:由AN =3NC 得4AN =3AC =3(a +b ),AM =a +12b ,所以MN =34(a +b )-⎝⎛⎭⎫a +12b =-14a +14b . 答案:-14a +14b6.设点M 是线段BC 的中点,点A 在直线BC 外,BC 2=16,|AB +AC |=|AB -AC |,则|AM |=________.解析:由|AB+AC|=|AB-AC|可知,AB⊥AC,则AM为Rt△ABC斜边BC上的中线,因此,|AM|=12|BC|=2.答案:2。
平面向量的概念及线性运算(优质课)教案

1.6平面向量的基本概念与线性运算(优质课)教案教学目标:1、了解向量、向量的相等、共线向量等概念;2、掌握向量、向量的相等、共线向量等概念.3、熟练掌握向量的线性运算法则:加法法则,减法法则,数乘法则.教学过程:*创设情境兴趣导入如图7-1所示,用100N①的力,按照不同的方向拉一辆车,效果一样吗?图7-1一、平面向量的概念:1、平面向量:在数学与物理学中,有两种量.只有大小,没有方向的量叫做数量(标量),例如质量、时间、温度、面积、密度等.既有大小,又有方向的量叫做向量(矢量),例如力、速度、位移等.平面上带有指向的线段(有向线段)叫做平面向量,线段的指向就是向量的方向,线段的长度表示向量的大小.如图7-2所示,有向线段的起点叫做平面向量的起点,有向线段的终点叫做平面向量的终点.以A为起点,B为终点的向量记作AB.也可以使用小写英文字母,印刷用黑体表示,记作a;手写时应在字母上面加箭头,记作a.BaA图7-22、向量的模长:向量的大小叫做向量的模.向量a,AB的模依次记作a,AB.3、零向量:长度为0的向量叫做零向量,其方向是任意的.4、单位向量:长度等于1个单位长度的向量叫做单位向量.5、平行向量:方向相同或相反的非零向量叫做平行向量.平行向量又称为共线向量,任一组平行向量都可以移到同一直线上.规定:0与任一向量平行.6、 相等向量:长度相等且方向相同的向量叫做相等向量.7、相反向量:与向量a 长度相等且方向相反的向量叫做a 的相反向量.规定零向量的相反向量仍是零向量.二、平面向量的基本运算:一般地,λa +μb 叫做a , b 的一个线性组合(其中λ,μ均为系数).如果l =λa +μ b ,则称l 可以用a ,b 线性表示.向量的加法、减法、数乘运算都叫做向量的线性运算.1、三角形法则:位移AC 叫做位移AB 与位移BC 的和,记作AC =AB +BC .一般地,设向量a 与向量b 不共线,在平面上任取一点A (如图7-6),依次作AB =a , BC =b ,则向量AC 叫做向量a 与向量b 的和,记作a +b ,即 a +b =AB +BC =AC (7.1)求向量的和的运算叫做向量的加法.上述求向量的和的方法叫做向量加法的三角形法则. 2、平行四边形法则:如图7-9所示, ABCD 为平行四边形,由于AD =BC ,根据三角形法则得AB +AD =AB +BC =AC这说明,在平行四边形ABCD 中, AC 所表示的向量就是AB 与AD 的和.这种求和方法叫做向量加法的平行四边形法则.平行四边形法则不适用于共线向量,可以验证,向量的加法具有以下的性质: (1)a +0 = 0+a = a ; a +(−a )= 0; (2)a +b =b +a ;图7-7ACBaba +bab图7-9ADCB(3)(a +b )+ c = a +(b +c ). 3、平面向量减法法则:与数的运算相类似,可以将向量a 与向量b 的负向量的和定义为向量a 与向量b 的差.即a −b = a +(−b ).设a =OA ,b =OB ,则()= OA OB OA OB OA BO BO OA BA −=+−+=+=.即 OA OB −=BA (7.2)观察图7-13可以得到:起点相同的两个向量a 、 b ,其差a -b 仍然是一个向量,叫做a 与b 的差向量,其起点是减向量b 的终点,终点是被减向量a 的终点.