离散数学 匹配和点独立集共73页

合集下载

《离散数学图论》课件

《离散数学图论》课件
最短路径问题
实现方法:使用 队列数据结构, 将起始节点入队, 然后依次处理队 列中的每个节点, 直到找到目标节
点或队列为空
Dijkstra算法和Prim算法
Dijkstra算法:用于 求解单源最短路径问 题,通过不断更新最 短路径来寻找最短路 径。
Prim算法:用于求解 最小生成树问题,通过 不断寻找最小权重的边 来构建最小生成树。
图的矩阵表示
邻接矩阵的定义和性质
定义:邻接矩阵是一个n*n的矩阵,其 中n是图的顶点数,矩阵中的元素表示 图中顶点之间的连接关系。
性质:邻接矩阵中的元素只有0和1, 其中0表示两个顶点之间没有边相连, 1表示两个顶点之间有一条边相连。
应用:邻接矩阵可以用于表示图的连通 性、路径长度等信息,是图论中常用的 表示方法之一。
图像处理:优化图像分割, 提高图像质量
物流配送:优化配送路径, 降低配送成本
社交网络:优化社交网络 结构,提高用户活跃度
感谢您的观看
汇报人:PPT
数学:用于图论、组合数 学、代数拓扑等领域
物理学:用于量子力学、 统计力学等领域
生物学:用于蛋白质结构、 基因调控等领域
社会科学:用于社会网络 分析、经济模型等领域
图的基本概念
图的定义和表示方法
图的定义:由节点和边组成的数学结构,节点表示对象,边表示对象之间的关系
节点表示方法:用点或圆圈表示 边表示方法:用线或弧线表示 图的表示方法:可以用邻接矩阵、邻接表、关联矩阵等方式表示
顶点和边的基本概念
顶点:图中的基本元素,表示一个对象或事件 边:连接两个顶点的线,表示两个对象或事件之间的关系 度:一个顶点的度是指与其相连的边的数量 路径:从一个顶点到另一个顶点的边的序列 连通图:图中任意两个顶点之间都存在路径 强连通图:图中任意两个顶点之间都存在双向路径

第5章 匹配与独立集

第5章 匹配与独立集
图G应满足什么条件才有完美匹配?这是我们关心的主要问 题。 本节先考虑G是二部图的情形(Hall定理),然后考虑一般 图的情形(Tutte定理)。对这些定理有许多不同的证明。 Hall定理是组合数学中最基本的定理之一。它有各种表达形 式,这里给出其图论形式。
2.
3.
4.
返回 结束
第1节 匹 配
返回 结束
第1节 匹 配
设G是一个图,
4
M⊆E(G) , 满足:对∀ei , ej∈M, ei 与 ej 在G中不相 邻, 则称 M 是G的一个匹配(matching) 。 = uv , 其两端点u和v称为是M饱和点 (saturated vertex) ,反之称为非饱和点(unsaturated vertex) 。 均有 | M′|≤| M | , 则称M是G的一个最大 匹配(maximum matching) 。 number),记为 α′(G)。
返回 结束
第1节 匹 配
定理5.1.2
13
( Tutte定理, Tutte,1947)
设图G有完美匹配M。
图G有完美匹配的充要条件是对∀S⊂V (G),O(G\ S)≤| S |。
证明:必要性
对∀S⊂V (G),若G\ S无奇分支,则O(G\ S) = 0; 否则,设 G1 ,G2 , ……,Gn 是G\ S 的所有奇分支。 注意每个Gi 中至少有一个顶点 ui 在M 下与S中的某个顶点vi 配对( i = 1,2,……,n),(因Gi 是奇分支,M是完美匹配)。
思考:该实例问题的数学模型如何建立?
返回 结束
第1节 匹 配

g1
男生 认识的女生 b1
3
b1 b2 b3 b4
g1,g4,g5 g1 g2,g3,g4 g2,g4

离散数学完整版课件全套ppt教学教程最全整套电子讲义幻灯片(最新)

