浙江省温州市2019-2020学年第二学期七年级期末考试数学试卷 解析版

合集下载

2019-2020学年浙江省杭州市西湖区七年级(下)期末数学试卷(含答案解析)

2019-2020学年浙江省杭州市西湖区七年级(下)期末数学试卷(含答案解析)

2019-2020学年浙江省杭州市西湖区七年级(下)期末数学试卷 选择题(本大题共10小题,共30.0分) 计算:(计+1 = ()AT已知某新型感冒病毒的直径约为0.000 000 823米,将0.000 000 823用科学记数法表示为()A. 82.3 × 10^6B. 8.23 × 10^7C. 8.23 × 10~6D. 0.823 × IO 7把/ — 0+1)2分解因式,结果正确的是() A. (% + y + I)(X - y - 1)B. (% + y - I)(X 一 y — 1)C. (χ + y - I)(X + y+ 1)D ・(χ-y+ I)(X + y+ 1) 下列调查中适宜采用抽样方式的是()A. 了解某班每个学生家庭用电数量B. 调査你所在学校数学教师的年龄状况C. 调査神舟飞船各零件的质量D. 调査一批显像管的使用寿命如图,AB∕∕CD. AE 交 CD 于点 C, DE 丄 AE 于点 E,若ZJl = 42°,则 ZD = ()A. 42°B. 58°C. 52°D. 48° 化简分式二:+二的结果是()如图,将边长为5cm 的等边△力3C 沿边BC 向右平移4cm 得到△ DEF, 则四边形ABFD 的周长为()A. 22CmB. 23CmC. 24CmD. 25Cm讣算1052 -952的结果为()A. 1000B. 1980 如图,直线力B∕∕CD ∙ ∆BAE = 28°. A. 68°B. 78°1. 2.3. 4. 5. 6. 7. 8.9.10. B.- A. a + b B. a — b现定义一种新运算:庞b= b 2- Ub 9 A. —9 B. —6 C — D — • a-b ∙ α+b如:102 = 22-1x2 = 2,贝∣J(-102)O3等于() C. 6 D.9 C. 2(X)0 乙ECD = 50。

浙江省杭州市西湖区2019-2020学年第二学期七年级下期末考试数学试卷 (解析版)

浙江省杭州市西湖区2019-2020学年第二学期七年级下期末考试数学试卷  (解析版)