一般地,实数λ与向量a 的积是一个向量,记作λa ,它的模为||||||a a λ=λ (7.3)若||λ≠a 0,则当λ>0时,λa 的方向与a 的方向相同,当λ<0时,λa 的方向与a 的方向相反.由上面定义可以得到,对于非零向量a 、b ,当0λ≠时,有 λ⇔=a b a b ∥ (7.4) 一般地,有 0a = 0,λ0 = 0 .数与向量的乘法运算叫做向量的数乘运算,容易验证,对于任意向量a , b 及任意实数λμ、,向量数乘运算满足如下的法则:()()111=−=−a a a a , ;()()()()2a a a λμλμμλ== ;()()3a a a λμλμ+=+ ;()()a b a b λλλ+=+4 .aAa -bBbO图7-13题型1 平面向量的基本概念 例1 给出下列六个命题:① 两个向量相等,则它们的起点相同,终点相同; ② 若|a |=|b |,则a =b ;③ 若AB →=DC →,则A 、B 、C 、D 四点构成平行四边形; ④ 在ABCD 中,一定有AB →=DC →;⑤ 若m =n ,n =p ,则m =p ; ⑥ 若a ∥b ,b ∥c ,则a ∥c .其中错误的命题有________.(填序号) 答案:①②③⑥解析:两向量起点相同,终点相同,则两向量相等;但两相等向量,不一定有相同的起点和终点,故①不正确;|a |=|b |,由于a 与b 方向不确定,所以a 、b 不一定相等,故②不正确;AB →=DC →,可能有A 、B 、C 、D 在一条直线上的情况,所以③不正确;零向量与任一向量平行,故a ∥b ,b ∥c 时,若b =0,则a 与c 不一定平行,故⑥不正确.例2 在平行四边形ABCD 中(图7-5),O 为对角线交点. (1)找出与向量DA 相等的向量; (2)找出向量DC 的负向量; (3)找出与向量AB 平行的向量.分析 要结合平行四边形的性质进行分析.两个向量相等,它们必须是方向相同,模相等;两个向量互为负向量,它们必须是方向相反,模相等;两个平行向量的方向相同或相反.解 由平行四边形的性质,得 (1)CB =DA ;(2)BA =DC −,CD DC =−; (3)BA //AB ,DC //AB ,CD //AB .练习:1. 如图,∆ABC 中,D 、E 、F 分别是三边的中点,试写出ADCB图7-5O(1)与EF 相等的向量;(2)与AD 共线的向量.2.如图,O 点是正六边形ABCDEF 的中心,试写出 (1)与OC 相等的向量; (2)OC 的负向量; (3)与OC题型2 向量的线性表示例3 一艘船以12 km/h 的速度航行,方向垂直于河岸,已知水流速度为5 km/h ,求该船的实际航行速度.解 如图7-10所示,AB 表示船速,AC 为水流速度,由向量加法的平行四边形法则,AD 是船的实际航行速度,显然22AD AB AC =+=22125+=13.又512tan =∠CAD ,利用计算器求得6723CAD '∠≈︒1. 即船的实际航行速度大小是13km/h ,其方向与河岸线(水流方向)的夹角约6723'︒.*例4 用两条同样的绳子挂一个物体(图7-11).设物体的重力为k ,两条绳子与垂线的夹角为θ,求物体受到沿两条绳子的方向的拉力1F 与2F 的大小.分析 由于两条同样的绳子与竖直垂线所成的角都是θ,所以12F F =.解决问题不考虑其它因素,只考虑受力的平衡,所以12F F k +=−.解 利用平行四边形法则,可以得到1212cos F F F k +==θ,所以12cos k F =θ.练习:1. 如图,已知a ,b ,求a +b .F AD BE C(练习题第1题图EFAB C DO (图1-8)第2题图 A BDC图7-10F 1F 2kθ 图7-112.填空(向量如图所示):(1)a +b =_____________ ,答案:→AC (2)b +c =_____________ ,答案:→BD (3)a +b +c =_____________ .答案:→AD 3.计算:(1)AB +BC +CD ; (2)OB +BC +CA . 答案:(1)→AD (2)→OA例5 已知如图7-14(1)所示向量a 、b ,请画出向量a -b .