离散数学完整版课件全套ppt教学教程最全整套电子讲义幻灯片(最新)
(3)至于p为0即“我期终考了年级不是前 10”时,无论q为1或为0,即无论"我老妈 奖励1000元"或不奖励,都不能说老妈的 话是假的,故善意的认为pq为1均为1
1.1 命题及联结词
定义1.5双条件:当p与q值相同时,pq为1,不同 为0。 称p当且仅当q
“普通老师赚了100万当且仅当他 中了100万的彩票”, 普通老师赚了100万 普通老师买彩票中了100万大奖
故pq为0
1.1 命题及联结词
定义1.4条件式当p是1 ,q是0时,pq为0,即 10为0,其他情况为1。 p称为前件,q称为后件
(1)当p为1即“我期终考了年级前10”
q为0即“我老妈没有奖励1000元” 这时老妈的话为假,即pq为0 (2)当p为1即“我期终考了年级前10” q为1即“我老妈奖励1000元” 这时妈妈的话就对了,即pq为1
由于所有内容(整数,实数,字符,汉字,图片,声 音,视频,网页,……)进入电脑后,全是01组成的字 符串,从而都可以用布尔运算即逻辑运算实现,命题逻 辑成为计算机的基础。
命题逻辑将数学由连续变到离散,由高数进入离散。
Google采用逻辑运算进行搜索:数字之美 吴军 杨圣洪 000100010001110000 两者对应位置与运算。 离散数学 100100000000100001
陈述句(6)的正确性,到2018年12月时能确定的,若届 时建成了则它是对的、为真命题,否为假命题。
1.1 命题及联结词
对错确定的陈述语句称为命题。如:
(7) x与y之和为100,其中x为整数,y为整数 (8)1加1等于10 (7)的对错不确定。当x为50、y为50时是对的,当x为 51、y为52时是错的。 (8)的对错是不确定的,为二进制时正确,当为八进制、 十进制时是错的,因此这两个陈述句不是命题。 (9)青枫峡的红叶真美呀! (10)动作快点! (11)你是杨老师吗? 这三个语句不是陈述语句,因此不是命题。

29-匹配

29-匹配
匹配
离散数学 第29
上一讲内容的回顾
图的平面嵌入 平面图和非平面图 平面图的必要条件:欧拉公式 适用于简单图的欧拉公式推论 平面图的充分必要条件-Kuratowski定理 图着色 平面图着色与四色定理
匹配
支配集 点覆盖集与独立集 边覆盖集 匹配 最大匹配和完美匹配 二部图中的匹配 Hull定理
支配集与支配数
最小边覆盖与最大匹配的关系
证明W是最小边覆盖,M1是最大匹配.
W显然是边覆盖,所以 |W|≥α1。注意:|M|=β1, 又因为M是最大 ≥α 匹配,N中不可能有一条边的两个端点都是M-非饱和点,∴ |N|=n-2β1,∴|W|=|M|+|N|=n-β1。 β 而M1=W1-N1显然是匹配, |M1|≤β1。W1是最小边覆盖, 所以,构 ≤β 造 M1 时 , 每 移 去 一 条 边 , 恰 好 产 生 一 个 M1- 非 饱 和 点 。 而 |W1|=α1, M1-非饱和点数为n-2|M1|,∴|N1|=|W1|-|M1|=n-2|M1|, 即 α1= n-|M1|。 综 上 所 述 可 得 : α 1= n-|M1|≥n-β1=|W|≥α1, 于 是 : |W|=α1 且 ≥ β ≥α |M1|=β1,即W是G中的最小边覆盖,且M1是G中的最大匹配。
注意:极小支配集未必是最大独立集 (甚至未必是独立集)
极小支配集 不是 独立集
点覆盖与点覆盖数
点 覆盖 边
点覆盖数 α0=3
点覆盖数 α0=4
最小点覆盖 极小点覆盖
点覆盖与点独立集的关系
设G是无孤立点的简单无向图,VG的真子集V*是点 覆盖当且仅当V-V*是点独立集。 证明:令V’=V-V* ∈ ⇒ 假 设 V' 不 是 独 立 集 , 则 存 在 u,v∈V', 满 足 uv∈EG, 注意:V‘=VG-V*, 即u,v∉V*, ∴uv边不可能被 V*所覆盖,矛盾。 ⇐ ∀e∈EG, 假设e=uv, 因为V‘是点独立集,u,v中 至 少 有 一 个 不 在 V' 中 , 不 妨 设 u∉V', 则 u∈V*, ∴V* 是点覆盖。