2019-2020学年浙江省杭州市西湖区七年级第二学期期末数学试卷一、选择题1.计算2﹣2的结果是()A.2B.﹣2C.﹣4D.2.某种感冒病毒的直径是0.00000012米,数0.00000012用科学记数法表示为()A.1.2×10﹣6B.1.2×10﹣7C.1.2×10﹣8D.12×10﹣83.将a2﹣1分解因式,结果正确的是()A.a(a﹣1)B.a(a+1)C.(a+1)(a﹣1)D.(a﹣1)24.下列调查:①日光灯管厂要检测一批灯管的使用寿命;②了解居民对废电池的处理情况;③了解初中生的主要娱乐方式;④某公司对退休职工进行健康检查,应作抽样调查的是()A.①②③B.①②④C.①③④D.②③④5.如图,直线l1∥l2,线段AB交l1,l2于D,B两点,过点A作AC⊥AB,交直线l1于点C,若∠1=15°,则∠2=()A.95°B.105°C.115°D.125°6.已知分式A=,B=+,其中x≠±2,则A与B的关系是()A.A=B B.A=﹣B C.A>B D.A<B7.定义新运算:a*b=ab+a2﹣b2,则(x+y)*(x﹣y)=()A.x2﹣y2B.x2﹣y2﹣2xy C.x2﹣y2﹣4xy D.x2﹣y2+4xy8.如图,将边长为5cm的等边三角形ABC沿边BC向右平移3cm,得到△DEF,则四边形ADFB的周长为()cm.A.20B.21C.22D.239.已知2n+212+1(n<0)是一个有理数的平方,则n的值为()A.﹣16B.﹣14C.﹣12D.﹣1010.如图,直线AB∥CD,点F在直线AB上,点N在直线CD上,∠EFA=25°,∠FGH =90°,∠HMN=25°,∠CNP=30°,则∠GHM=()A.45°B.50°C.55°D.60°二、填空题:本大题有6个小题,每小题4分,共24分.11.若2x﹣y=12,用含有x的代数式表示y,则y=.12.如图,有下列3个结论:①能与∠DEF构成内错角的角的个数是2;②能与∠EFB构成同位角的角的个数是1;③能与∠C构成同旁内角的角的个数是4,以上结论正确的是.13.已知a x=2,a y=3,则a x+y=;a3x﹣2y=.14.甲、乙两人练习跑步,如果乙先跑10米,则甲跑5秒就可追上乙;如果乙先跑2秒,则甲跑4秒就可追上乙,若设甲的速度为x米/秒,乙的速度为y米/秒,可列方程组.15.已知x﹣2=,则代数式(x+1)2﹣6(x+1)+9的值为.16.一列数a1,a2,a3,…,a n,其中a1=﹣1,a2=,a3=,…,a n=,则a2=;a1+a2+a3+…+a2020=;a1×a2×a3×…×a2020=.三、解答题:本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤. 17.计算或化简(1)(14a3﹣7a2)÷(7a);(2)(a+b)(a2﹣ab+b2).18.解方程或解方程组(1);(2)﹣2=.19.为了了解学生最喜欢的趣味运动项目类型:A:跳长绳,B:踢毽子,C:打篮球,D:拔河,共四类,随机抽查了部分学生,并将统计结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)在图①中,求D部分所占扇形的圆心角的度数.(2)将图②补充完整.(3)若全校共有学生1200名,估计该校最喜欢踢毽子的学生有多少.20.已知a2﹣3a+1=0.(1)判断a=0是否成立?请说明理由.(2)求6a﹣2a2的值.(3)求a+的值.21.玲玲家准备装修一套新住房,若甲、乙两个装饰公司合作,需6周完成,共需装修费为5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周才能完成,共需装修费4.8万元.玲玲的爸爸妈妈商量后决定只选一个公司单独完成.(1)如果从节约时间的角度考虑应选哪家公司?(2)如果从节约开支的角度考虑呢?请说明理由.22.已知m=a2b,n=3a2﹣2ab(a≠0,a≠b).(1)当a=3,b=﹣2时,分别求m,n的值.(2)比较n+与2a2的大小.(3)当m=12,n=18时,求﹣的值.23.将一副三角板中的两块直角三角尺的直角顶点C按照如图①的方式叠放在一起(∠A =30°,∠ABC=60°,∠E=∠EDC=45°),且三角板ACB的位置保持不动.(1)将三角板DCE绕点C按顺时针方向旋转至图②,若∠ACE=60°,求∠DCB的度数.(2)将三角板DCE绕点C按顺时针方向旋转,当旋转到ED∥AB时,求∠BCE的度数(请先在备用图上补全相应的图形).(3)当0°<∠BCE<180°且点E在直线BC的上方时,这两块三角尺是否存在一组边互相平行?若存在,请直接写出∠BCE所有可能的值;若不存在,请说明理由.参考答案一、选择题:本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有-项是符合题目要求的.1.计算2﹣2的结果是()A.2B.﹣2C.﹣4D.【分析】直接利用负整数指数幂的性质化简得出答案.解:2﹣2=.故选:D.2.某种感冒病毒的直径是0.00000012米,数0.00000012用科学记数法表示为()A.1.2×10﹣6B.1.2×10﹣7C.1.2×10﹣8D.12×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:0.00000012=1.2×10﹣7.故选:B.3.将a2﹣1分解因式,结果正确的是()A.a(a﹣1)B.a(a+1)C.(a+1)(a﹣1)D.(a﹣1)2【分析】利用平方差公式进行分解即可.解:a2﹣1=(a+1)(a﹣1),故选:C.4.下列调查:①日光灯管厂要检测一批灯管的使用寿命;②了解居民对废电池的处理情况;③了解初中生的主要娱乐方式;④某公司对退休职工进行健康检查,应作抽样调查的是()A.①②③B.①②④C.①③④D.②③④【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.解:①日光灯管厂要检测一批灯管的使用寿命,调查有破坏性,应采用抽样调查;②了解居民对废电池的处理情况,人数众多,应采用抽样调查;③了解初中生的主要娱乐方式,人数众多,应采用抽样调查;④某公司对退休职工进行健康检查,人数不多,应采用全面调查;应作抽样调查的是①②③,故选:A.5.如图,直线l1∥l2,线段AB交l1,l2于D,B两点,过点A作AC⊥AB,交直线l1于点C,若∠1=15°,则∠2=()A.95°B.105°C.115°D.125°【分析】利用垂直定义和三角形内角和定理计算出∠ADC的度数,再利用平行线的性质可得∠3的度数,再根据邻补角的性质可得答案.解:∵AC⊥AB,∴∠A=90°,∵∠1=15°,∴∠ADC=180°﹣90°﹣15°=75°,∵l1∥l2,∴∠3=∠ADC=75°,∴∠2=180°﹣75°=105°,故选:B.6.已知分式A=,B=+,其中x≠±2,则A与B的关系是()A.A=B B.A=﹣B C.A>B D.A<B【分析】先把B式进行化简,再判断出A和B的关系即可.解:∵B==,∴A和B互为相反数,即A=﹣B.故选:B.7.定义新运算:a*b=ab+a2﹣b2,则(x+y)*(x﹣y)=()A.x2﹣y2B.x2﹣y2﹣2xy C.x2﹣y2﹣4xy D.x2﹣y2+4xy【分析】原式利用题中的新定义化简,计算即可得到结果.解:根据题中的新定义得:原式=(x+y)(x﹣y)+(x+y)2﹣(x﹣y)2=x2﹣y2+(x+y+x﹣y)(x+y﹣x+y)=x2﹣y2+4xy.故选:D.8.如图,将边长为5cm的等边三角形ABC沿边BC向右平移3cm,得到△DEF,则四边形ADFB的周长为()cm.A.20B.21C.22D.23【分析】根据平移的性质可得DF=AC=5cm,AD=CF=3cm,然后求出四边形ADFB 的周长=AB+BC+CF+DF+AD,最后代入数据计算即可得解.解:∵△ABC沿边BC向右平移3cm得到△DEF,∴DF=AC=5cm,AD=CF=3cm,∴四边形ADFB的周长=AB+BC+CF+DF+AD,=5+5+3+5+3,=21(cm),故选:B.9.已知2n+212+1(n<0)是一个有理数的平方,则n的值为()A.﹣16B.﹣14C.﹣12D.﹣10【分析】分多项式的三项分别是乘积二倍项时,利用完全平方公式分别求出n的值,然后选择答案即可.解:2n是乘积二倍项时,2n+212+1=212+2•26+1=(26+1)2,此时n=6+1=7,212是乘积二倍项时,2n+212+1=2n+2•211+1=(211+1)2,此时n=2×11=22,1是乘积二倍项时,2n+212+1=(26)2+2•26•2﹣7+(2﹣7)2=(26+2﹣7)2,此时n=﹣14,综上所述,n可以取到的数是7、22、﹣14.故选:B.10.如图,直线AB∥CD,点F在直线AB上,点N在直线CD上,∠EFA=25°,∠FGH =90°,∠HMN=25°,∠CNP=30°,则∠GHM=()A.45°B.50°C.55°D.60°【分析】延长HG交直线AB于点K,延长PM交直线AB于点S.利用平行线的性质求出∠KSM,利用邻补角求出∠SMH,利用三角形的外角与内角的关系,求出∠SKG,再利用四边形的内角和求出∠GHM.解:延长HG交直线AB于点K,延长PM交直线AB于点S.∵AB∥CD,∴∠KSM=∠CNP=30°.∵∠EFA=∠KFG=25°,∠KGF=180°﹣∠FGH=90°,∠SMH=180°﹣∠HMN=155°,∴∠SKH=∠KFG+∠KGF=25°+90°=115°.∵∠SKH+∠GHM+∠SMH+∠KSM=360°,∴∠GHM=360°﹣115°﹣155°﹣30°故选:D.二、填空题:本大题有6个小题,每小题4分,共24分.11.若2x﹣y=12,用含有x的代数式表示y,则y=2x﹣12.【分析】将x看做已知数求出y即可.解:∵2x﹣y=12,∴y=2x﹣12,故答案为:2x﹣12.12.如图,有下列3个结论:①能与∠DEF构成内错角的角的个数是2;②能与∠EFB构成同位角的角的个数是1;③能与∠C构成同旁内角的角的个数是4,以上结论正确的是①②.【分析】根据同位角、内错角、同旁内角的定义判断.解:①能与∠DEF构成内错角的角的个数有2个,即∠EFA和∠EDC,故正确;②能与∠EFB构成同位角的角的个数只有1个:即∠FAE,故正确;③能与∠C构成同旁内角的角的个数有5个:即∠CDE,∠B,∠CED,∠CEF,∠A,故错误;所以结论正确的是①②.故答案为:①②.13.已知a x=2,a y=3,则a x+y=6;a3x﹣2y=.【分析】分别根据同底数幂的乘法法则,幂的乘方运算法则以及同底数幂的除法法则计解:∵a x=2,a y=3,∴a x+y=a x•a y=2×3=6;a3x﹣2y=.故答案为:6;.14.甲、乙两人练习跑步,如果乙先跑10米,则甲跑5秒就可追上乙;如果乙先跑2秒,则甲跑4秒就可追上乙,若设甲的速度为x米/秒,乙的速度为y米/秒,可列方程组.【分析】根据题意,得出等量关系:①乙先跑10米,则甲跑5秒就可以追上乙;②乙先跑2秒,则甲跑4秒就可追上乙,得出方程组即可.解:根据乙先跑10米,则甲跑5秒就可以追上乙,得方程5x=5y+10;根据乙先跑2秒,则甲跑4秒就可追上乙,得方程4x=4y+2y.可得方程组.故答案为:.15.已知x﹣2=,则代数式(x+1)2﹣6(x+1)+9的值为2.【分析】利用完全平方公式得到原式=(x﹣2)2,然后利用整体代入的方法计算.解:(x+1)2﹣6(x+1)+9=[(x+1)﹣3]2=(x﹣2)2,因为x﹣2=,所以原式=()2=2.故答案为2.16.一列数a1,a2,a3,…,a n,其中a1=﹣1,a2=,a3=,…,a n=,则a2=;a1+a2+a3+…+a2020=;a1×a2×a3×…×a2020=1.【分析】根据题意,可以写出前几项的值,从而可以发现这列数的变化特点,从而可以求得所求式子的值.解:由题意可得,当a1=﹣1时,a2===,a3===2,a4=﹣1,…,∵2020÷3=673…1,∴a1+a2+a3+…+a2020=(﹣1++2)×673+(﹣1)=×673+(﹣1)=﹣=,a1×a2×a3×…×a2020=[(﹣1)××2]673×(﹣1)=(﹣1)673×(﹣1)=(﹣1)×(﹣1)=1,故答案为:,,1.三、解答题:本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤. 17.计算或化简(1)(14a3﹣7a2)÷(7a);(2)(a+b)(a2﹣ab+b2).【分析】(1)多项式除以一个单项式,等于用这个多项式的每一项分别除以这个单项式,结果能合并的再合并,据此可解;(2)多项式乘以多项式,等于用一个多项式的每一项分别乘以另一个多项式的每一项,并将结合合并即可.解:(1)(14a3﹣7a2)÷(7a)=14a3÷7a﹣7a2÷7a=2a2﹣a;(2)(a+b)(a2﹣ab+b2)=a3﹣a2b+ab2+ba2﹣ab2+b3=a3+b3.18.解方程或解方程组(1);(2)﹣2=.【分析】(1)方程组利用加减消元法求出解即可;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解:(1),①+②得:6x=18,解得:x=3,①﹣②得:4y=8,解得:y=2,则方程组的解为;(2)分式方程整理得:﹣2=,去分母得:x﹣2(x﹣3)=3,去括号得:x﹣2x+6=3,移项合并得:﹣x=﹣3,解得:x=3,检验:把x=3代入得:x﹣3=0,∴x=3是增根,则分式方程无解.19.为了了解学生最喜欢的趣味运动项目类型:A:跳长绳,B:踢毽子,C:打篮球,D:拔河,共四类,随机抽查了部分学生,并将统计结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)在图①中,求D部分所占扇形的圆心角的度数.(2)将图②补充完整.(3)若全校共有学生1200名,估计该校最喜欢踢毽子的学生有多少.【分析】(1)从统计图可知,“B踢毽子”的有14人,占调查人数的35%,可求出调查人数,进而求出“D拔河”的人数和所占的百分比,进而求出相应的圆心角的度数;(2)补全条形统计图;(3)样本估计总体,样本中“B踢毽子”占35%,因此根估计总体1200人的35%是喜欢“B踢毽子”的.解:(1)调查人数:14÷35%=40(人),D组的人数:40﹣12﹣14﹣8=6(人),D组所占的圆心角为:360°×=54°,答:D部分所占扇形的圆心角的度数为54°;(2)补全条形统计图如图所示:(3)1200×35%=420(人),答:全校1200名学生中最喜欢踢毽子的有420人.20.已知a2﹣3a+1=0.(1)判断a=0是否成立?请说明理由.(2)求6a﹣2a2的值.(3)求a+的值.【分析】(1)将a=0代入方程即可求出答案.(2)将a2﹣3a=﹣1整体代入原式即可求出答案.(3)将等式两边同时除以a即可求出答案.解:(1)将a=0代入a2﹣3a+1=0,∴左边=1≠0=右边,故a=0不成立.(2)∵a2﹣3a=﹣1,∴原式=﹣2(a2﹣3a)=2.(3)∵a2﹣3a=﹣1,a≠0,∴a+=3.21.玲玲家准备装修一套新住房,若甲、乙两个装饰公司合作,需6周完成,共需装修费为5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周才能完成,共需装修费4.8万元.玲玲的爸爸妈妈商量后决定只选一个公司单独完成.(1)如果从节约时间的角度考虑应选哪家公司?(2)如果从节约开支的角度考虑呢?请说明理由.【分析】如果从节约时间角度来考虑,我们可以列出方程组求出甲乙单独做所用的时间即可,如果从节约经费考虑,求出他们各自单独做的周费用,再乘以他们所需时间即可.解:(1)设工作总量为1,设甲公司单独做需x周,乙公司单独做需y周,可列出方程组,解得,经检验,它们是原方程的根;∵10<15,可见甲公司用时少,所以从时间上考虑选择甲公司.(2)设甲公司每周费用为a万元,乙公司每周费用为b万元,可列出方程组,解之得;∴可以得到用甲公司共需×10==6万元,乙公司共需×15=4万元,4万元<6万元,∴从节约开支上考虑选择乙公司.22.已知m=a2b,n=3a2﹣2ab(a≠0,a≠b).(1)当a=3,b=﹣2时,分别求m,n的值.(2)比较n+与2a2的大小.(3)当m=12,n=18时,求﹣的值.【分析】(1)将a、b的代入m、n中,即可得到m、n的值;(2)两式作差,然后和0比较大小,即可判断n+与2a2的大小;(3)先对所求式子变形,再根据m、n的值即可解答本题.解:(1)∵m=a2b,n=3a2﹣2ab,a=3,b=﹣2,∴m=32×(﹣2)=﹣18,n=3×32﹣2×3×(﹣2)=39,即m、n的值分别为﹣18,39;(2)∵m=a2b,n=3a2﹣2ab(a≠0,a≠b),∴n+﹣2a2=3a2﹣2ab+﹣2a2=3a2﹣2ab+b2﹣2a2=a2﹣2ab+b2=(a﹣b)2>0,即n+>2a2;(3)﹣==,∵m=a2b,n=3a2﹣2ab,m=12,n=18,∴原式==.23.将一副三角板中的两块直角三角尺的直角顶点C按照如图①的方式叠放在一起(∠A =30°,∠ABC=60°,∠E=∠EDC=45°),且三角板ACB的位置保持不动.(1)将三角板DCE绕点C按顺时针方向旋转至图②,若∠ACE=60°,求∠DCB的度数.(2)将三角板DCE绕点C按顺时针方向旋转,当旋转到ED∥AB时,求∠BCE的度数(请先在备用图上补全相应的图形).(3)当0°<∠BCE<180°且点E在直线BC的上方时,这两块三角尺是否存在一组边互相平行?若存在,请直接写出∠BCE所有可能的值;若不存在,请说明理由.【分析】(1)首先证明∠BCE=∠ACD=25°,∠BCD=∠BCE+∠ECD=115°;(2)有两种情形,画出图形即可解决问题;(3)有四种情形,画出图形即可解决问题.解:(1)如图2中,∵∠ACB=∠ECD=90°,∴∠ECB=∠ACD,∵∠ACE=65°,∴∠BCE=∠ACD=25°,∴∠BCD=∠BCE+∠ECD=25°+90°=115°,故答案为115°;(2)如图2中,当DE∥AB时,延长BC交DE于M,∴∠B=∠DMC=60°,∵∠DMC=∠E+∠MCE,∴∠ECM=15°,∴∠BCE=165°,当D′E′∥AB时,∠E′CB=∠ECM=15°,∴当ED∥AB时,∠BCE的度数为165°或15°;(3)存在.如图,①CD∥AB时,∠BCE=30°,②DE∥BC时,∠BCE=45°,③CE∥AB时,∠BCE=120°,④DE∥AB时,∠BCE=165°,⑤当AC∥DE时,∠BCE=135°综上所述,当∠BCE<180°且点E在直线BC的上方时,这两块三角尺存在一组边互相平行,∠BCE的值为30°或45°或120°或165°或135°.。

