计算方法之计算矩阵的特征值和特征量

合集下载

特征值与特征向量的求解方式

特征值与特征向量的求解方式

特征值与特征向量的求解方式在线性代数中,特征值与特征向量是重要的概念。

它们的求解在机器学习、图像处理、物理学等诸多领域中具有重要的应用。

本文将介绍特征值与特征向量的概念和求解方式。

一、特征值与特征向量的定义给定一个n阶方阵A,如果存在非零向量x,使得Ax=kx,其中k是一个常数,那么 k 称为矩阵A的特征值,x称为特征值k对应的特征向量。

特别的,当 k=0 时,x称为矩阵A的零向量。

特征值与特征向量有以下重要性质:1. 一个n阶方阵最多有n个不同的特征值。

2. 若A为实对称矩阵,则其特征向量对应的特征值均为实数。

3. 若A为正定矩阵,则其特征值均为正数。

4. 若A可逆,则其特征值均非零。

特征向量的长度一般不为1,我们可以将其归一化得到单位向量,使得 Ax=kx 中的特征向量x满足 ||x||=1。

二、1.利用特征多项式对 n 阶矩阵 A,设λ 为其特征值,用 |A-λI| =0 表示,其中 I 为n 阶单位矩阵。

化简方程,即得到 A 的特征值λ 的解析式。

求得λ 后,代入 (A-λI)x=0,可以得到对应的特征向量 x。

举个例子,对于矩阵 A=[1 2;2 1],我们有| A-λI |= | 1-λ 2; 2 1-λ| = (1-λ)^2 -4 = 0解得λ1=3, λ2=-1。

将λ1,λ2 代入 (A-λI)x=0 中分别求解,即可得到 A 的两个特征向量。

该方法简单易懂,但对于高阶矩阵,求解特征多项式需要高代数计算,计算复杂度较高。

2.利用幂法幂法是求最大特征值与对应特征向量的较为有效的方法。

该方法基于一下简单事实:给定一个向量 x,令 A 去作用若干次,Ax,A^2x,A^3x,...,A^nx,它们的向量长度将快速增长或快速衰减,且它们的比值趋于最大特征对应的幂指数。

假设 A 有一个不为零的特征向量 x,它对应的特征值为λ1,即Ax=λ1x。

那么,A^mx = A^mx/λ1^m λ1x当 m 充分大时, A^mx 与λ1^mx 相比变化就很小了。

矩阵特征值与特征向量的计算_OK

矩阵特征值与特征向量的计算_OK

n阶方阵A的特征值是特征方程 PA()=det(A-E)=0
的根.
A的特征向量是齐次线性方程组 (A-E)x=0
的非零解.
PA()是的高次的多项式,它的求根是很困难的。设法通
过数值方法是求它的根。
通常对某个特征值,可以用些针对性的方法来求其近似值。
若要求所有的特征值,则可以对A做一系列的相似变换,
“收敛”到对角阵或上(下)三角阵,
可得
n
xk
Ak x0 max(Ak x0 )
11 m ax (11
i
(
i 1
)
k
i
i2
n
i
(
i 1
)
k
i
)
7
i2
所以
8.1.1 幂法
n
xk
Ak x0 max(Ak x0 )
11
i
(
i 1
)
k
i
i2
n
max(11
i
(
i 1
)
k
i
)
lim
k
xk
11 max (11 )
i2 1
max (1 )
y=x/max(x)为向量x例的如规,范设化向向量量x=. (2,1,-5,-1)T,则max(x)=-5,y=(-0.4,-
0.2,1,0.2)T.可见规范化向量y总满足‖y‖=1.
幂法的规范化计算公式为: 任取初始向量x0=y0 0,计算
yk
Axk1
mk max(yk ) xk yk / mk , k 1,2,3,
1 1 1 1
n
n1
n2
1
对应的特征向量为ξn, ξn-1,…, ξ1.