解 如图7-14(2)所示,以平面上任一点O 为起点,作OA =a ,OB =b ,连接BA ,则向量BA 为所求的差向量,即BA = a -b . 练习:1.填空:(1)AB AD −=_______________,答案:→DABbOaAba(1)(2)图7-14(图1-15)bbaa(1)(2)第1题图(2)BC BA −=______________,答案:→AC (3)OD OA −=______________.答案:→AD2.如图,在平行四边形ABCD 中,设AB = a ,AD = b ,试用a , b 表示向量AC 、BD 、DB .解:AC =a+b ,BD =b-a,DB =a -b例6 在平行四边形ABCD 中,O 为两对角线交点如图7-16,AB =a ,AD =b ,试用a , b 表示向量AO 、OD .分析 因为12AO AC =,12OD BD =,所以需要首先分别求出向量AC 与BD . 解 :AC =a +b ,BD =b −a , 因为O 分别为AC ,BD 的中点,所以 1122==AO AC (a +b )=12a +12b ,OD =12BD =12(b −a )=−12a +12b .练习:1. 计算:(1)3(a −2 b )-2(2 a +b );(2)3 a −2(3 a −4 b )+3(a −b ).解:(1)3(a −2 b )-2(2 a +b )=3a -6b-4a-2b=4 b-a (2)3 a −2(3 a −4 b )+3(a −b )=-11b2.设a , b 不共线,求作有向线段OA ,使OA =12(a +b ). 解:如图所示。
平面向量的概念及其线性运算导学案3

主备人:申江丽课型:新授课课题:平面向量的概念及其线性运算学习目标:1 理解平面向量的概念 2 理解两个向量相等的含义 3 理解向量的几何表示. 学习重点、难点:理解向量及其几何意义学法指导:自主探究、合作交流教学流程:一、基础自查(预习并完成5分钟)二、基础练习(自主探究完成5分钟)1.下列命题正确的是()A.零向量是唯一没有方向的向量B.平面内的单位向量有且仅有一个C.a与b是共线向量,b与c是平行向量,则a与c是方向相同的向量D.相等的向量必是共线向量2.下面命题中的真命题是()A.若|a|>|b|,则a>bB.若|a|=|b|,则a=bC.若a=b,则a与b共线D.若a≠b,则a一定不与b共线三、典型例题(分组展示完成20分钟)例1 给出下列五个命题:①两个向量相等,则它们的起点相同,终点相同;②若|a|=|b|,则a=b;④若m =n ,n =p ,则m =p ;⑤若a ∥b ,b ∥c ,则a ∥c .其中不正确的个数是 ( )A.2B.3C.4D.5例2 如图,在△OAB 中,延长BA 到C ,使AC =BA ,在OB 上取点D ,使DB =13OB.设OA →=a ,OB →=b ,用a ,b 表示向量OC →,DC →.四、当堂检测(10分钟)1.已知下列命题:①如果非零向量a 与b 的方向相同或相反,那么a +b 的方向必与a 、b 中的一个方向相同;②在△ABC 中,必有AB →+BC →+CA →=0;③若AB →+BC →+CA →=0,则A 、B 、C 为一个三角形的三个顶点;④若a 与b 均为非零向量,则|a +b |与|a |+|b |一定相等.其中真命题的个数为 ( )A .0B .1C .2D .32.若OP →=OA →+λ(AB →+AC →),λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的________心.五、课后小结:六、课后作业: 限时规范训练1、2、3、4、12、13。
《平面向量的概念与线性运算》导学案

