智能控制模糊控制实验内容
模糊实验报告洪帅

控制理论与控制工程《智能控制基础》课程实验报告专业:控制理论和控制工程班级:双控研2016 姓名:洪帅任课教师:马兆敏2016年 12 月 4 日第一部分:模糊控制实验一模糊控制的理论基础实验实验目的:1 练习matlab中隶属函数程序的编写,同时学习matlab数据的表达、格式、文件格式、存盘2 学习matlab中提供的典型隶属函数及参数改变对隶属度曲线的影响3 模糊矩阵合成仿真程序的学习4 模糊推理仿真程序实验内容(1)要求自己编程求非常老,很老,比较老,有点老的隶属度函数。
1隶属函数编程试验结果如图1-1图1-1隶属度函数曲线(2)完成思考题P80 2-2 写出W及V两个模糊集的隶属函数,并绘出四个仿真后的曲线。
仿真曲线见图1-2,图1-2隶属度函数曲线2 典型隶属函数仿真程序学习下列仿真程序,改变各函数中的参数,观察曲线的变化,并总结各种隶属函数中其参数变化是如何影响曲线形状变换的。
M=1 M=3M=3 M=4M=5 M=6图1-3 M 在1、2、3、4、5、6时的图形2 模糊矩阵合成仿真程序:学习P31例2-10,仿真程序如下,(1) 完成思考题P81 2-5,并对比手算结果。
完成思考题P81 2-4,并对比手算结果。
(2) 2-5:(1) Matlab 结果如下①②③P81 2-5手算结果:P=⎥⎦⎤⎢⎣⎡7.02.09.06.0 Q=⎥⎦⎤⎢⎣⎡4.01.07.05.0 R=⎥⎦⎤⎢⎣⎡7.07.03.02.0 S=⎥⎦⎤⎢⎣⎡5.06.02.01.0(P Q) R=⎥⎦⎤⎢⎣⎡4.04.06.06.0(PUQ) S=⎥⎦⎤⎢⎣⎡5.06.05.06.0 (P S)U(Q S)=⎥⎦⎤⎢⎣⎡5.06.05.06.0总结:手算结果和MATLAB 运行结果一致。
(2) (2)思考题P81 2-4 Matlab 运行结果如下:P81 2-4题手算结果如下:()300200104.001104.0200300++++-+-+-=e ZE μ ()30203.010103.010*******++++-+-+-=e PS μ()()300200104.003.010*******++++-+-+-=⋂e e PS ZE μμ()()30203.010101104.0200300++++-+-+-=⋃e e PS ZE μμ总结:手算结果和MATLAB 运行结果一致。
智能控制作业_模糊自适应PID控制

模糊自适应PID 控制的Matlab 仿真设计研究姓名:陈明学号:201208070103班级:智能1201一、 模糊控制思想、PID 控制理论简介:在工业生产过程中,许多被控对象受负荷变化或干扰因素很多基于模糊自适应控制理论, 设计了一种模糊自适应PID 控制器, 具体介绍了这种PID 控制器的控制特点及参数设计规则, 实现PID 控制器的在线自整定和自调整。
通过matlab 软件进行实例,仿真表明, , 提高控制系统实时性和抗干扰能力,易于实现.便于工程应用。
1.1 模糊控制的思想:应用模糊数学的基本理论和方法, 控制规则的条件、操作用模糊集来表示、并把这些模糊控制规则以及有关信息, 诸如PID 控制参数等作为知识存入计算机知识库, 然后计算机根据控制系统的实际情况(系统的输入, 输出) , 运用模糊推理。
1.2 PID 算法:u(t)=k p * e(t)+k i * ∫e(t)t 0dt +k d *de(t)dt= k p *e(t)+ k i *∑e i (t) + k d * e c (t)其中, u (t) 为控制器输出量, e(t) 为误差信号, e c (t)为误差变化率, k p , k i , k d 分别为比例系数、积分系数、微分数。
然而,课本中,为了简化实验难度,只是考虑了kp ,ki 参数的整定。
1.3 模糊PID 控制器的原理图:二、基于Matlab的模糊控制逻辑模块的设计关于模糊逻辑的设计,主要有隶属函数的编辑,参数的选型,模糊规则导入,生成三维图等观察。