计算方法(5)第四章 矩阵特征值和特征向量的计算

计算方法(5)第四章 矩阵特征值和特征向量的计算

n
使得u 0

i xi
i 1
n
n
uk Auk1 Aku0 Ak (i xi ) iik xi
i 1
i 1

1k [1x1

n i2
( i 1
)k i xi ]
由1 0, 1 i (i 2, 3,L , n) 得
lim(
对矩阵A1用乘幂法得 uk

A-1u
k

1
因为A1 的计算
比较麻烦,而且往往不能保持矩阵A 的一些好性质
(如稀疏性),因此,反幂法在实际计算时以求解
方程组
Auk

u
k
,代替迭代
1
uk
A-1uk1求得uk,每
迭代一次要解一线性方程组。 由于矩阵在迭代过
程中不变,故可对A 先进行三角分解,每次迭代只 要解两个三角形方程组。

2 p 2 n
2 n
2 n 2
1 p 21 2 n 1 n 1 2 1 n 1
因此,用原点平移法求1可使收敛速度加快。
三、反幂法
反幂法是计算矩阵按模最小的特征值及特征向 量的方法,也是修正特征值、求相应特征向量的最 有效的方法。
0
0.226

0.975
做正交相似变换后得到
3.366
A3 =R2 AR2T


0.0735
0.317
0.0735 1.780
0
0.317
0

1.145
雅可比方法是一个迭代过程,它生成的是一个矩阵的
序列 Ak,当k越大时Ak就越接近于对角矩阵,从而

矩阵特征值与特征向量的计算方法

矩阵特征值与特征向量的计算方法

矩阵特征值与特征向量的计算方法矩阵是一个广泛应用于线性代数、微积分和物理学等领域的数学对象。

在许多问题中,矩阵和线性变换起着重要作用,并且特征值与特征向量是矩阵理论中的两个核心概念。

本文将介绍矩阵特征值与特征向量的定义、性质以及计算方法。

一、特征值与特征向量的定义给定一个n阶矩阵A,如果存在一个非零向量x,使得A与x的线性组合仍然是x的倍数,即有Ax = λx其中λ为常数,称λ为A的特征值,x为对应于λ的特征向量。

从几何意义上理解,特征向量是不被矩阵变换影响方向,只被影响长度的向量。

特征值则是描述了矩阵变换对于特定方向上的伸缩倍数。

二、特征值与特征向量的性质1. 特征向量构成的向量空间没有零向量。

证明:设x为A的特征向量,有Ax=λx,则A(cx) =cAx=cλx=λ(cx),即A的任意常数倍(cx)仍是x的倍数,因此cx也是A的特征向量。

特别地,对于λ≠0时,x/λ也是A的特征向量。

2. A的特征值的个数不超过n个。

证明:考虑特征值λ1, λ2,…,λt,对应于各自的特征向量x1,x2,…,xt。

利用向量线性无关性可得,至少存在一个向量y不属于x1,x2,…,xt的张成空间内,此时Ay不能被表示成λ1x1,λ2x2,…,λtxt的线性组合,因此Ay与y方向没有重合部分,由此可得λ1, λ2,…,λt最多就是n个。

3. 如果特征向量x1,x2,…,xt彼此不共线,则它们就可以作为Rn空间的一组基。

证明:设x1,x2,…,xt是不共线的特征向量,考虑它们张成的向量空间V,在此空间中,A的作用就是对向量做伸缩变换,且Λ(xj) = λj。

对于每个向量y ∈ V,y可以表示成如下形式:y = c1x1 + c2x2 + ··· + ctxt由于x1,x2,…,xt构成V的基,因此c1,c2,…,ct唯一确定了向量y。

因此,对于任意的向量y,可以得到:Ay = A(c1x1 + c2x2 + ··· + ctxt)= c1Ax1 + c2Ax2 + ··· + ctAxt= λ1c1x1 + λ2c2x2 + ··· + λtctxt由于{x1,x2,…,xt}是V的一组基,c1,c2,…,ct是唯一确定的,因此Ay也被唯一确定了。

计算方法6矩阵特征值和特征向量

计算方法6矩阵特征值和特征向量

方程组有解

A λ E 0
a1 n a 2n

a11 λ a 21 an1
a12 a 22 λ an 2
0
ann λ
上式是以 λ 为未知量的一元n次方程,称为方阵A
A λ E 是 λ 的n次多项式,记为 f (λ ) 的特征方程,
称为方阵A的特征多项式。
方法 2: 1 (1) 0 1 1 1 (0) 取X 1 , X A X 1 1 1 2 0 1 1 2 (2) (1) X AX 1 1 2 3 0 1 2 3 (3) (2) X AX 1 1 3 5 144 233 (11) (12) X 233 , X 377
2 0 2 1 0 1