平面向量的概念与线性运算知识梳理:1向量的有关概念1向量:既有,又有的量叫向量;通常记为;长度为的向量是零向量,记作:;的向量,叫单位向量2平行向量或共线向量记作:;规定:零向量与任何向量3相等向量:4相反向量:2向量加法与减法1向量加法按法则或法则;向量加运算律:交换律:;结合律:2向量减法作法:3实数与向量的积1实数λ与向量a的积是一个向量,记作λa,它的长度与方向规定如下:长度:方向:2.运算律4共线定理:5平面向量基本定理:6基底:二、题型探究探究一:平面向量的基本概念例1.给出下列命题:a b a b AB DC =a b b c a c a b a b a b a b b c a cAB DC =||||AB DC =//AB DC //AB DC ||||AB DC =AB DC =a b a b b c b c a c a c a b a b a b a b a b a b b 00a a a a 0a a a a 0a a 0a a a 0a 1a a 0a a 0a a 0a a a 0a BA a BCb a b OE BF BD FD a b BA BC BA AO BO +=+=BO a b OE BO a b BF BO OF BO BA a b a a b BD BC CD +BC BO +b a b a b FD BC BA -b a a b a b a b BM CN =AM AC CM =+BN =和B 、AP AM BP BN BA BP AP =-BA BC CA =+=4,5AP AM ==4:1 三、方法提升1、向量的线性运算可以结合图形,利用三角形法则或平行四边形法则,特别是有向线段表示向量运算时,要利用“首尾相接”或“起点相同”来化简;2、证明三点共线问题,可用向量共线定理来解决。
四、反思感悟b a O FE DC B A。
平面向量的概念及其线性运算学案

平面向量的概念及其线性运算导学案邛崃二中秦家德考纲解读:1、了解向量的实际背景,理解平面向量的概念和两个向量相等的含义,理解向量的几何表示。
2、掌握向量的加分、减法的运算,并理解其几何意义。
3、掌握向量数乘的运算及其几何意义,理解两个向量共线的含义。
4、了解向量线性运算的性质及其几何意义。
考情剖析:从近几年的高考试题来看,向量的线性运算,共线问题是高考的热点,尤其向量的线性运算出现的频率较高,多以选择题,填空题的形式出现,属于中低档题。
回归教材,夯实基础复习教材《必修4》第80页至89页然后填空:1.向量的有关概念两向量平行与两直线(或线段)平行有何不同?2. 向量的线性运算交换律:+=a b(2)结合律:++=a b c)a b -=运算律)a =)a =μ)a +b =3.共线向量定理向量 a (a ≠0)与 b 共线的充要条件是存在唯一一个实数λ,使得_______________.思考探究2:如果||||a b a b +=-,你能给出以a ,b 邻边的平行四边形的形状吗?典型例题:题型一:平面向量的概念辨析 (2013年上海高考题改编)探究提高:(1)正确理解向量的相关概念及其含义是解题的关键。
(2)相等向量具有传递性,非零向量的平行也具有传递性。
(3)共线向量即为平行向量,它们均与起点无关。
(4)向量可以平移,平移后的向量与原向量是相等向量.解题时,不要把它与函数图象移动混为一谈。
(5)非零向量a 与||a a 的关系是:||a a 是a 方向上的单位向量。
【例1】给出下列命题: ①若|a |=|b |,则a =b ;②若A ,B ,C ,D 是不共线的四点,则AB →=DC →是四边形ABCD 为平行四边形的充要条件; ③若a =b ,b =c ,则a =c ;④a =b 的充要条件是|a |=|b |且a ∥b . 其中正确的序号是________.变式训练1:题型二:向量的线性运算 (教材P89例7改编)【例2】在△ABC 中,D , E 分别为BC , AC 边上的中点, G 为BE 上一点,且GB =2GE , 设AB →=a , AC →=b ,试用a , b 表示AD →, AG →.探究提高:(1)解题的关键在于搞清构成三角形的三个问题间的相互关系,能熟练地找出图形中的相等向量,并能熟练运用相反向量将加减法相互转化.