2.1 模糊函数的编辑器的设定:打开matlab后,在命令窗口输入“fuzzy”,回车即可出现模糊函数编辑器,基本设置等。
基于课本的实验要求,我选的是二输入(e, e c)二输出(k p ,k i)。
需要注意的是,在命名输入输出函数的时候,下标字母需要借助下划线的编辑,即e_c 能够显示为e c。
2.2四个隶属函数的N, Z, P 函数设定:在隶属函数的设定中,N 选用的是基于trimf(三角形隶属函数) , Z是基于zmf(Z型隶属函数),P是基于smf(S型隶属函数)。
唐浦华智能控制实验报告

实验报告(计算机类)课程名称: 智能控制课程代码: 106003599学生所在学院: 机械工程学院年级/专业/班:机电12(3)-2 学生姓名:吴丽学号: 3320120193208实验总成绩:任课教师:唐浦华开课学院: 机械工程学院实验中心名称:5A-107.西华大学实验报告(计算机类)开课学院及实验室: 机械工程学院 实验时间 : 年 月 日一、实验目的和任务采用matlab 仿真,进行验证性实验并分析。
二、验仪器、设备及材料Pc 机,matlab 软件,洗衣机模糊控制系统仿真程序三、实验原理及步骤以洗衣机洗涤时间的模糊控制系统设计为例,其控制是一个开环的模糊决策过程,模糊控制按以下步骤进行:① 确定模糊控制器的结构; ② 定义输入、输出模糊集; ③ 定义隶属度函数; ④ 建立模糊控制规则; ⑤ 建立模糊控制表; ⑥ 模糊推理; ⑦仿真实例。
四、实验结果① 污泥和油脂隶属度函数设计仿真结果,如图一; ② 洗涤时间隶属度函数设计仿真结果,如图二;图一图二③洗衣机模糊控制系统仿真结果:五、实验结果分析西华大学实验报告(计算机类)开课学院及实验室:机械工程学院实验时间:年月日采用matlab仿真,进行验证性实验并分析。
二、验仪器、设备及材料Pc机,matlab软件,模糊PID仿真程序三、实验原理及步骤被控对象为G(s)=133/(s2+25s)采样时间为1ms,采用z变换进行离散化,离散化后的被控对象为Y(k)=-den(2)y(k-1)-den(3)y(k-2)+num(2)u(k-1)+num(3)u(k-2)位置指令为幅值为1.0的阶跃信号,r(k)=1.0。
仿真时,先运行模糊推理系统设计程序chap4_7a.m,实现模糊推理系统fuzzpid.fis,并将此模糊推理系统调入内存中,然后运行模糊控制程序chap4_7b.m。
四、实验结果①模糊控制程序chap4_7a.m仿真结果:②模糊控制程序chap4_7b.m仿真结果:五、实验结果分析西华大学实验报告(计算机类)开课学院及实验室:机械工程学院实验时间:年月日并采用matlab仿真,进行验证性实验并分析。
智能控制技术(模糊控制)

INTELLIGENT CONTROL
随着系统复杂程度的提高,将难以建立系统的精 确数学模型和满足实时控制的要求。 人们希望探索一种除数学模型以外的描述手段和 处理方法。 例如: 骑自行车 水箱水温控制
2011年4月10日
INTELLIGENT CONTROL
模糊控制就是模仿上述人的控制过程,其中包 含了人的控制经验和知识。从这个意义上来说,模 糊控制也是一种智能控制。模糊控制方法既可用于 简单的控制对象,也可用于复杂的过程。 模糊控制是以模糊集合论作为数学基础。 1965年L.A.Zandeh(美国教授)首先提出了模糊集 合的概念。 1974年E.H.Mamdani(英国教授)首先将模糊集合 理论应用于加热器的控制。 典 型 例 子
2011年4月10日
INTELLIGENT CONTROL
二、模糊控制的特点 特点: (1)无需知道被控对象的数学模型 (2)是一种反映人类智慧思维的智能控制 (3)易被人接受 (4)构造容易 (5)鲁棒性好
2011年4月10日
INTELLIGENT CONTROL
第二节
模糊集合论基础 一、模糊集合的概念 二、模糊集合的运算 三、隶属函数的建立 四、模糊关系
2011年4月10日