从理论上讲,幂法可以采取降阶的方法求出矩阵A 的全部特征值。当求出λ1和对应的特征向量x1后, 按同样的思想可以依次求出λ2,λ3,…,λn以及相应 的特征向量x2,x3,…,xn 。在幂法中,求出矩阵A 的主特征值λ1及对应的特征向量x1后,可用压缩 方法求出n-1阶矩阵B使它的特征值为λ2,从而把求 A次特征值λ2的问题转化为求B的主特征值,等等。
显然,方阵A的特征值就是其特征方程的解。特征 方程在复数范围内恒有解,其解的个数为方程的 次数(重跟按重数计算),因此n阶方阵有n个特 征值。显然,n阶单位矩阵E的特征值都是1。 设n阶方阵 A (aij )的特征值为 λ 1 ,λ 2 ,λ n则有 (1) λ 1 λ 2 λ n a11 a22 ann ;
(2) λ 1λ 2 λ n A .

矩阵的特征值与特征向量的简易求法

矩阵的特征值与特征向量的简易求法

矩阵的特征值与特征向量的简易求法特征值与特征向量对于矩阵的性质和变换有着重要的意义。

矩阵的特征值可以帮助我们判断矩阵的相似性、可逆性以及矩阵的对角化等;而特征向量可以帮助我们理解矩阵的线性变换、寻找矩阵的基矢量等。

求解矩阵的特征值与特征向量可以采用多种方法。

下面介绍两种常见的简易求法:特征多项式法和幂迭代法。

特征多项式法是求解矩阵特征值与特征向量的一种常见方法。

其步骤如下:步骤1:对于n阶方阵A,求解其特征多项式,即特征方程det(A-λI)=0。

其中,I为单位矩阵,λ为未知数。

步骤2:将特征多项式化简,得到一个关于λ的方程,如λ^n+c1λ^(n-1)+c2λ^(n-2)+...+cn=0。

步骤3:解这个n次方程,得到n个特征值λ1,λ2,...,λn。

步骤4:将每个特征值λi带入原方程(A-λI)X=0,求解对应的特征向量。

特征多项式法适用于任意阶数的方阵,但是对于高阶矩阵,其计算过程可能比较复杂,需要借助数值计算工具。

幂迭代法是一种迭代求解特征值与特征向量的方法,适用于对于方阵的特征值为实数且相近的情况。

其步骤如下:步骤1:选取一个初始向量X(0),通常是一个n维非零向量。

步骤2:迭代计算:X(k+1)=A*X(k),其中k为迭代次数,A为待求特征值与特征向量的方阵。

步骤3:计算迭代步骤2中得到的向量序列X(k)的模长,即,X(k)。

步骤4:判断,X(k)-X(k-1),是否满足预定的精度要求,如果满足,则作为矩阵A的近似特征向量;否则,返回步骤2继续进行迭代。

步骤5:将步骤4得到的近似特征向量作为初始向量继续迭代,直至满足精度要求。

幂迭代法的优点是求解简单、易于操作,但由于其迭代过程,只能得到一个特征值与特征向量的近似解,且只适用于特征值为实数的情况。

在实际应用中,根据具体问题的要求,可以选择适合的方法来求解矩阵的特征值与特征向量。

除了特征多项式法和幂迭代法,还有QR分解法、雅可比迭代法等其他方法。

计算方法之计算矩阵的特征值和特征量

计算方法之计算矩阵的特征值和特征量

计算方法之计算矩阵的特征值和特征量计算矩阵的特征值和特征向量是线性代数中的一个重要问题,它在科学研究和工程应用中有着广泛的应用。

本文将介绍计算矩阵特征值和特征向量的方法,包括特征方程法、幂法、反幂法和QR方法。

一、特征值和特征向量的定义给定一个n阶方阵A,如果存在一个非零向量x和一个标量λ,满足以下方程:Ax=λx其中,x被称为A的特征向量,λ被称为A的特征值。

二、特征方程法特征方程法是计算矩阵特征值和特征向量的一种常用方法,其基本思想是通过求解矩阵的特征方程来求得特征值。

对于一个n阶方阵A,其特征方程为:A-λI,=0其中,I是n阶单位矩阵,A-λI,表示A-λI的行列式。