(2)(2)用几个基本向量表示某个向量问题的基本技巧:①观察各向量的位置;②寻找相应的三角形或多边形;③运用法则找关系;④化简结果. (3)变式训练2:(2013年陕西高考题改编)在△ABC 中,E ,F 分别为AC ,AB 的中点,BE 与CF 相交于G 点,设AB →=a ,AC →=b ,试用a ,b 表示AG →.判断下列命题是否正确,不正确的请说明理由. (1)若向量a 与b 同向,且|a|>|b|,则a>b ;(2)若|a|=|b|,则a 与b 的长度相等且方向相同或相反; (3)若|a|=|b|,且a 与b 方向相同,则a =b ;(4)由于零向量的方向不确定,故零向量不与任意向量平行; (5)若向量a 与向量b 平行,则向量a 与b 的方向相同或相反;(6)若向量AB →与向量CD →是共线向量,则A ,B ,C ,D 四点 在一条直线上;(7)起点不同,但方向相同且模相等的几个向量是相等向量;(8)任一向量与它的相反向量不相等. 答案:题型三:平面向量共线问题(教材P89例6改编)【例3】 设两个非零向量a 与b 不共线,(1)若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ), 求证:A , B , D三点共线;(2)试确定实数k ,使ka +b 和a +kb 共线.探究提高:(1)证明三点共线问题,可用向量共线解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.(2)向量,a b 共线是指存在不全为零的实数1λ,2λ,使120a b λλ+=成立;若120a b λλ+=当且仅当120λλ==时成立,则向量,a b 不共线。
《4.1第一节 平面向量的概念及其线性运算》 学案

学习过程复习预习1.我们已经学习过位移、速度、力等,你能总结出它们的特点吗?特点为________________________________.2.在学习三角函数线时,我们已经学习过有向线段了,你还记得吗?所谓有向线段就是________________________,三角函数线都是_____________.知识讲解考点1 向量的有关概念考点2 向量的线性运算考点3 共线向量定理向量a(a≠0)与b共线的充要条件是存在唯一一个实数λ,使得b=λa.例题精析【例题1】【题干】设a0为单位向量,①若a为平面内的某个向量,则a=|a|a0;②若a与a0平行,则a=|a|a0;③若a与a0平行且|a|=1,则a=a0.上述命题中,假命题的个数是()A.0 B.1C.2 D.3【答案】D【解析】向量是既有大小又有方向的量,a与|a|a0的模相同,但方向不一定相同,故①是假命题;若a与a0平行,则a与a0的方向有两种情况:一是同向,二是反向,反向时a=-|a|a0,故②③也是假命题.综上所述,假命题的个数是3.【例题2】【题干】如图,在△OAB中,延长BA到C,使AC=BA,在OB上取点D,使DB=13OB.设OA=a,OB=b,用a,b表示向量OC,DC.【解析】OC=OB+BC=OB+2BA=OB+2(OA-OB) =2OA-OB=2a-b.DC=OC-OD=OC-23OB=(2a-b)-2 3b=2a-53b.【例题3】【题干】已知a,b不共线,OA=a,OB=b,OC=c,OD=d,OE=e,设t∈R,如果3a=c,2b=d,e=t(a+b),是否存在实数t使C,D,E三点在一条直线上?若存在,求出实数t的值,若不存在,请说明理由.【解析】由题设知,CD =d -c =2b -3a ,CE =e -c =(t -3)a +t b ,C ,D ,E 三点在一条直线上的充要条件是存在实数k ,使得CE =k CD ,即(t -3)a +t b =-3k a +2k b ,整理得(t -3+3k )a =(2k -t )b .因为a ,b 不共线,所以有⎩⎪⎨⎪⎧t -3+3k =0,t -2k =0, 解之得t =65.故存在实数t =65使C ,D ,E 三点在一条直线上.课堂运用【基础】1.