离散数学知识点

离散数学知识点

离散数学知识点离散数学是计算机科学中一门非常重要的基础课程,它涵盖了众多的知识点。

在本文中,我将为大家介绍离散数学中的几个关键知识点,包括集合论、逻辑、数论和图论。

首先,我们来讨论集合论。

集合是离散数学中最基本的概念之一,它由一组互不相同的元素组成。

在集合论中,有许多重要的操作,如并集、交集和补集。

并集指的是将两个或多个集合的元素合并在一起,交集指的是两个或多个集合中共有的元素,而补集指的是与给定集合不相交的所有元素的集合。

掌握这些操作对于解决实际问题非常关键,例如在数据库中进行查询等。

接下来,逻辑是离散数学中另一个重要的知识点。

逻辑关注的是命题和它们之间的关系。

在逻辑中,常用的连接词有“与”、“或”和“非”。

通过应用逻辑运算,我们能够推导出更复杂的命题,如条件语句和双条件语句。

逻辑还包括谓词逻辑和命题逻辑,它们用于描述和推导具体的命题。

除了集合论和逻辑,数论也是离散数学中的一个重要分支。

数论研究的是整数及其性质。

这个领域的研究对于密码学和安全性技术等领域具有重要意义。

在数论中,有许多重要的概念和定理,如质数、最大公约数和同余等。

研究数论有助于我们理解数字间的关系,并通过运用数学中的方法解决实际问题。

最后,让我们来探讨离散数学中的图论。

图论是研究图及其性质的学科。

图由节点和连接节点的边组成。

图可以用来描述各种关系,如社交网络中的朋友关系、城市之间的交通路线等。

在图论中,有许多重要的定理和算法,如欧拉定理、哈密顿定理和最短路径算法等。

通过应用图论的知识,我们可以解决旅行推销员问题、网络优化问题等实际难题。

综上所述,离散数学是计算机科学中不可或缺的一部分。

在这篇文章中,我们简要介绍了离散数学中的几个关键知识点,包括集合论、逻辑、数论和图论。

这些知识点为我们理解和解决实际问题提供了强大的工具和方法。

通过深入学习离散数学,我们能够拓宽思维,提高问题解决能力,并为日后的计算机科学研究打下坚实基础。

【精品】离散数学PPT课件(完整版)

【精品】离散数学PPT课件(完整版)
一个简单命题.
13
联结词与复合命题(续)
3.析取式与析取联结词“∨” 定义 设 p,q为二命题,复合命题“p或q”称作p与q 的析取式,记作p∨q. ∨称作析取联结词,并规 定p∨q为假当且仅当p与q同时为假.
例 将下列命题符号化 (1) 2或4是素数. (2) 2或3是素数. (3) 4或6是素数. (4) 小元元只能拿一个苹果或一个梨. (5) 王晓红生于1975年或1976年.
15
联结词与复合命题(续)
4.蕴涵式与蕴涵联结词“” 定义 设 p,q为二命题,复合命题 “如果p,则q” 称 作p与q的蕴涵式,记作pq,并称p是蕴涵式的 前件,q为蕴涵式的后件. 称作蕴涵联结词,并 规定,pq为假当且仅当 p 为真 q 为假.
16
联结词与复合命题(续)
pq 的逻辑关系:q 为 p 的必要条件 “如果 p,则 q ” 的不同表述法很多:
19
例 求下列复合命题的真值 (1) 2 + 2 = 4 当且仅当 3 + 3 = 6. (2) 2 + 2 = 4 当且仅当 3 是偶数. (3) 2 + 2 = 4 当且仅当 太阳从东方升起. (4) 2 + 2 = 4 当且仅当 美国位于非洲. (5) 函数 f (x) 在x0 可导的充要条件是它在 x0
解 令 p:王晓用功,q:王晓聪明,则 (1) p∧q (2) p∧q (3) p∧q.
12
例 (续)
令 r : 张辉是三好学生,s :王丽是三好学生 (4) r∧s. (5) 令 t : 张辉与王丽是同学,t 是简单命题 .
说明: (1)~(4)说明描述合取式的灵活性与多样性. (5) 中“与”联结的是两个名词,整个句子是
若 p,就 q 只要 p,就 q p 仅当 q 只有 q 才 p 除非 q, 才 p 或 除非 q, 否则非 p. 当 p 为假时,pq 为真 常出现的错误:不分充分与必要条件