解特征方程可以得到n个特征值λ₁,λ₂,...,λₙ。

然后,将这些特征值带入原方程组(A-λI)x=0,求解线性方程组得到n个特征向量x₁,x₂,...,xₙ。

三、幂法幂法是一种通过迭代来计算矩阵最大特征值和对应的特征向量的方法。

首先,随机选择一个非零向量b₀,并进行归一化,得到单位向量x₀=b₀/,b₀。

然后,通过迭代的方式,计算xₙ₊₁=Axₙ,其中xₙ为第k次迭代得到的向量。

在迭代过程中,向量xₙ的模长会逐渐趋近于最大特征值对应的特征向量。

当迭代收敛后,xₙ就是矩阵A的最大特征值对应的特征向量。

四、反幂法反幂法是一种通过迭代来计算矩阵最小特征值和对应的特征向量的方法。

首先,随机选择一个非零向量b₀,并进行归一化,得到单位向量x₀=b₀/,b₀。

然后,通过迭代的方式,计算xₙ₊₁=(A-σI)⁻¹xₙ,其中σ为待求的特征值。

在迭代过程中,向量xₙ的模长会逐渐趋近于特征值σ对应的特征向量。

当迭代收敛后,xₙ就是矩阵A的特征值为σ的特征向量。

五、QR方法QR方法是一种通过迭代来计算矩阵特征值和特征向量的方法。

首先,将矩阵A进行QR分解,得到矩阵A=QR,其中Q是正交矩阵,R是上三角矩阵。

然后,计算矩阵B=RQ,重复以上步骤,直到矩阵B收敛。

第章矩阵特征值的计算

第章矩阵特征值的计算

第章矩阵特征值的计算矩阵特征值是矩阵理论中的一个重要概念,它在很多领域中都有广泛的应用,如物理、化学、工程等。

本文将从特征值的定义、计算方法和应用举例等方面进行阐述。

一、特征值的定义对于一个n阶方阵A,如果存在一个非零向量x,使得Ax=kx,其中k 是一个常数,那么k称为A的特征值,x称为A的对应于特征值k的特征向量。

从定义可以看出,矩阵A的特征值和特征向量是成对出现的,特征向量可以是一个实数或是一个向量,特征值可以是实数或是复数。

二、特征值的计算方法1.直接计算法此方法适合于较小的矩阵。

给定一个n阶矩阵A,首先构造特征方程det(A-λI)=0,其中I是n阶单位矩阵,λ是未知数,然后求解特征方程得到特征值,将特征值代入(A-λI)x=0求解对应的特征向量。

2.幂法幂法是一种迭代方法,适用于大型矩阵。

假设特征值的绝对值最大,那么从非零向量b开始迭代过程,令x0=b,求解x1=A*x0,然后再将x1作为初始值,求解x2=A*x1,以此类推,直到收敛为止。

最后,取最终得到的向量xn,其模即为特征值的近似值。

3.QR方法QR方法是一种迭代方法,可以用于寻找特征值和特征向量。

首先将矩阵A分解为QR,其中Q是正交矩阵,R是上三角矩阵,然后对R进行迭代,重复进行QR分解,直到收敛。

最后,得到的上三角矩阵的对角元素即为特征值的近似值,在QR分解的过程中,特征向量也可以得到。

三、特征值的应用举例1.物理学中的量子力学量子力学中的哈密顿算符可以表示为一个矩阵,物理量的测量值就是对应的特征值。

例如,电子的自旋可以有上自旋和下自旋两种状态,上自旋对应的特征值为1,下自旋对应的特征值为-12.工程中的振动问题在工程中,矩阵特征值可以用来求解振动问题。

例如,振动系统的自由度决定了特征向量的个数,而特征值则表示了振动的频率。

通过计算矩阵的特征值和特征向量,可以预测系统的振动频率和振型。

3.网络分析中的中心性度量在网络分析中,矩阵特征值可以用来计算节点的中心性度量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4
1 取对应于1=4的基础解向量 P1 1 则对应于1=4的全部特征向量为:kP1 (k 0)
(2)2=2 将1=2代入(A-E)X=0得(A-2E)X=0
3 2 1 x1 1 3 2 x 0 2