如图,已知AB=a,AC=b,BD=3DC,用a,b表示AD,则AD=()A.a+34b B.14a+34bC.14a+14b D.34a+14b2.已知向量p=a|a|+b|b|,其中a、b均为非零向量,则|p|的取值范围是()A.[0,2] B.[0,1] C.(0,2] D.[0,2]3.(2013·保定模拟)如图所示,已知点G是△ABC的重心,过G作直线与AB,AC两边分别交于M,N两点,且AM =x AB,AN=y AC,则x·yx+y的值为()A.3 B.1 3C.2 D.1 2【巩固】4.在▱ABCD中,AB=a,AD=b,AN=3NC,M为BC的中点,则MN=________(用a,b表示).5.(2013·淮阴模拟)已知△ABC和点M满足MA+MB+MC=0.若存在实数m使得AB+AC=m AM成立,则m =________.【拔高】6.如图所示,在五边形ABCDE中,点M、N、P、Q分别是AB、CD、BC、DE的中点,K和L分别是MN和PQ的中点,求证:KL=14AE.7.设两个非零向量e1和e2不共线.(1)如果AB=e1-e2,BC=3e1+2e2,CD=-8e1-2e2,求证:A、C、D三点共线;(2)如果AB=e1+e2,BC=2e1-3e2,CD=2e1-k e2,且A、C、D三点共线,求k的值.课程小结(1)向量共线的充要条件中要注意“a≠0”,否则λ可能不存在,也可能有无数个.(2)证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线;另外,利用向量平行证明向量所在直线平行,必须说明这两条直线不重合.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解析:①中,若 a≠0,b=0,则不存在实数 λ,使得 a=λb, ①不正确;②中,若 b=0,则 a=0,两个零向量共线,若 b≠0, 根据共线向量定理知 a,b 共线,②正确;③中,只有当 a=b=0 时,对任意 λ 恒有 a=λb,③正确.
答案:②③
课堂探究· 双向交度相等,但它们的方向不一 → → → → → → 定相同.②正确.∵AB=DC,∴|AB|=|DC|且AB∥DC.又 A,B, C,D 是不共线的四点,∴四边形 ABCD 为平行四边形;反之, → → → → 若四边形 ABCD 为平行四边形,则AB∥DC且|AB|=|DC|,因此, → → AB=DC.③正确.∵a=b,∴a,b 的长度相等且方向相同,又 b =c,∴b,c 的长度相等且方向相同,∴a,c 的长度相等且方向
解析:根据零向量的定义可知①正确;根据单位向量的定义 可知,单位向量的模相等,但方向不一定相同,故两个单位向量 → → 不一定相等,故②错误;向量AB与BA互为相反向量,故③错误.
答案:A
知识点二 向量的线性运算
→ 2.D 是△ ABC 的边 AB 上的中点,则向量CD等于( → 1→ A.-BC+ BA 2 → 1→ B.-BC- BA 2 → 1→ C.BC- BA 2 → 1→ D.BC+ BA 2
给出下列命题: ①若|a|=|b|,则 a=b; → → ②若 A, B, C, D 是不共线的四点, 则AB=DC是四边形 ABCD 为平行四边形的充要条件; ③若 a=b,b=c,则 a=c; ④a=b 的充要条件是|a|=|b|且 a∥b. 其中正确命题的序号是( A.②③ ) D.①④
B.①② C.③④
(2)向量是既有大小又有方向的量,a 与|a|a0 的模相同,但方 向不一定相同,故①是假命题;若 a 与 a0 平行,则 a 与 a0 的方 向有两种情况:一是同向,二是反向,反向时 a=-|a|a0,故②③ 也是假命题.综上所述,假命题的个数是 3.
【答案】 (1)C (2)D
(1)两个向量不能比较大小,只可以判断它们是否相等,但它 们的模可以比较大小; (2)大小与方向是向量的两个要素, 分别是向量的代数特征与 几何特征; (3)向量可以自由平移, 任意一组平行向量都可以移到同一直 线上.