2019-2020学年浙江省温州市苍南县灵溪学区七年级(上)期中数学试卷(解析版)

2019-2020学年浙江省温州市苍南县灵溪学区七年级(上)期中数学试卷(解析版)

2019-2020学年浙江省温州市苍南县灵溪学区七年级(上)期中数学试卷一、选择题(本题有10小题,每小题3分,共30分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.的倒数是()A.B.﹣C.D.﹣2.下列实数中是无理数的是()A.B.C.D.3.143.64的立方根是()A.8B.±8C.4D.±44.盛世中华,国之大典,今年10月1日,20余万军民以盛大的阅兵仪式和群众游行欢庆新中国70华诞,全球瞩目,精彩不断.数据20万用科学记数法可表示为()A.20×104B.2×104C.2×105D.0.2×1065.下列选项中的计算,不正确的是()A.B.C.D.6.用代数式表示“x与y的2倍的和”,正确的是()A.2x+y B.x+2y C.2(x+y)D.2xy7.估算的值是在()A.1到2之间B.2到3之间C.3到4之间D.4到5之间8.若|a|=7,b的相反数是﹣1,则a+b的值是()A.6B.8C.6或﹣8D.﹣6或89.某粮店出售的两种品牌的面粉袋上分别标有质量为(25±0.1)kg,(25±0.2)kg的字样,从中任意拿出两袋,它们的质量最多相差()A.0.5kg B.0.4kg C.0.3kg D.0.2kg10.如图,在2019个“口”中依次填入一列数字m1,m2,m3;…….m2019,使得其中任意四个相邻的“□”中所填的数字之和都等于﹣10.已知m4=0,m6=﹣7,则m1+m2019的值为()A.0B.﹣3C.﹣10D.﹣14二、填空题(本题共8小题,每小题3分,共24分)11.2019年女排世界杯共12支队伍参赛.东道主日本11场比赛中6胜5负若记为+6,﹣5,那么夺得本届世界杯冠军的中国女排11战全胜可记为.12.式子(﹣2)2的计算结果是.13.比较大小:﹣1﹣8(填“>”“<“或“=”).14.0.6348≈.(精确到0.01)15.写出一个含x的代数式,当x=﹣1时值为5,这个代数式是.16.绝对值小于3.5的所有整数的和是.17.若代数式x2+2x的值为5,则代数式2x2+4x﹣1的值是.18.七巧板被西方人称为“东方魔术”.下面的两幅图是由同一副七巧板拼成的.已知七巧板拼成的正方形(如图1)边长为a(cm).若图2的“小狐狸“图案中的阴影部分面积为3cm2,那么a=cm.三、解答题(本题有6小题,共46分.解答需写出必要的文字说明、演算步骤或说理过程)19.在数轴上表示下列各数,并用“<“把它们连接起来,0,,﹣2,|﹣3|,∴<<<.20.计算:(1)3﹣(﹣7)+(﹣2)(2)(3)21.小明有5张写着不同数字的卡片,请你按要求抽出卡片,完成下列各问题.(1)从中取出2张卡片,使这两张卡片上数字的乘积最大,乘积的最大值为.(2)从中取出2张卡片,使这两张卡片上数字相除的商最小,商的最小值为22.如图为4×4的网格(每个小正方形的边长均为1),请画两个正方形(要求:其中一个边长是有理数,另一个是无理数),并写出其边长,∴边长为.∴边长为.23.某宝一家网店在即将到来的2019年“双11”全球狂欢节中,将原来“按标价打9折”的促销活动调整为“按标价打6折“,再享受以下优惠:每满300元减30元,上不封顶(即300﹣30,600﹣60,900﹣90,..),(1)一款运动鞋标价为1200元,则该款鞋子非“双11”期问购买需元,“双11”期间购买需元(2)张算盘同学打算在“双11“期间购买一双标价在1500到1800之间的运动鞋,会比平时购买节省多少钱?(设运动鞋的标价为a元,结果用含a的代数式表示)24.如图1,在一条可以折叠的数轴上,点A,B分别表示数﹣9和4.(1)A,B两点之间的距离为.(2)如图2,如果以点C为折点,将这条数轴向右对折,此时点A落在点B的右边1个单位长度处,则点C表示的数是(3)如图1,若点A以每秒3个单位长度的速度沿数轴向右运动,点B以每秒2个单位长度的速度也沿数轴向右运动,那么经过多少时间,A.B两点相距4个单位长度?2019-2020学年浙江省温州市苍南县灵溪学区七年级(上)期中数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.的倒数是()A.B.﹣C.D.﹣【解答】解:的倒数是.故选:C.2.下列实数中是无理数的是()A.B.C.D.3.14【解答】解:A.是无理数,故本选项符合题意;B.,是整数,属于有理数,故本选项不合题意;C.是分数,属于有理数,故本选项不合题意;D.3.14是有限小数,属于有理数,故本选项不合题意.故选:A.3.64的立方根是()A.8B.±8C.4D.±4【解答】解:∵4的立方等于64,∴64的立方根等于4.故选:C.4.盛世中华,国之大典,今年10月1日,20余万军民以盛大的阅兵仪式和群众游行欢庆新中国70华诞,全球瞩目,精彩不断.数据20万用科学记数法可表示为()A.20×104B.2×104C.2×105D.0.2×106【解答】解:数据20万用科学记数法可表示为20×104=2×105.故选:C.5.下列选项中的计算,不正确的是()A.B.C.D.【解答】解:A、=2,原计算错误,故符合题意;B、=﹣2,原计算正确,故不符合题意;C、±=±3,原计算正确,故不符合题意;D、=4,原计算正确,故不符合题意.故选:A.6.用代数式表示“x与y的2倍的和”,正确的是()A.2x+y B.x+2y C.2(x+y)D.2xy【解答】解:∵y的2倍为2y,∴x与y的2倍的和为x+2y,故选:B.7.估算的值是在()A.1到2之间B.2到3之间C.3到4之间D.4到5之间【解答】解:∵<<,∴2<<3,∴在2到3之间,故选:B.8.若|a|=7,b的相反数是﹣1,则a+b的值是()A.6B.8C.6或﹣8D.﹣6或8【解答】解:因为|a|=7,b的相反数是﹣1,所以a=±7,b=1当a=7,b=1时,a+b=7+1=8;当a=﹣7,b=1时,a+b=﹣7+1=﹣6.故选:D.9.某粮店出售的两种品牌的面粉袋上分别标有质量为(25±0.1)kg,(25±0.2)kg的字样,从中任意拿出两袋,它们的质量最多相差()A.0.5kg B.0.4kg C.0.3kg D.0.2kg【解答】解:根据题意从中找出两袋质量波动最大的(25±0.2)kg,则相差0.2﹣(﹣0.2)=0.4kg.故选:B.10.如图,在2019个“口”中依次填入一列数字m1,m2,m3;…….m2019,使得其中任意四个相邻的“□”中所填的数字之和都等于﹣10.已知m4=0,m6=﹣7,则m1+m2019的值为()A.0B.﹣3C.﹣10D.﹣14【解答】解:∵任意四个相邻“O”中,所填数字之和都等于﹣10,∴m1+m2+m3+m4=m2+m3+m4+m5,m2+m3+m4+m5=m3+m4+m5+m6,m3+m4+m5+m6=m4+m5+m6+m7,m4+m5+m6+m7=m5+m6+m7+m8,∴m1=m5,m2=m6,m3=m7,m4=m8,同理可得:m1=m5=m9=…,m2=m6=m10=…,m3=m7=m11=…,m4=m8=m12=…,∵2019÷4=504…3,∴m2019=m3,∵m4=0,m6=﹣7,∴m2=﹣7,∴m1+m3=﹣10﹣m2﹣m4=﹣10﹣(﹣7)﹣0=﹣3,∴m1+m2019=﹣3,故选:B.二、填空题(本题共8小题,每小题3分,共24分)11.2019年女排世界杯共12支队伍参赛.东道主日本11场比赛中6胜5负若记为+6,﹣5,那么夺得本届世界杯冠军的中国女排11战全胜可记为+11.【解答】解:∵6胜5负若记为+6,﹣5,∴11战全胜可记为+11,故答案为:11.12.式子(﹣2)2的计算结果是4.【解答】解:(﹣2)2=4.故答案为:4.13.比较大小:﹣1>﹣8(填“>”“<“或“=”).【解答】解:|﹣1|=1,|﹣8|=8,∵1<8,∴﹣1>﹣8,故答案为:>.14.0.6348≈0.63.(精确到0.01)【解答】解:0.6348≈0.63(精确到0.01).故答案为0.63.15.写出一个含x的代数式,当x=﹣1时值为5,这个代数式是x+6(不唯一).【解答】解:当x=﹣1时,代数式的值为5,故代数式可以为:x+6,故答案为:x+6(不唯一).16.绝对值小于3.5的所有整数的和是0.【解答】解:绝对值小于3.5的所有整数为:﹣3,﹣2,﹣1,0,1,2,3,所以绝对值小于3.5的所有整数的和是0,故答案为:0.17.若代数式x2+2x的值为5,则代数式2x2+4x﹣1的值是9.【解答】解:∵数式x2+2x的值为5,∴2x2+4x﹣1=2(x2+2x)﹣1=2×5﹣1=9.故答案为:9.18.七巧板被西方人称为“东方魔术”.下面的两幅图是由同一副七巧板拼成的.已知七巧板拼成的正方形(如图1)边长为a(cm).若图2的“小狐狸“图案中的阴影部分面积为3cm2,那么a=2cm.【解答】解:设阴影小正方形的边长为xcm,由题意得:(2a+4a)×a=3,解得:a=1,∴小正方形的边长为1cm,则大正方形的对角线为4cm,∴a=×4=2(cm);故答案为:2.三、解答题(本题有6小题,共46分.解答需写出必要的文字说明、演算步骤或说理过程)19.在数轴上表示下列各数,并用“<“把它们连接起来,0,,﹣2,|﹣3|,∴﹣2<0<1<|﹣3|.【解答】解:﹣2<0<1<|﹣3|,故答案为:﹣2,0,1,|﹣3|.20.计算:(1)3﹣(﹣7)+(﹣2)(2)(3)【解答】解:(1)3﹣(﹣7)+(﹣2)=3+7﹣2=10﹣2=8;(2)原式=﹣1﹣2+9=6;(3)原式=﹣9×﹣2=﹣6﹣2=﹣8.21.小明有5张写着不同数字的卡片,请你按要求抽出卡片,完成下列各问题.(1)从中取出2张卡片,使这两张卡片上数字的乘积最大,乘积的最大值为40.(2)从中取出2张卡片,使这两张卡片上数字相除的商最小,商的最小值为﹣2【解答】解:(1)根据题意得:(﹣5)×(﹣8)=40;(2)根据题意得:(﹣8)÷4=﹣2,故答案为:(1)40;(2)﹣222.如图为4×4的网格(每个小正方形的边长均为1),请画两个正方形(要求:其中一个边长是有理数,另一个是无理数),并写出其边长,∴边长为2.∴边长为.【解答】解:如图所示:边长为2,边长为,故答案为:2;23.某宝一家网店在即将到来的2019年“双11”全球狂欢节中,将原来“按标价打9折”的促销活动调整为“按标价打6折“,再享受以下优惠:每满300元减30元,上不封顶(即300﹣30,600﹣60,900﹣90,..),(1)一款运动鞋标价为1200元,则该款鞋子非“双11”期问购买需1080元,“双11”期间购买需660元(2)张算盘同学打算在“双11“期间购买一双标价在1500到1800之间的运动鞋,会比平时购买节省多少钱?(设运动鞋的标价为a元,结果用含a的代数式表示)【解答】解:(1)由题意可得,一款运动鞋标价为1200元,则该款鞋子非“双11”期问购买需1200×0.9=1080(元),∵1200×0.6=720,600<720<900,“双11”期间购买需:1200×0.6﹣600÷300×30=660(元),故答案为:1080,660;(2)平时购买这双运动鞋需要0.9a元,∵1500×0.6=900,1800×0.6=1080,900<1080<1200,“双11“期间购买这双运动鞋需要:0.6a﹣900÷300×30=(0.6a﹣90)元,∵0.9a﹣(0.6a﹣90)=0.9a﹣0.6a+90=(0.3a+90)元,即张算盘同学打算在“双11“期间购买一双标价在1500到1800之间的运动鞋,会比平时购买节省(0.3a+90)元.24.如图1,在一条可以折叠的数轴上,点A,B分别表示数﹣9和4.(1)A,B两点之间的距离为13.(2)如图2,如果以点C为折点,将这条数轴向右对折,此时点A落在点B的右边1个单位长度处,则点C表示的数是﹣2(3)如图1,若点A以每秒3个单位长度的速度沿数轴向右运动,点B以每秒2个单位长度的速度也沿数轴向右运动,那么经过多少时间,A.B两点相距4个单位长度?【解答】解:(1)4﹣(﹣9)=13.故答案为:13.(2)设点C表示的数为x,则AC=x﹣(﹣9),BC=4﹣x,依题意,得:x﹣(﹣9)=4﹣x+1,解得:x=﹣2.故答案为:﹣2.(3)当运动时间为t秒时,点A表示的数为3t﹣9,点B表示的数为2t+4.∵AB=4,∴3t﹣9﹣(2t+4)=4或2t+4﹣(3t﹣9)=4,解得:t=9或t=17.答:经过9秒或17秒时,A.B两点相距4个单位长度.。