总可以用 Xi 的线性组合来表示: V(0)=1X1+ 2X2+...+ nXn(其中10) 取 V(1)=AV(0) V(2)=AV(1)=A2V(0) ……
10
V(k+1)=AV(k) =Ak+1V(0) 以构成向量迭代序列。 由矩阵特征值的定义有: AXi=iXi (i=1,2,...,n) 则有

k 1 1
i [ 1 X 1 i i2 1
n
k 1
Xi ]
11
V 同理可得:
(k )
i [ 1 X 1 i X i ] i2 1
n k 1 n k 1
k
V(k+1)的第j个分量:
16
(二)按模最大特征值是互为反号的实根 设n 阶方阵A有 n 个线性无关的特征向量 Xi , 其对应的特征值为i (i=1,2,...,n),且满足: |1| = |2|>|3| … |n|,设其中1>0, 1=- 2
由迭代变换: V ( k ) Ak V ( 0 )
3 1 求矩阵 A 1 3 的特征值与特征向量
3
解:计算特征多项式方程,即 3 1 A E ( 3 )2 1 0 1 3 解得A的两个特征值:1=4, 2=2。 (1)1=4 将1=4代入 (A-E)X=0得(A-4E)X=0
方法局限性:当矩阵阶数较高(如阶数n>4)时, 将面临两方面的难题: (1)多项式的计算对舍入误差非常敏感; (2)求高次方程的根尤其是重根存在困难。
特征值的数值计算方法
1、幂法:求按模最大特征值,即 max i 1 i n 2、反幂法:求按模最小特征值,即 min i 1 i n 3、Jacobi法:求实对称矩阵所有特征值和特征向量。
7
下面介绍两种简单情况:
(一)按模最大特征值只有一个,且是单实根 (二)按模最大特征值是互为反号的实根
8
(一)按模最大特征值只有一个,且是单实根
定理 设n 阶方阵A有 n 个线性无关的特征向量 Xi ,其对应的特征值为i (i=1,2,...,n),且满足: |1|>|2| … |n| 则对任何非零初始向量V(0)(至少第1个分量不 为0)所构成的迭代序列 V(k+1)=AV(k)(k=0,1,2,…) 有:
3 4 1 x1 1 3 4 x 0 2 x1 x2 0 x1 x2 x1 x2 0 1 1 x1 1 1 x 0 2
1 lim
k
v (jk 1) v (jk )
其中 v (jk 1) 表示 V ( k 1) 中的第j个分量。
9
证明:
因为A具有 n 个线性无关的特征向量
Xi (i=1,2,...,n) 而任一 n 维的非零向量,如V(0):
V
(0)
v

(0) 1
v
(0) 2
v
(0) T n
v( k ຫໍສະໝຸດ ) jk 1 1 i [ 1 ( X 1 ) j i i2 1
n
(Xi ) j ]
i v [ 1 ( X 1 ) j i ( X i ) j ] i2 1 k 1 n i k 1 1 [ 1 ( X 1 ) j i ( X i ) j ] ( k 1) vj i 2 1 lim ( k ) lim 那么 k k k n vj i k 1 [ 1 ( X 1 ) j i ( X i ) j ] i 2 1
n k 1 k
k
17
k V ( k ) 1 [1 X1 (1)k 2 X 2 ] (k充分大时) 则有: k 同理: V ( k 2) 1 2[1 X1 (1)k 2 2 X 2 ]
2 1V ( k )
迭代计算中V(k)呈规律性摆动,当k充分大时有
1
定义 设A为 n 阶方阵,若存在常数 与 n 维 非零向量X 使 AX=X成立,则称 为方阵A的特 征值,非零向量 X 为A的对应于 的特征向量。 由AX=X (A- E)X=0 此方程有非零解的充要条件是: |A- E|=0 , 即:
a11 a 21 a n1 a12 an 2 a1n a2n 0 a 22
V ( k 1 ) Ak 1 V ( 0 ) 1 Ak 1 X 1 2 Ak 1 X 2 n Ak 1 X n
k 1 1 1 X1 2 k 1 X 2 n k 1 X n 2 n