INTELLIGENT CONTROL
现代控制系统的数学模型难以通过传统的数学工具 来描述。就是说,采用数学工具或计算机仿真技术的传 统控制理论,已无法解决此类系统的控制问题。 从生产实践中可以看到,许多复杂的生产过程难以 实现的目标,可以通过熟练的操作工、技术人员或专家 的操作得到满意的控制效果。 如何有效地将熟练操作工、技术人员或专家的经验 知识和控制理论结合,去解决复杂系统的控制问题,就 是智能控制研究的目标。
智能控制技术的实习报告

实习报告智能控制技术实习报告一、实习背景随着科技的不断发展,智能控制技术在各个领域的应用越来越广泛。
为了更好地了解智能控制技术的发展和应用,提高自己的实践能力,我参加了为期一个月的智能控制技术实习。
实习期间,我在导师的指导下,进行了智能控制系统的设计、仿真和实验,对智能控制技术有了更深入的了解。
二、实习内容1. 理论学习在实习的开始,导师为我讲解了智能控制技术的基本概念、原理和常用算法。
我学习了模糊控制、神经网络控制、自适应控制等几种常见的智能控制方法,并了解了它们在实际工程中的应用。
2. 系统设计根据实习任务,我需要设计一个智能控制系统。
在导师的指导下,我首先确定了系统的目标和需求,然后选择了合适的控制算法,最后设计了系统的整体结构。
在设计过程中,我学习了如何根据系统需求选择合适的硬件和软件,并掌握了部分编程技巧。
3. 仿真与实验为了验证所设计的智能控制系统的有效性,我使用了MATLAB软件对系统进行了仿真。
通过调整参数和算法,我成功地实现了对系统的控制。
接着,我在实验室进行了实际实验,通过与传统控制系统的对比,验证了智能控制系统的优越性。
4. 实习总结与反思通过实习,我深刻地体会到了智能控制技术在实际工程中的重要性。
与传统控制技术相比,智能控制系统具有更好的自适应性和鲁棒性,能够更好地应对复杂的工业现场环境。
同时,我也认识到智能控制技术仍存在一些问题和挑战,如算法复杂度高、实时性要求高等。
在实习过程中,我学到了很多关于智能控制技术的知识和技能,也提高了自己的实践能力。
然而,我也意识到自己在某些方面仍有不足,如对某些算法的理解和应用不够深入,编程能力有待提高等。
在今后的学习和工作中,我将继续努力,不断提高自己的综合素质,为将来的工作做好准备。
三、实习收获通过这次实习,我对智能控制技术有了更深入的了解,掌握了相关算法和仿真技巧。
同时,实习过程中的团队合作和问题解决能力也得到了锻炼。
总之,这次实习让我受益匪浅,对我的专业学习和未来职业发展具有重要意义。
模糊实验报告材料 洪帅

控制理论与控制工程《智能控制基础》课程实验报告专业:控制理论和控制工程班级:双控研2016姓名:洪帅任课教师:马兆敏2016年12 月4 日第一部分:模糊控制实验一模糊控制的理论基础实验实验目的:1 练习matlab中隶属函数程序的编写,同时学习matlab数据的表达、格式、文件格式、存盘2 学习matlab中提供的典型隶属函数及参数改变对隶属度曲线的影响3 模糊矩阵合成仿真程序的学习4 模糊推理仿真程序实验内容(1)要求自己编程求非常老,很老,比较老,有点老的隶属度函数。
1隶属函数编程试验结果如图1-1图1-1隶属度函数曲线(2)完成思考题P80 2-2 写出W及V两个模糊集的隶属函数,并绘出四个仿真后的曲线。
仿真曲线见图1-2,图1-2隶属度函数曲线2 典型隶属函数仿真程序学习下列仿真程序,改变各函数中的参数,观察曲线的变化,并总结各种隶属函数中其参数变化是如何影响曲线形状变换的。
M=1 M=3M=3 M=4M=5 M=6图1-3 M 在1、2、3、4、5、6时的图形2 模糊矩阵合成仿真程序:学习P31例2-10,仿真程序如下,(1) 完成思考题P81 2-5,并对比手算结果。
完成思考题P81 2-4,并对比手算结果。