浙江省温州市2020-2021学年高一上学期期末教学质量统一检测数学试题(B卷) (解析版)

浙江省温州市2020-2021学年高一上学期期末教学质量统一检测数学试题(B卷) (解析版)

2020-2021学年浙江省温州市高一(上)期末数学试卷(B卷)一、选择题(共8小题).1.已知集合A={1,2,3},B={2,4},则A∪B=()A.{2}B.{2,3}C.{1,2,3}D.{1,2,3,4}2.下列函数既不是奇函数也不是偶函数的是()A.y=x3B.y=x2C.y=x D.3.已知函数,则f(x2)的定义域为()A.(﹣∞,﹣1)∪(1,+∞)B.(﹣∞,0)∪(1,+∞)C.(﹣1,1)D.(0,1)4.在平面直角坐标系中,角α的顶点与原点重合,终边与单位圆的交点为,则sin(π-α)=( ) A.B.C.D.5.已知a=e0.3,b=ln0.3,c=0.3e,则()A.a>b>c B.a>c>b C.c>b>a D.b>c>a6.已知a,b,c是实数,且a≠0,则“∀x∈R,ax2+bx+c<0”是“b2﹣4ac<0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7.已知a>0,b>0,a+b=1,则下列等式可能成立的是()A.a2+b2=1B.ab=1C.a2+b2=D.a2﹣b2=8.某工厂有如图1所示的三种钢板,其中长方形钢板共有100张,正方形钢板共有60张,正三角形钢板共有80张.用这些钢板制作如图2所示的甲、乙两种模型的产品,要求正方形钢板全部用完,则制成的甲模型的个数最少有()A.10个B.15个C.20个D.25个二、多项选择题(共4小题).9.已知函数y=x2﹣2x+2的值域是[1,2],则其定义域可能是()A.[0,1]B.[1,2]C.[]D.[﹣1,1]10.已知,且tanθ=m,则下列正确的有()A.B.tan(π﹣θ)=m C.D.11.已知函数f(x)=2sin(ωx+φ)(ω>0)的图象过两点,则ω的可能取值为()A.1B.2C.3D.412.在同一直角坐标系中,函数f(x)=log a(x﹣b),g(x)=b x﹣a的图象可能是()A B C D三、填空题:本题共4小题,每小题5分,共20分。

2020年浙江省温州市中考数学试卷解析版

2020年浙江省温州市中考数学试卷解析版

【解析】解:根据主视图就是从正面看物体所得到的图形可知:选项 A 所表示的图形符合
题意,故选 A。
数学是打开科学大门的钥匙1 Nhomakorabea中考数学工作室—中考真题
4:(2020 年浙江省温州市中考)中考数学工作室
4. 一个不透明的布袋里装有 7 个只有颜色不同的球,其中 4 个白球,2 个红球,1 个黄球。
从布袋里任意摸出 1 个球,是红球的概率为( )

D. 2
【考点】有理数大小比较
【解析】解: 2 2 0 1 ,所以最大的是 1, 3
故选 A。
2:(2020 年浙江省温州市中考)中考数学工作室 2. 原子钟是以原子的规则振动为基础的各种守时装置的统称,其中氢脉泽钟的精度达到了 1700000 年误差不超过 1 秒。数据 1700000 用科学记数法表示为( )
A. 17 105
B. 1.7 106
C. 0.17 107
D. 1.7 107
【考点】科学记数法—表示较大的数
【解析】解:1700000 1.7 106 ,
故选 B。
3:(2020 年浙江省温州市中考)中考数学工作室 3. 某物体如图所示,它的主视图是( )
A.
B.
C.
D.
【考点】简单组合体的三视图
A. 40°
B. 50°
C. 60°
D. 70°
【考点】等腰三角形的性质;平行四边形的性质。
【解析】解:∵在△ABC 中,∠A=40°,AB=AC,∴ C (180 40) 2 70 ,
∵四边形 BCDE 是平行四边形,∴∠E=70°, 故选 D。
6:(2020 年浙江省温州市中考)中考数学工作室
B.

人教版2019-2020学年第一学期七年级数学期末模拟试题(B卷)(解析版)

人教版2019-2020学年第一学期七年级数学期末模拟试题(B卷)(解析版)

人教版2019-2020学年第一学期七年级期末模拟试题(B卷)数学试卷考试时间:100分钟满分:120分姓名:__________ 班级:__________考号:__________注意事项:1、填写试题的答案请用黑色签字笔填写;2、班级、姓名、考号字迹务必填写工整.一、选择题(共10题;共30分)1.下列各数中,绝对值最小的数是()A.0B.1C.-3D.2.下列各图形中,不是正方体表面展开图的是( )A. B. C. D.3.如图,数轴A、B上两点分别对应实数a、b,则下列结论正确的是()A.a+b>0B.ab >0C.a-b>0D.<4.下列说法正确的是()A.不是单项式B.单项式的系数是1C.﹣7ad的次数是2D.3x﹣2y不是多项式5.方程的解是().A. B. C. D.6.将方程去分母,下面变形正确的是( )A. B. C. D.7.某种品牌的彩电降价30%以后,每台售价为元,则该品牌彩电每台原价应为()A.0.7a元B.0.3a元C.元D.元8.如图,点B在点A的方位是()A.南偏东B.北偏西C.西偏北D.东偏南9.多项式合并同类项后不含xy项,则k的值是()A. B. C. D.010.分数, , , , , , , , ,…将这列数排成如图形式,那么第8行第7个数是()A. B. C. D.二、填空题(共8题;共32分)11.如图,是用火柴棍摆出的一系列三角形图案,按这种方式摆下去,摆第5个图形时,需要的火柴棍为___________根.12.p在数轴上的位置如图所示,化简:=___________.13.如图是我市某连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是__________℃.14.计算:=___________.15.已知关于x的一元一次方程a(x-3)=2x-3a的解是x=3,则a=___________.16.若2x|m|-1 =5是一元一次方程,则m的值为____________.17.多项式是___________次__________项式.18.单项式的次数是_________________.三、解答题(一)(共3题;共20分)19.(8分)解方程:(1)(2)20.(6分)有理数a、b、c在数轴上的位置如图,化简:|a+b|-|b-1|-|a-c|-|1-c|.21.(6分)已知如图,点O在直线AB上,射线OC平分∠DOB.若∠COB=35°,求∠AOD的度数.22.(6分)如图A在数轴上所对应的数为-2.(1)点B在点A右边距A点4个单位长度,求点B所对应的数;(2)在(1)的条件下,点A以每秒2个单位长度沿数轴向左运动,点B以每秒2个单位长度沿数轴向右运动,当点A运动到-6所在的点处时,求A,B两点间距离.23.(7分)老师在黑板上书写了一个正确的演算过程,随后用一张纸挡住了一个二次三项式,形式如下:+3(x﹣1)=x2﹣5x+1(1)求所挡的二次三项式;(2)若x=﹣1,求所挡的二次三项式的值.24.(7分)某开发商进行商铺促销,广告上写着如下条款:投资者购买商铺后,必须由开发商代为租赁5年,5年期满后由开发商以比原商铺标价高20%的价格进行回购,投资者可在以下两种购铺方案中做出选择:方案一:投资者按商铺标价一次性付清铺款,每年可以获得的租金为商铺标价的10%.方案二:投资者按商铺标价的八五折一次性付清铺款,2年后每年可以获得的租金为商铺标价的10%,但要缴纳租金的10%作为管理费用.(1)请问:投资者选择哪种购铺方案,5年后所获得的投资收益率更高?为什么?(注:投资收益率=×100%)(2)对同一标价的商铺,甲选择了购铺方案一,乙选择了购铺方案二,那么5年后两人获得的收益将相差5万元.问:甲、乙两人各投资了多少万元?25.(9分)如图,在平面内有A、B、C三点,(1)画直线AC,线段BC,射线AB;(2)在(1)的条件下,在线段BC上任取一点D(不同于B、C),连接线段AD;(3)在(1)(2)的条件下,数数看,此时图中线段共有________条。