即用V(2)中绝对值最大的分量去除V(2)中的所有 分量。其次计算V(3) :
V ( 3 ) AU ( 2 ) A3V ( 0 ) 2 (0) AV
a nn
—— 特征多项式方程。
2
在线性代数中按如下三步计算: 1、计算出A的特征多项式│A- E│; 2、求出特征方程│A-E│=0的全部根i 3、将 i代入(A-iE)X=0 求出基础解系,即得A 的对应于i的特征向量,而基础解系的线性组合即 为A的对应于i 的全部特征向量。 例
18
★规范化幂法运算 由 V
V
( k 1)

k 1
k 1 1
i [ 1 X 1 i i2 1
n n k
k 1 k X i ] 1 1 1 X 1
(k )
i k [ 1 X 1 i X i ] 1 1 X 1 i 2 1
1
v (j k 1 ) v (j k )
13
或者用各个分量比的平均值作为最大特征值:
1
v (jk 1) v
(k ) j

j 1
n
v (jk 1) v (jk ) n
(4)求1所对应的特征向量: 由: lim k
1 可得:V ( k 1) V ( k ) 1
V
( 2)
AV
(1)
15
0 1 2 3 V AV 1 1 3 5 144 (11 ) (10 ) V AV 233
( 3) ( 2)

V
(12 )
AV
6
幂法是一种迭代法。 基本思想:把矩阵的特征值和特征向量作为一 个无限序列的极限来求得。 如对于n阶方阵A,任取一个初始向量X(0) ,作 迭代计算 X(k+1) =AX(k) 则可得迭代序列X(0) , X(1) , … , X(k) ,…, 序列的收敛情况与A的按模最大特征值有密切关 系,分析序列的极限,即可得到A的按模最大特征 值及特征向量的近似值。
(1)即初始非零向量V(0)
(0)
V
( 1)
AV
( 0)
0 1 1 1 1 1 1 2 0 1 1 2 1 1 2 3
1 Ak X 1 2 Ak X 2 n A k X n
k 1 1 X1 2 k X 2 n k X n 2 n
i [ 1 X 1 ( 1) 2 X 2 i X i ] i3 1
(11)
0 1 144 233 1 1 233 377
最大特征值的计算:
V1(12 ) 233 V2(12 ) 377 1 (11) 1.61805 或者1 (11) 1.61803 V1 144 V2 233 1.61805 1.61803 特征向量:V(11) 或 者1 2
(k ) j k 1
V(k)的第j个分量:
k
12
i i 1 故有: 由已知条件: 1 1 v (jk 1) 所以: lim ( k ) 1 k v j
k 1
i 0, 0 1
k
定理的证明已给出求矩阵最大特征值的方法: (1)取一非零初始向量V(0) ,如V(0)=(1,1,...,1)T (2)作迭代计算:V(k+1)=AV(k) (3)当k充分大时取:
(1)当|1|>1时,V(k)与V(k+1)的各个不等于0的 分量将随k的增大而过快地增大,而可能“溢出”; (2)当|1|<1时, V(k)与V(k+1)的各个分量将随k 的增大而过快地减小而趋于0; 上述两种情况都会导致计算结果不准确。
19
解决措施:在计算V(k+1)之前,先将V(k)规范化, 具体操作如下: (1)取U(0)=V(0)=1X1+ 2X2+...+ nXn(非零 向量),计算V(1) : V(1)=AU(0)=AV(0) (2)取U(1):
x1 x2 0 x1 x2 x1 x2 0
1 1 x1 1 1 x 0 2
1 取对应于2=2的基础解向量 P2 1
5
则对应于2=2的全部特征向量为:kP2 (k 0)
V ( k 1) AV ( k ) 而:
AV ( k ) 1V ( k ) 故:
相关文档
最新文档