(2) 2-5:(1) Matlab 结果如下①②③P81 2-5手算结果:P=⎥⎦⎤⎢⎣⎡7.02.09.06.0 Q=⎥⎦⎤⎢⎣⎡4.01.07.05.0 R=⎥⎦⎤⎢⎣⎡7.07.03.02.0 S=⎥⎦⎤⎢⎣⎡5.06.02.01.0(PοQ)οR=⎥⎦⎤⎢⎣⎡4.04.06.06.0(PUQ)οS=⎥⎦⎤⎢⎣⎡5.06.05.06.0(PοS)U(QοS)=⎥⎦⎤⎢⎣⎡5.06.05.06.0总结:手算结果和MATLAB运行结果一致。
(2)(2)思考题P81 2-4 Matlab运行结果如下:P81 2-4题手算结果如下:()3020104.01104.02030++++-+-+-=eZEμ()30203.01013.0102030++++-+-+-=ePSμ()()3020104.03.0102030++++-+-+-=⋂eePSZEμμ()()30203.01011104.02030++++-+-+-=⋃eePSZEμμ总结:手算结果和MATLAB运行结果一致。
大学智能控制实训报告

一、前言随着科技的飞速发展,智能控制技术已经成为现代工业、农业、服务业等领域的重要技术支撑。
为了培养具备智能控制技术能力的人才,我国众多高校都开设了智能控制相关课程。
本报告以我在大学期间参加的智能控制实训为例,对实训过程、收获与体会进行总结。
二、实训内容本次智能控制实训主要包括以下内容:1. 智能控制基本概念与原理:学习了智能控制的基本概念,如自适应控制、模糊控制、神经网络控制等,并了解了这些控制方法的基本原理。
2. 智能控制系统设计:通过MATLAB软件,设计了基于模糊控制和神经网络的智能控制系统,并对控制系统进行了仿真实验。
3. 智能控制算法优化:学习了遗传算法、粒子群算法、免疫算法等智能优化算法,并应用于控制系统参数优化。
4. 智能控制应用实例分析:分析了智能控制在工业、农业、服务业等领域的应用实例,如智能机器人、智能交通系统、智能农业等。
三、实训过程1. 理论学习:首先,通过课堂学习,掌握了智能控制的基本概念、原理和方法。
在理论学习的阶段,我们对智能控制的基本概念有了初步的认识,并了解了不同智能控制方法的特点和应用场景。
2. 软件操作:在实训过程中,我们学习了MATLAB软件的使用,通过编写程序,实现了智能控制系统的设计与仿真。
在软件操作的过程中,我们不仅掌握了MATLAB的基本操作,还学会了如何运用MATLAB进行智能控制系统的设计与仿真。
3. 算法优化:在智能控制系统设计中,我们运用遗传算法、粒子群算法、免疫算法等智能优化算法对控制系统参数进行优化。
通过算法优化,提高了控制系统的性能和鲁棒性。
4. 实例分析:在实训过程中,我们分析了智能控制在不同领域的应用实例,如智能机器人、智能交通系统、智能农业等。
通过实例分析,我们对智能控制技术的应用有了更深入的了解。
四、实训收获与体会1. 理论知识与实践能力相结合:通过本次实训,我将智能控制理论知识与实际操作相结合,提高了自己的实践能力。
2. 创新思维与问题解决能力:在实训过程中,我们遇到了各种问题,通过查阅资料、讨论和尝试,最终解决了问题。
人工智能控制技术课件:模糊控制

模糊集合
模糊控制是以模糊集合论作为数学基础。经典集合一般指具有某种属性的、确定的、
彼此间可以区别的事物的全体。事物的含义是广泛的,可以是具体元素也可以是抽象
概念。在经典集合论中,一个事物要么属于该集合,要么不属于该集合,两者必居其一,
没有模棱两可的情况。这表明经典集合论所表达概念的内涵和外延都必须是明确的。
1000
1000
9992
9820
的隶属度 1 =
= 1,其余为: 2 =
= 0.9992, 3 =
=
1000
1000
1000
9980
9910
0.982, 4 =
= 0.998, 5 =
= 0.991,整体模糊集可表示为:
1000
1000
1
0.9992
0.982
0.998
《人工智能控制技术》
模糊控制
模糊空基本原理
模糊控制是建立在模糊数学的基础上,模糊数学是研究和处理模糊性现
象的一种数学理论和方法。在生产实践、科学实验以及日常生活中,人
们经常会遇到模糊概念(或现象)。例如,大与小、轻与重、快与慢、动与