2019--2020第二学期期末考试七年级数学试题(附答案)

2019--2020第二学期期末考试七年级数学试题(附答案)
pOPq#$-$%$'4+ %!$0,'0#,4"
54 678 !"!,4 $$%($%!))
!!p@q# %!$*%#"$!0#! Ó×p§VØYÙb!
七年级数学试卷 98 第(页共-页
54 678 !#!,4
!!rs;<. k&()* )* ÚzxY1¨./-() L/ Û(* L0'(4(*+'.4 )!+Ü'(*. D#!
货 物种类
货厢型号 装货量
甲 乙
A
35x 吨 15x 吨
B
25(50-x)吨 35(50-x)吨
解:设用 A 型货厢 x 节,则用 B 型货厢(50-x)节,由题意,得 35x 25(50 x) 1530 15x 35(50 x) 1150
解得 28≤x≤30. 因为 x 为整数,所以 x 只能取 28,29,30.
所以∠CED=∠AEF=55°,
七年级数学参考答案,第 1页,共 3 页
所以∠ACD=180°-∠CED-∠D =180°-55°-42=83°.
22. (7 分)∠3 两直线平行,同位角相等 已知 等量代换 DG 内错角相等,两直线平行。 两直线平行,同旁内角互补。
23.(9 分)
分组 600≤ x <800 800≤ x <1000 1000≤ x <1200 1200≤ x <1400 1400≤ x <1600 1600≤ x <1800
七年级数学试卷 98 第,页共-页
54 678 !+!##4
!!>WXµ±®FYZ[#*("\GYZ[##*"\]^1?ZUÝ_Z[X`ab ?ZUic() \YÑCDZd*"e!;<FYZ[(*\#GYZ[#*\ifg1 e( hZdFYZ[!*\#GYZ[(*\ifg1e) hZdij²Ü]^ () \Y ZdDe®klYXmO: lßàCËn.O:

北师大版2019-2020学年七年级(下)期末数学试卷(含解析) (15)

北师大版2019-2020学年七年级(下)期末数学试卷(含解析) (15)