相同,故 a=c.④不正确.当 a∥b 且方向相反时,即使|a|=|b|, 也不能得到 a=b,故|a|=|b|且 a∥b 不是 a=b 的充要条件,而是 必要不充分条件.综上所述,正确命题的序号是②③.故选 A.
答案:A
知识点二
平面向量的线性运算
方向 1 平面向量的线性运算 → 1→ → → 【例 2】 如图, 在直角梯形 ABCD 中, DC= AB, BE=2EC, 4 → → → 且AE=rAB+sAD,则 2r+3s=( )
考点一
平面向量的概念
a 【例 1】 (1)设 a,b 都是非零向量,下列四个条件中,使 |a| b = 成立的充分条件是( |b| A.a=-b C.a=2b )
B.a∥b D.a∥b 且|a|=|b|
(2)设 a0 为单位向量, 下列命题中: ①若 a 为平面内的某个向 量,则 a=|a|· a0;②若 a 与 a0 平行,则 a=|a|a0;③若 a 与 a0 平 行且|a|=1,则 a=a0.假命题的个数是( A.0 C.2 B.1 D.3 )
→ → 解析:由AB=λa+b,AC=a+μb(λ,μ∈R)及 A,B,C 三点
λ=t, → → 共线得AB=tAC, 所以 λa+b=t(a+μb)=ta+tμb, 即可得 1=tμ,
所以 λμ=1.故选 D.
答案:D
5.下列结论: ①若 a,b 共线,则一定存在实数 λ,使得 a=λb; ②若存在实数 λ,使得 a=λb,则 a,b 共线; ③若对任意实数 λ 恒有 a=λb,则 a=b=0; 其中正确结论的序号是________.
全国名校高考数学复习优质学案、专题汇编(附详解)
第一节 平面向量的概念及其线性运算
知识梳理· 自主学习01
课堂探究· 双向交流02
课时作业
知识梳理· 自主学习01
课前热身 稳固根基
知识点一
向量的有关概念
1.向量:既有大小又有 方向 的量叫做向量,向量的大小 叫做向量的 模. 2.零向量:长度为
)
解析:如图,
答案:A
3.(必修 4P92 习题 2.2B 组第 5 题改编)在平行四边形 ABCD → → → → 中,若|AB+AD|=|AB-AD|,则四边形 ABCD 的形状为____. → → → → → → → 解析: 如图,因为 AB+ AD= AC , AB- AD= DB ,所以 |AC |
→ =|DB|.由对角线长相等的平行四边形是矩形可知,四边形 ABCD 是矩形.
答案:矩形
知识点三 共线向量定理 向量 a(a≠0)与 b 共线的 充要 使得 b=λa. 条件是存在唯一一个实数 λ,
→ → 4.已知 a,b 是不共线的向量,AB=λa+b,AC=a+μb(λ, μ∈R),那么 A,B,C 三点共线的充要条件是( A.λ+μ=2 C.λμ=-1 B.λ-μ=1 D.λμ=1 )
a b 【解析】 (1)因为向量 的方向与向量 a 相同,向量 的方 |a| |b| a b 向与向量 b 相同,且 = ,所以向量 a 与向量 b 方向相同,故 |a| |b| a 2b b a 可排除选项 A,B,D.当 a=2b 时, = = ,故 a=2b 是 = |a| |2b| |b| |a| b 成立的充分条件. |b|
0 的向量,其方向是任意的.
3.单位向量:长度等于 1 个单位 的向量.
4.平行向量:方向相同或 相反 的非零向量,又叫共线向 量.规定:0 与任一向量共线. 5.相等向量:长度相等且方向 相同 的向量. 6.相反向量:长度相等且方向 相反 的向量.
1.给出下列命题:①零向量的长度为零,方向是任意的; → → ②若 a,b 都是单位向量,则 a=b;③向量AB与BA相等.则所有 正确命题的序号是( A.① C.①③ ) B.③ D.①②