静、深与浅、美与丑等都包含着一定的模糊概念。随着科学技术的发展,
度是2 ,依此类推,式中“+”不是常规意义的加号,在模糊集中
一般表示“与”的关系。连续模糊集合的表达式为:A =
)( /其中“” 和“/”符号也不是一般意义的数学符号,
在模糊集中表示“构成”和“隶属”。
模糊集合
假设论域U = {管段1,管段2,管段3,管段4,管段5},传感器采
1+|
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.设定输入输出变量 由于本例有2个输入变量,因此需要添加1个输 入变量(执行edit---add variable--input),然后给输 入、输出变量命名,再保存系统。
命名
本例创建的系统命名 为WatLevControl。 (file—close)
设置完毕的效果图
3. 进入隶属度函数编辑器 3种方法: (1)在FIS编辑器中双击任意一个输入或输出变量 的图框 (2)通过菜单Edit→Membership Functions… (3)在Matlab的Command Window窗口的提示下, 键入mfedit(WatLevControl) 编辑过程: 修改各变量的论域范围 编辑各个输入或输出变量的隶属度函数及各隶属度 函数对应的Name、Type、Params。 系统默认每个变量有3个隶属度函数,均为trimf, 可根据需要进行删减。
最后,在MATLAB命令窗口中输入“sltank”, 打开如图3.5.4所示的模型窗口。 在Simulink仿真系统中,打开Fuzzy Logic Controller模糊逻辑控制器模块,在“FIS File or Structure”参数对话框中输入“tank”,如图 3.5.10所示。 对图3.5.10所示的Simulink系统,启动仿真,便 可看到如图3.5.11所示的系统输出变化曲线,即 水位变化曲线。
实验内容2:矩阵合成的仿真
设A=[0.8 0.7;0.5 0.3] ,B=[0.2 0.4;0.6 0.9],实现A与 B的合成,以及B与A的合成。验证课本P38例2.5.6. 提示用Matlab的min ,max函数实现。
实验内容3:水位模糊控制系统实验简介 设定期望的水位,检测实际的水位,计算水位 误差,由模糊控制器计算得到阀门控制量,即阀门 开度,从而控制阀门,完成水位的控制。
在此修改
3. 进入规则编辑器
进入方法: (1)在FIS编辑器中双击规则处理图框 (2)通过菜单Edit→Rules… (3)在Matlab的Command Window窗口的提示下, 键入ruleedit。
4. 查看规则观测器
目的:查看模糊规则的推理情况。 可以方便地观察规则情况以及调整不同的输入时 所对应的输出的情况。 打开规则观测器的方法:通过菜单View→Rule 5. 查看曲面观测器 目的:查看模糊规则的曲面输出情况。 打开曲面观测器的方法:通过菜单View→Surface
实验步骤:
1.确定模糊控制器的结构(即:输入变量和输 出变量) 输入变量分别为水位误差e (误差=设定值 -测量值)和误差变化率ec 输出变量为阀门开启度u 2.设定语言值(见课本P95)
3.设定模糊规则(见课本P94)
4.用Simulikn仿真
二、 利用GUI建立FIS的具体操作步骤 1. 进入FIS编辑器 在Matlab的Command Window窗口的提示下,键 入fuzzy打开FIS编辑器,默认的文件名是Untitle,默 认的系统是Mamdani型。
实验1 模糊控制基础及水箱液位控制实验
实验目的:学会使用Matlab的FIS Editor建立水箱液位 模糊控制系统
实验内容1:隶属函数的仿真
针对常见的5种隶属函数进行仿真。X属于[0,10],M为 隶属函数的类型,其中M=1时为高斯型隶属函数,M=2时为广 义钟型隶属函数,M=3时为S型隶属函数,M=4时为梯型隶属函 数,M=5时为三角型隶属函数。提示:新建m文件,使用ifelse语句完成。参阅课本P32