北师大版2019-2020学年第二学期七年级(下)期末数学试卷一、选择题(每小题3分,共30分)1.(3分)下面四个手机APP图标中,可看作轴对称图形的是()A.B.C.D.2.(3分)下列计算正确的是()A.a2+a2=a4B.(2a)3=6a3C.a9÷a3=a3D.(﹣2a)2•a3=4a53.(3分)小颖有两根长度为6cm和9cm的木条,桌上有下列长度的几根木条,从中选出一根,使三根木条首尾顺次相连,钉成三角形木框,她应该选择长度为()的木条.A.2cm B.3cm C.12cm D.15cm4.(3分)学习整式的乘法时,小明从图1边长为a的大正方形中剪掉一个边长为b的小正方形,将图1中阴影部分拼成图2的长方形,比较两个图中阴影部分的面积,能够验证的一个等式为(A.a(a+b)=a2+ab B.(a+b)(a﹣b)=a2﹣b2C.(a﹣b)2=a2﹣2ab+b2D.a(a﹣b)=a2﹣ab5.(3分)如图,一把直尺的边缘AB经过一块三角板DCB的直角顶点B,交斜边CD于点A,直尺的边缘EF分别交CD,BD于点E,F,若∠D=60°,∠ABC=20°,则∠1的度数为()A.25°B.40°C.50°D.80°6.(3分)马老师带领的数学兴趣小组做“频率的稳定性”试验时,统计了某结果出现的频率,绘制了如图的折线统计图,则符合这一结果的试验最有可能的是()A.掷一枚质地均匀的硬币,硬币落下后朝上的是正面B.一副去掉大小王的普通扑克牌(52张,四种花色)洗匀后,从中任抽一张牌,花色是梅花C.不透明袋子中有1个红球和4个白球,每个球除颜色外都相同,从中任取一球是白球D.在玩“石头、剪刀、布”的游戏中,小颖随机出的是“石头”7.(3分)如图,在Rt△ABC中,∠C=90°,在AC和AB上分别截取AE、AD,使AE =AD.再分别以点D、E为圆心,大于DE长为半径作弧,两弧在∠BAC内交于点F,作射线AF交边BC于点G,若CG=4,AB=10,则△ABG的面积为()A.12B.20C.30D.408.(3分)等腰三角形一腰的垂直平分线与另一腰所在直线的夹角为50°,则这个等腰三角形顶角的度数为()A.40°B.70°C.40°或70°D.40°或140°9.(3分)轩轩和凯凯在同一个数学学习小组,在一次数学活动课上,他们各自用一张边长为12cm的正方形纸片制作了一副七巧板,并合作设计了如图所示的作品请你帮他们计算图中圈出来的三块图形的面积之和为()A.12cm2B.24cm2C.36cm2D.48 cm210.(3分)如图,在边长为4的正方形ABCD中剪去一个边长为2的小正方形CEFG,动点P从点A出发,沿多边形的边以A→D→E→F→G→B的路线匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的图象大致为()A.B.C.D.二、填空题(每小题3分,共15分)11.(3分)被誉为“中国天眼”的FAST望远镜首次发现的毫秒脉冲星得到国际认证,新现的脉冲星自转周期为0.00519秒,将0.00519用科学记数法表示应为.12.(3分)如图,在4×4正方形网格中,已有4个小正方形被涂黑,现任意选取一个白色的小正方形并涂黑,使整个黑色部分构成一个轴对称图形的概率是.13.(3分)学习了平行线的相关知识后,学霸君轩轩利用如图所示的方法,可以折出“过已知直线外一点和已知直线平行”的直线.由操作过程可知他折平行线的依据可以是.(把所有正确结论的序号都填在横线上)①平行于同一条直线的两条直线平行;②同位角相等,两直线平行;③内错角相等,两直线平行;④同旁内角互补,两直线平行.14.(3分)学习了“设计自己的运算程序”一课后,马老师带领数学兴趣小组同学继续进行探究:任意写一个3的倍数(非零)的数,先把这个数的每一个数位上的数字都立方,再相加,得到一个新数,然后把这个新数的每一个数位上的数字再立方,求和,……重复运算下去,就能得到一个固定的数字a,我们称它为数字“黑洞”.这个数字a=.15.(3分)如图,在Rt△ABC中,∠BAC=90°,AB=AC.点D为BC的中点,E为边AB上一动点(不与A、B点重合),以点D为直角顶点、以射线DE为一边作∠MDN=90°,另一条直角边DN与边AC交于点F(不与A、C点重合),分别连接AD、EF,下列结论中正结论是.(把所有正确结论的序号都填在横线上)①BE=AF;②△DEF是等腰直角三角形;③无论点E、F的位置如何,总有EF=DF+CF成立;④四边形AEDF的面积随着点E、F的位置不同发生变化.三、解答题(共55分)16.(6分)如图,已知DE∥BC,∠3=∠B,则∠1+∠2=180°.下面是王宁同学的思考过程,请你在括号内填上理由、依据或内容.思考过程:因为DE∥BC(已知),所以∠3=∠EHC().因为∠3=∠B(已知),所以∠B=∠EHC().所以AB∥EH().所以∠2+=180°().因为∠1=∠4(),所以∠1+∠2=180°(等量代换).17.(6分)先化简,再求值.[(x+y)2+(x+y)(x﹣y)]÷(2x),其中x=﹣1,y=.18.(8分)如图所示,A、B两点分别位于一个池塘的两端,小明想用绳子测量A、B间的距离,但绳子不够长,请你利用三角形全等的相关知识带他设计一种方案测量出A、B 间的距离,写出具体的方案,并解释其中的道理.19.(8分)暑假将至,丹尼斯大卖场为回馈新老顾客,进行有奖促销活动活动.活动规定:购买500元的商品就可以获得一次转转盘的机会(转盘分为5个区域,分别是特等奖、一等奖、二等奖、三等奖、不获奖),转盘指针停在哪个获奖区域就可以得到该区域相应等级奖品一件(如果指针恰好停在分割线上,那么重转一次,直到指针指向某一区域为止).大卖场工作人员在制作转盘时,将各扇形区域圆心角(不完全)分配如下表奖次特等奖一等奖二等奖三等奖不获奖圆心角10°30°80°120°促销公告:凡购买我大卖场商品500元均有可能获得下列奖品:特等奖:山地越野自行车一辆等奖:双肩背包一个二等奖:洗衣液一桶三等奖:抽纸一盒根据以上信息,解答下列问题:(1)求不获奖的扇形区域圆心角度数是多少?(2)求获得双肩背包的概率是多少?(3)甲顾客购物520元,求他获奖的概率是多少?20.(8分)周六的早上,小颖去郑州图书大厦买书.她先走到早餐店吃早餐,然后又去图书大厦买书,最后又回到家.如图是小颖所用的时间x(分)和离家的距离y(千米)之间的示意图,请根据图象解答下列问题:(1)在上述变化过程中,自变量是,因变量是;(2)早餐店到小颖家的距离是千米,她早餐花了分钟;(3)出发后37分到55分之间小颖在干什么?(4)小颖从图书大厦回家的过程中,她的平均速度是多少?21.(9分)如图,在正方形网格上有一个三角形ABC(三个顶点均在格点上).(1)画出△ABC关于直线DE对称的△A1B1C1(其中点A与点A1对应,点B与点B1对应,点C与点C1对应);(2)若每个小正方形的边长都是1,计算△A1B1C1的面积.22.(10分)在△ABC中,AB=AC,D是直线BC上一点,以AD为一条边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.设∠BAC=α,∠DCE=β.(1)如图1,当点D在BC的延长线上移动时,请说明:△ABD≌△ACE;(2)①当点D在BC的延长线上移动时,α与β之间有什么数量关系?请直接写出你的结论;②当点D在直线BC上(不与B,C点重合)移动时,α与β之间有什么数量关系?请直接写出你的结论,并在备用图上画出相应图形.2018-2019学年河南省郑州市七年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)下面四个手机APP图标中,可看作轴对称图形的是()A.B.C.D.【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【解答】解:A、是轴对称图形,故选项正确;B、不是轴对称图形,是中心对称图形,故选项错误;C、不是轴对称图形,故选项错误;D、不是轴对称图形,故选项错误.故选:A.【点评】本题主要考查了轴对称图形的定义,正确理解定义是解题关键.2.(3分)下列计算正确的是()A.a2+a2=a4B.(2a)3=6a3C.a9÷a3=a3D.(﹣2a)2•a3=4a5【分析】根据单项式乘单项式的法则,合并同类项的法则,同底数幂的除法的法则,积的乘方和幂的乘方的法则计算即可.【解答】解:A、a2+a2=2a2,不符合题意;B、(2a)3=9a3,不符合题意;C、a9÷a3=a6,不符合题意;D、(﹣2a)2•a3=4a5,符合题意;故选:D.【点评】本题考查了单项式乘单项式,合并同类项,同底数幂的除法,积的乘方和幂的乘方,熟练掌握计算法则是解题的关键.3.(3分)小颖有两根长度为6cm和9cm的木条,桌上有下列长度的几根木条,从中选出一根,使三根木条首尾顺次相连,钉成三角形木框,她应该选择长度为()的木条.A.2cm B.3cm C.12cm D.15cm【分析】设木条的长度为xcm,再由三角形的三边关系即可得出结论.【解答】解:设木条的长度为xcm,则9﹣6<x<9+6,即3<x<15,故她应该选择长度为12cm的木条.故选:C.【点评】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.4.(3分)学习整式的乘法时,小明从图1边长为a的大正方形中剪掉一个边长为b的小正方形,将图1中阴影部分拼成图2的长方形,比较两个图中阴影部分的面积,能够验证的一个等式为(A.a(a+b)=a2+ab B.(a+b)(a﹣b)=a2﹣b2C.(a﹣b)2=a2﹣2ab+b2D.a(a﹣b)=a2﹣ab【分析】分别根据面积公式进行计算,根据图1的面积=图2的面积列式,即可得到平方差公式.【解答】解:图1阴影面积=a2﹣b2,图2拼剪后的阴影面积=(a+b)(a﹣b),∴得到的公式为:a2﹣b2=(a+b)(a﹣b),即(a+b)(a﹣b)=a2﹣b2,故选:B.【点评】本题考查了平方差公式的几何背景,利用图形的面积和作为相等关系列出等式即可验证平方差公式.5.(3分)如图,一把直尺的边缘AB经过一块三角板DCB的直角顶点B,交斜边CD于点A,直尺的边缘EF分别交CD,BD于点E,F,若∠D=60°,∠ABC=20°,则∠1的度数为()A.25°B.40°C.50°D.80°【分析】利用平行线的性质求出∠EDF,再利用三角形内角和定理求出∠DEF即可.【解答】解:∵∠CBD=90°,∴∠ABD=90°﹣∠ABC=70°,∵EF∥AB,∴∠DFE=∠ABD=70°,∴∠DEF=180°﹣∠D﹣∠DFE=50°,∴∠1=∠DEF=50°,故选:C.【点评】本题考查平行线的性质,三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.6.(3分)马老师带领的数学兴趣小组做“频率的稳定性”试验时,统计了某结果出现的频率,绘制了如图的折线统计图,则符合这一结果的试验最有可能的是()A.掷一枚质地均匀的硬币,硬币落下后朝上的是正面B.一副去掉大小王的普通扑克牌(52张,四种花色)洗匀后,从中任抽一张牌,花色是梅花C.不透明袋子中有1个红球和4个白球,每个球除颜色外都相同,从中任取一球是白球D.在玩“石头、剪刀、布”的游戏中,小颖随机出的是“石头”【分析】利用折线统计图可得出试验的频率在0.5左右,进而得出答案.【解答】解:A、掷一枚质地均匀的硬币,硬币落下后朝上的是正面的概率为;符合题意;B、一副去掉大小王的普通扑克牌洗匀后,从中任意抽出一张的花色是红桃的概率为,不符合题意;C、不透明袋子中有1个红球和4个白球,每个球除颜色外都相同,从中任取一球是白球的概率为,不符合题意;D、在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”的概率为,不符合题意;故选:A.【点评】此题主要考查了利用频率估计概率,正确求出各试验的概率是解题关键.7.(3分)如图,在Rt△ABC中,∠C=90°,在AC和AB上分别截取AE、AD,使AE =AD.再分别以点D、E为圆心,大于DE长为半径作弧,两弧在∠BAC内交于点F,作射线AF交边BC于点G,若CG=4,AB=10,则△ABG的面积为()A.12B.20C.30D.40【分析】根据角平分线的性质得到GM=CG=4,根据三角形的面积公式计算即可.