《离散数学集合》课件

《离散数学集合》课件

满射。
双射
03
如果一个映射既是单射又是满射,则称该映射为双射。
函数的基本性质
确定性
对于任意一个输入,函数只能有一个输出。
互异性
函数的输出与输入一一对应,没有重复的输 出值。
可计算性
对于任意给定的输入,函数都能计算出唯一 的输出值。
域和陪域
函数的输入值的集合称为函数的定义域,函 数输出的集合称为函数的陪域。
04
集合的运算性质
并集运算性质
并集的交换律
对于任意集合A和B,有A∪B=B∪A。
并集的幂等律
对于任意集合A,有A∪A=A。
并集的结合律
对于任意集合A、B和C,有 A∪(B∪C)=(A∪B)∪C。
并集的零律
对于任意集合A和空集∅,有A∪∅=ቤተ መጻሕፍቲ ባይዱ。
交集运算性质
交集的交换律
对于任意集合A和B,有A∩B=B∩A。
在数学中的应用
集合论
集合论是数学的基础,它为数学提供了基本的逻辑和概念 框架。通过集合,可以定义和讨论概念、关系和性质等。
概率论
在概率论中,集合用来表示事件,事件发生的概率可以定 义为该事件所对应的集合的元素个数与样本空间所对应的 集合的元素个数之比。
拓扑学
拓扑学是研究几何形状在大范围内变化的学科。在拓扑学 中,集合用来表示空间中的点、线、面等元素,以及它们 之间的关系。
THANKS FOR WATCHING
感谢您的观看
03
集合的分类
有穷集和无穷集
有穷集
集合中元素的数量是有限的,可以明 确地列举出集合中的所有元素。例如 ,集合{1, 2, 3}是一个有穷集。
无穷集
集合中元素的数量是无限的,无法列 举出集合中的所有元素。例如,自然 数集N={1, 2, 3,...}是一个无穷集。

支配集,覆盖集,独立集与匹配

支配集,覆盖集,独立集与匹配

最小点覆盖: {a, c, e, g}.
e
0 = 4.
f
g
vertex cover, minimal ~, least ~, vertex cover number
离散数学. W&M.
§16.1支配集, 点覆盖集, 点独立集

定理 点覆盖与点独立集互为补集:
C 为 G 的点覆盖 C = V C 为 G 的点独立集.
(3) 1 + 1 = n.
†最大匹配M 最小边覆盖M N, 最小边覆盖W 最大匹配W N.
‡不考虑有孤立点的图, 孤立点无法被饱和或覆盖.
离散数学. W&M.
§16.2边覆盖集与匹配

证 最大匹配 互不相邻, 故
M N
含 有
n1条2边1 条. G边中. W有=nM 2N1 个显非然饱为和边点覆,盖它,们且

推论 设 M 是图中的匹配, W 是边覆盖, 则 |M| |W|, 等号成立 时, M 是完美匹配, W 是最小边覆盖. † 匹配的边数不多于边覆盖的边数.
证 由定理的(1)知 1 1, 而由定义知 |M| 1 1 |W|, 于是
|M| |W|. 等号成立时, 说明 M 是最大匹配, W 是最小边覆盖. 再由定理中的(3)知
a
d W6
离散数学. W&M.
e
§16.1支配集, 点覆盖集, 点独立集

第十八章 支配集, 覆盖集, 独立集与匹配
§18.1支配集, 点覆盖集, 点独立集 §18.2边覆盖集与匹配 §18.3二部图中的匹配 §18.4图中顶点的着色 §18.5地图的着色与平面图的点着色 §17.6边着色
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档