【解答】解:如图,作GM⊥AB于M,由基本尺规作图可知,AG是△ABC的角平分线,∵∠C=90°,GM⊥AB,∴GM=CG=4,∴△ABG的面积=×AB×GM=20,故选:B.【点评】本题考查的是三角形的面积,角平分线的性质、基本作图,掌握角的平分线上的点到角的两边的距离相等是解题的关键.8.(3分)等腰三角形一腰的垂直平分线与另一腰所在直线的夹角为50°,则这个等腰三角形顶角的度数为()A.40°B.70°C.40°或70°D.40°或140°【分析】由题意可知其为锐角等腰三角形或钝角等腰三角形,不可能是等腰直角三角形,所以应分开来讨论.【解答】解:当为锐角三角形时,如图∵∠ADE=50°,∠AED=90°,∴∠A=40°当为钝角三角形时,如图∠ADE=50°,∠DAE=40°,∴顶角∠BAC=180°﹣40°=140°,故选:D.【点评】本题考查了等腰三角形的性质及三角形内角和定理,分类讨论是正确解答本题的关键.9.(3分)轩轩和凯凯在同一个数学学习小组,在一次数学活动课上,他们各自用一张边长为12cm的正方形纸片制作了一副七巧板,并合作设计了如图所示的作品请你帮他们计算图中圈出来的三块图形的面积之和为()A.12cm2B.24cm2C.36cm2D.48 cm2【分析】由七巧板的制作过程可知,这只小猫的头部是用正方形的四分之一拼成的,所以面积是正方形面积的四分之一.【解答】解:如图:小猫的头部的图形是abc,在右图中三角形h的一半与b全等,而由图中a+c+h的一半正好是正方形的四分之一,即阴影部分的面积是×12×12cm2=36cm2,故选:C.【点评】本题考查了正方形的性质,也考查了列代数式的内容,难度较大,还考查了学生的观察图形的能力.10.(3分)如图,在边长为4的正方形ABCD中剪去一个边长为2的小正方形CEFG,动点P从点A出发,沿多边形的边以A→D→E→F→G→B的路线匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的图象大致为()A.B.C.D.【分析】分别判断点P在各条线段上面积的变化情形即可判断.【解答】解:当点P在线段AD上时,面积是逐渐增大的,当点P在线段DE上时,面积是定值不变,当点P在线段EF上时,面积是逐渐减小的,当点P在线段FG上时,面积是定值不变,当点P在线段GB上时,面积是逐渐减小的,综上所述,选项B符合题意.故选:B.【点评】本题考查动点问题函数图象,解题的关键是理解题意灵活运用所学知识解决问题,属于中考常考题型.二、填空题(每小题3分,共15分)11.(3分)被誉为“中国天眼”的FAST望远镜首次发现的毫秒脉冲星得到国际认证,新现的脉冲星自转周期为0.00519秒,将0.00519用科学记数法表示应为 5.19×10﹣3.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:将0.00519用科学记数法表示应为5.19×10﹣3.故答案为:5.19×10﹣3.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.(3分)如图,在4×4正方形网格中,已有4个小正方形被涂黑,现任意选取一个白色的小正方形并涂黑,使整个黑色部分构成一个轴对称图形的概率是.【分析】直接利用轴对称图形的性质得出符合题意的位置,进而得出答案.【解答】解:如图所示:选取白色的小正方形中1,2,3的位置3个涂黑,能使整个黑色部分构成一个轴对称图形,故使整个黑色部分构成一个轴对称图形的概率是:=.故答案为:.【点评】此题主要考查了利用轴对称设计图案,正确把握轴对称图形的性质是解题关键.13.(3分)学习了平行线的相关知识后,学霸君轩轩利用如图所示的方法,可以折出“过已知直线外一点和已知直线平行”的直线.由操作过程可知他折平行线的依据可以是②③④.(把所有正确结论的序号都填在横线上)①平行于同一条直线的两条直线平行;②同位角相等,两直线平行;③内错角相等,两直线平行;④同旁内角互补,两直线平行.【分析】先根据折叠的性质得到折痕都垂直于过点P的直线,根据根据平行线的判定方法求解.【解答】解:如图,由题图(2)的操作可知PE⊥CD,所以∠PEC=∠PED=90°.由题图(3)的操作可知AB⊥PE,所以∠APE=∠BPE=90°,所以∠PEC=∠PED=∠APE=∠BPE=90°,所以可依据结论②,③或④判定AB∥CD,故答案为②③④.【点评】本题考查了平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;如果两条直线同时垂直于同一条直线,那么这两条直线平行.14.(3分)学习了“设计自己的运算程序”一课后,马老师带领数学兴趣小组同学继续进行探究:任意写一个3的倍数(非零)的数,先把这个数的每一个数位上的数字都立方,再相加,得到一个新数,然后把这个新数的每一个数位上的数字再立方,求和,……重复运算下去,就能得到一个固定的数字a,我们称它为数字“黑洞”.这个数字a=153.【分析】根据数字的变化规律取符合条件的数按规律计算即可求出一个固定数字.【解答】解:例如:33=27,23+73=351,33+53+13=153.故答案为153.【点评】本题考查了数字的变化类、有理数的混合运算,解决本题的关键是理解题意进行计算.15.(3分)如图,在Rt△ABC中,∠BAC=90°,AB=AC.点D为BC的中点,E为边AB上一动点(不与A、B点重合),以点D为直角顶点、以射线DE为一边作∠MDN=90°,另一条直角边DN与边AC交于点F(不与A、C点重合),分别连接AD、EF,下列结论中正结论是①②④.(把所有正确结论的序号都填在横线上)①BE=AF;②△DEF是等腰直角三角形;③无论点E、F的位置如何,总有EF=DF+CF成立;④四边形AEDF的面积随着点E、F的位置不同发生变化.【分析】由“SAS ”可证△BDE ≌△ADF ,可得BE =AF ,DE =DF ,S △BDE =S △ADF ,即可求解.【解答】解:∵∠BAC =90°,AB =AC .点D 为BC 的中点,∴AD =BD =CD ,∠∠BAD =∠CAD =∠B =∠C =45°,AD ⊥BC ,∵∠MDN =90°=∠ADB ,∴∠BDE =∠ADF ,且BD =AD ,∠B =∠DAF =45°,∴△BDE ≌△ADF (SAS )∴BE =AF ,DE =DF ,S △BDE =S △ADF ,∴S △BDE +S △ADE =S △ADF +S △ADE ,∴四边形AEDF 的面积=S △ABD =S △ABC ,故①④符合题意,∵DE =DF ,∠EDF =90°,∴△DEF 是等腰直角三角形,故②符合题意,当点F 在AC 中点时,可得EF =BC =AD ,DF +CF =AC ,∵AD ≠AC ,故③不合题意,故答案为①②④.【点评】本题考查了全等三角形的判定和性质,证明△BDE ≌△ADF 是本题的关键.三、解答题(共55分)16.(6分)如图,已知DE ∥BC ,∠3=∠B ,则∠1+∠2=180°.下面是王宁同学的思考过程,请你在括号内填上理由、依据或内容.思考过程:因为DE ∥BC (已知),所以∠3=∠EHC ( 两直线平行,内错角相等 ).因为∠3=∠B(已知),所以∠B=∠EHC(等量代换).所以AB∥EH(同位角相等,两直线平行).所以∠2+∠4=180°(两直线平行,同旁内角互补).因为∠1=∠4(对顶角相等),所以∠1+∠2=180°(等量代换).【分析】根据平行线的性质得出∠3=∠EHC,求出∠B=∠EHC,根据平行线的判定得出AB∥EH,根据平行线的性质得出∠2+∠4=180°,即可得出答案.【解答】解:∵DE∥BC(已知),∴∠3=∠EHC(两直线平行,内错角相等),∵∠3=∠B(已知),∴∠B=∠EHC(等量代换),∴AB∥EH(同位角相等,两直线平行),∴∠2+∠4=180°(两直线平行,同旁内角互补),∵∠1=∠4(对顶角相等),∴∠1+∠2=180°(等量代换),故答案为:两直线平行,内错角相等,等量代换,同位角相等,两直线平行,∠4,两直线平行,同旁内角互补,对顶角相等.【点评】本题考查了平行线的性质和判定,能灵活运用定理进行推理是解此题的关键.17.(6分)先化简,再求值.[(x+y)2+(x+y)(x﹣y)]÷(2x),其中x=﹣1,y=.【分析】先算括号内的乘法,再合并同类项,算除法,最后代入求出即可.【解答】解:原式=[x2+2xy+y2+x2﹣y2]÷2x=[2x2+2xy]÷2x=x+y,当x=﹣1,y=时,原式=﹣1+=﹣.【点评】本题考查了整式的混合运算和求值,能正确根据整式的运算法则进行化简是解此题的关键.18.(8分)如图所示,A、B两点分别位于一个池塘的两端,小明想用绳子测量A、B间的距离,但绳子不够长,请你利用三角形全等的相关知识带他设计一种方案测量出A、B 间的距离,写出具体的方案,并解释其中的道理.【分析】由题意知AC=DC,BC=EC,根据∠ACB=∠DCE即可证明△ABC≌△DEC,即可得AB=DE,即可解题.【解答】解:如图,先在地上取一个可以直接到达A点和B点的点C,连接AC并延长到D,使CD=AC;连接BC并延长到E,使CE=CB,连接DE并测量出它的长度,DE 的长度就是A、B间的距离.证明:由题意知AC=DC,BC=EC,且∠ACB=∠DCE,在△ABC和△DEC中,,∴△ABC≌△DEC(SAS),∴DE=AB.∴量出DE的长,就是A、B两点间的距离.【点评】本题考查了全等三角形在实际生活中的应用,考查了全等三角形对应边相等的性质,本题中求证△ABC≌△DEC是解题的关键.19.(8分)暑假将至,丹尼斯大卖场为回馈新老顾客,进行有奖促销活动活动.活动规定:购买500元的商品就可以获得一次转转盘的机会(转盘分为5个区域,分别是特等奖、一等奖、二等奖、三等奖、不获奖),转盘指针停在哪个获奖区域就可以得到该区域相应等级奖品一件(如果指针恰好停在分割线上,那么重转一次,直到指针指向某一区域为止).大卖场工作人员在制作转盘时,将各扇形区域圆心角(不完全)分配如下表奖次特等奖一等奖二等奖三等奖不获奖圆心角10°30°80°120°促销公告:凡购买我大卖场商品500元均有可能获得下列奖品:特等奖:山地越野自行车一辆等奖:双肩背包一个二等奖:洗衣液一桶三等奖:抽纸一盒根据以上信息,解答下列问题:(1)求不获奖的扇形区域圆心角度数是多少?(2)求获得双肩背包的概率是多少?(3)甲顾客购物520元,求他获奖的概率是多少?【分析】随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.【解答】解:(1)360°﹣10°﹣30°﹣80°﹣120°=120°,答:不获奖的扇形区域圆心角度数是120°;=,(2)P(获得双肩背包)答:获得双肩背包的概率是;=,(3)P(获奖)答:他获奖的概率是.【点评】本题考查了概率,正确运用概率公式是解题的关键.20.(8分)周六的早上,小颖去郑州图书大厦买书.她先走到早餐店吃早餐,然后又去图书大厦买书,最后又回到家.如图是小颖所用的时间x(分)和离家的距离y(千米)之间的示意图,请根据图象解答下列问题:(1)在上述变化过程中,自变量是所用的时间,因变量是离家的距离;(2)早餐店到小颖家的距离是 1.1千米,她早餐花了10分钟;(3)出发后37分到55分之间小颖在干什么?(4)小颖从图书大厦回家的过程中,她的平均速度是多少?【分析】根据函数图象的横坐标,可得时间的变化,根据函数图象的纵坐标,可得距离的变化.【解答】解:(1)在上述变化过程中,自变量是小颖所用的时间x,因变量是离家的距离;故答案为:所用的时间;离家的距离;(2)早餐店到小颖家的距离是1.1千米,她早餐花了10分钟;(3)出发后37分到55分之间小颖在选书和买书;(4)小颖从图书大厦回家的过程中,她的平均速度是2÷(80﹣55)=0.08(千米/分钟)=80米/分钟.【点评】此题主要考查了函数图象与实际问题,根据已知图象获取正确信息是解题关键.解题时注意:速度=距离÷时间.21.(9分)如图,在正方形网格上有一个三角形ABC(三个顶点均在格点上).(1)画出△ABC关于直线DE对称的△A1B1C1(其中点A与点A1对应,点B与点B1对应,点C与点C1对应);(2)若每个小正方形的边长都是1,计算△A1B1C1的面积.【分析】(1)分别作出A,B,C的对应点A1,B1,C1即可.(2)利用分割法求三角形的面积即可.【解答】解:(1)如图,△A1B1C1即为所求.(2)=4×7﹣×2×7﹣×2×5﹣×4×2=28﹣7﹣5﹣4=12.【点评】本题考查作图﹣轴对称变换,三角形的面积等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.(10分)在△ABC中,AB=AC,D是直线BC上一点,以AD为一条边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.设∠BAC=α,∠DCE=β.(1)如图1,当点D在BC的延长线上移动时,请说明:△ABD≌△ACE;(2)①当点D在BC的延长线上移动时,α与β之间有什么数量关系?请直接写出你的结论;②当点D在直线BC上(不与B,C点重合)移动时,α与β之间有什么数量关系?请直接写出你的结论,并在备用图上画出相应图形.【分析】(1)由“SAS”可证△ABD≌△ACE;(2)①证△BAD≌△CAE,推出∠B=∠ACE,根据三角形外角性质求出即可②α+β=180°或α=β,根据三角形外角性质求出即可.【解答】解:(1)∵∠DAE=∠BAC,∴∠DAE+∠CAD=∠BAC+∠CAD,∴∠BAD=∠CAE,在△BAD和△CAE中,∴△ABD≌△ACE(SAS);(2)①当点D在线段BC的延长线上移动时,α与β之间的数量关系是α=β,理由是:∵∠DAE=∠BAC,∴∠DAE+∠CAD=∠BAC+∠CAD,∴∠BAD=∠CAE,在△BAD和△CAE中∵,∴△BAD≌△CAE(SAS),∴∠B=∠ACE,∵∠ACD=∠B+∠BAC=∠ACE+∠DCE,∴∠BAC=∠DCE,∵∠BAC=α,∠DCE=β,∴α=β;②如图2,当D在线段BC上时,同理可证:△BAD≌△CAE,∴∠ADB=∠AEC,∵∠ABD+∠ADC=180°,∴∠ADC+∠AEC=180°,∴∠DCE+∠DAE=180°,∴α+β=180°;如图1或3,当点D在线段BC延长线或反向延长线上时,α=β.【点评】本题是三角形综合题,考查了全等三角形的性质和判定,三角形的外角性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年浙江省温州市七年级(下)期末数学试卷一.选择题(共10小题)1.如图,下列选项中与∠A互为同旁内角的是()A.∠1B.∠2C.∠3D.∠42.世界上最轻的昆虫是膜翅目缨小蜂科的一种卵蜂,质量只有0.000005克,数0.000005用科学记数法表示为()A.﹣5×106B.5×10﹣5C.5×10﹣6D.5×10﹣73.计算y2•(﹣2xy)的结果是()A.﹣2xy3B.2x2y3C.﹣2x2y3D.2xy34.已知是方程2x+y=5的一个解,则a的值为()A.a=﹣1B.a=1C.a=D.a=5.温州6月8日~14日的气温折线统计图如图所示,其中实线表示当日最高气温,虚线表示当日最低气温,由图可知,这一周中温差最大的是()A.6月9日B.6月11日C.6月12日D.6月14日6.下列运算正确的是()A.2a(a﹣1)=2a2﹣a B.a(a+3b)=a2+3abC.﹣3(a+b)=﹣3a+3b D.a(﹣a+2b)=﹣a2﹣2ab7.把一块直角三角板的直角顶点放在直尺的一边上(如图所示),则下列关于∠1与∠2的等式中一定成立的是()A.∠1+∠2=180°B.2∠1=∠2C.∠2﹣∠1=45°D.∠2﹣∠1=90°8.若多项式x2+mx﹣8因式分解的结果为(x+4)(x﹣2),则常数m的值为()A.﹣2B.2C.﹣6D.69.如图所示,以长方形ABCD的各边为直径向外作半圆,若四个半圆的周长之和为14π,面积之和为29π,则长方形ABCD的面积为()A.10B.20C.40D.8010.已知甲、乙两人分别从A,B两地同时匀速出发,若相向而行,则经过a分钟后两人相遇;若同向而行,则经过b分钟后甲追上乙.若甲、乙的速度比为10:3,则的值为()A.B.C.D.二.填空题(共6小题)11.计算:(2+x)(2﹣x)=.12.因式分解:m2﹣mn=.13.要使分式的值为0,则x的值为.14.小明对某班级同学参加课外活动内容进行问卷调查后(每人必选且只选一种),绘制成如图所示的统计图,已知参加踢毽子的人数比参加打篮球的人数少6人,则参加“其他”活动的人数为人.15.定义一种新运算:a⊗b=a b,则5⊗(﹣2)的值为.16.如图是用三角尺和直尺画平行线的示意图,将三角尺ABC沿着直尺PQ平移到三角尺A′B′C′的位置,就可以画出AB的平行线A′B′.若AC′=9cm,A′C=2cm,则直线AB平移的距离为cm.17.已知关于x,y的方程组的解互为相反数,则常数a的值为.18.如图1是小圆设计的班徽,其中“Z”字型部分按以下作图方式得到:如图2,在正方形ABCD边AB,CD上分别取点E,F,再在CB和AD的延长线上分别取点G,H,使得BE=BG=DF=DH,连结AG,EG,AF,CE,FH和CH.记△AEG与△CFH的面积之和为S1,四边形AECF的而积为S2,若=,S1+S2=20,则正方形ABCD面积为.三.解答题19.化简或计算:(1)(a+1)2﹣a2;(2)(8x2y﹣4x3)÷(2x).20.解方程(组):(1);(2)+1=.21.先化简,再求值:(1﹣)•,请在﹣1,0,1,2中选一个数代入求值.22.某厂随机抽取一批电灯泡并对其使用寿命进行检测,得到如图的频数直方图(每组含前一个边界值,不含后一个边界值),请根据这个直方图回答下列问题.(1)被检测的电灯泡共只.(2)被检测电灯泡的最少使用寿命至少为时.(3)厂家规定使用寿命在1300小时以上(含1300小时)的电灯泡为合格,如果生产了40000只电灯泡,请估计合格的电灯泡有多少只?23.如图,长方形ABCD中,AD∥BC,E为边BC上一点,将长方形沿AE折叠(AE为折痕),使点B与点F重合,EG平分∠CEF交CD于G,过点G作HG⊥EG交AD于点H.(1)求证:HG∥AE.(2)若∠CEG=20°,求∠DHG的度数.24.目前,新型冠状病毒在我国虽可控可防,但不可松懈.某校欲购置规格分别为300ml和500ml的甲、乙两种免洗手消毒液若干瓶,已知购买2瓶甲和1瓶乙免洗手消毒液需要55元,购买3瓶甲和4瓶乙免洗手消毒液需要145元.(1)求甲、乙两种免洗手消毒液的单价.(2)该校在校师生共1000人,平均每人每天都需使用10ml的免洗手消毒液,若校方采购甲、乙两种免洗手消毒液共花费5000元,则这批消毒液可使用多少天?(3)为节约成本,该校购买散装免洗手消毒液进行分装,现需将9.6L的免洗手消毒液全部装入最大容量分别为300ml和500ml的两种空瓶中(每瓶均装满),若分装时平均每瓶需损耗20ml,请问如何分装能使总损耗最小,求出此时需要的两种空瓶的数量.2019-2020学年浙江省温州市七年级(下)期末数学试卷参考答案与试题解析一.选择题(共10小题)1.如图,下列选项中与∠A互为同旁内角的是()A.∠1B.∠2C.∠3D.∠4【分析】根据同位角、内错角、同旁内角、对顶角的定义进行判断即可.【解答】解:A、∠1和∠A是同旁内角,故本选项符合题意;B、∠2和∠A是同位角,不是同旁内角,故本选项不符合题意;C、∠3和∠A不是同旁内角,故本选项不符合题意;D、∠4和∠A是内错角,不是同旁内角,故本选项不符合题意.故选:A.2.世界上最轻的昆虫是膜翅目缨小蜂科的一种卵蜂,质量只有0.000005克,数0.000005用科学记数法表示为()A.﹣5×106B.5×10﹣5C.5×10﹣6D.5×10﹣7【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000005=5×10﹣6,故选:C.3.计算y2•(﹣2xy)的结果是()A.﹣2xy3B.2x2y3C.﹣2x2y3D.2xy3【分析】运用单项式乘单项式的运算法则计算即可.【解答】解:y2•(﹣2xy)=﹣2x•(y2•y)=﹣2xy3.故选:A.4.已知是方程2x+y=5的一个解,则a的值为()A.a=﹣1B.a=1C.a=D.a=【分析】把x与y的值代入方程计算即可求出a的值.【解答】解:把代入方程得:4+a=5,解得:a=1,故选:B.5.温州6月8日~14日的气温折线统计图如图所示,其中实线表示当日最高气温,虚线表示当日最低气温,由图可知,这一周中温差最大的是()A.6月9日B.6月11日C.6月12日D.6月14日【分析】通过图形直观可以得出温差最大的日期,即同一天的最高气温与最低气温的差最大.【解答】解:由图形直观可以得出6月14日温差最大,是35﹣25=10(°C),故选:D.6.下列运算正确的是()A.2a(a﹣1)=2a2﹣a B.a(a+3b)=a2+3abC.﹣3(a+b)=﹣3a+3b D.a(﹣a+2b)=﹣a2﹣2ab【分析】分别根据单项式乘单项式与去括号的法则逐一判断即可.【解答】解:A.2a(a﹣1)=2a2﹣2a,故本选项不合题意;B.a(a+3b)=a2+3ab,故本选项符合题意;C.﹣3(a+b)=﹣3a﹣3b,故本选项不合题意;D.a(﹣a+2b)=﹣a2+2ab,故本选项不合题意.故选:B.7.把一块直角三角板的直角顶点放在直尺的一边上(如图所示),则下列关于∠1与∠2的等式中一定成立的是()A.∠1+∠2=180°B.2∠1=∠2C.∠2﹣∠1=45°D.∠2﹣∠1=90°【分析】根据两条直线平行,同旁内角互补,即可得∠1与∠2的关系.【解答】解:如图,∵直角三角板的直角顶点放在直尺的一边上,∴∠2=∠3,∠1+∠4=90°,∵直尺的两边平行,∴∠3+∠4=180°,∴∠2+90°﹣∠1=180°,∴∠2﹣∠1=90°.故选:D.8.若多项式x2+mx﹣8因式分解的结果为(x+4)(x﹣2),则常数m的值为()A.﹣2B.2C.﹣6D.6【分析】利用十字相乘法的结果特征判断即可求出m的值.【解答】解:∵多项式x2+mx﹣8因式分解的结果为(x+4)(x﹣2),而(x+4)(x﹣2)=x2+2x﹣8,∴m=2,故选:B.9.如图所示,以长方形ABCD的各边为直径向外作半圆,若四个半圆的周长之和为14π,面积之和为29π,则长方形ABCD的面积为()A.10B.20C.40D.80【分析】设长方形的长为a,宽为b,根据四个半圆的周长之和为14π,可得a+b=14,根据面积之和为29π,可得a2+b2=116,进而求出ab的值即可.【解答】解:设长方形的长为a,宽为b,由题意得,πa+πb=14π,即:a+b=14,π×()2﹣π×()2=29π,即:a2+b2=116,∴ab=[(a+b)2﹣(a2+b2)]=(196﹣116)=40,故选:C.10.已知甲、乙两人分别从A,B两地同时匀速出发,若相向而行,则经过a分钟后两人相遇;若同向而行,则经过b分钟后甲追上乙.若甲、乙的速度比为10:3,则的值为()A.B.C.D.【分析】设甲的速度为10x,则乙的速度为3x,设A,B两地相距s,相向而行,等量关系为:甲路程+乙路程=s;同向而行,等量关系为:甲路程﹣乙路程=s,则10xa+3xa =s,10xb﹣3xb=s,联立即可求得的值.【解答】解:设甲的速度为10x,则乙的速度为3x,设A,B两地相距s,依题意有10xa+3xa=s①,10xb﹣3xb=s②,①﹣②得10xa+3xa﹣(10xb﹣3xb)=0,13a﹣7b=0,=,故选:B.二.填空题(共6小题)11.计算:(2+x)(2﹣x)=4﹣x2.【分析】利用平方差公式计算即可得到结果.【解答】解:(2+x)(2﹣x)=22﹣x2=4﹣x2.故答案为:4﹣x2.12.因式分解:m2﹣mn=m(m﹣n).【分析】提取公因式m,即可将此多项式因式分解.【解答】解:m2﹣mn=m(m﹣n).故答案为:m(m﹣n).13.要使分式的值为0,则x的值为1.【分析】分式值为零的条件是分子等于零且分母不等于零.【解答】解:∵分式的值为0,∴1﹣x=0且x﹣2≠0,解得x=1,故答案为:1.14.小明对某班级同学参加课外活动内容进行问卷调查后(每人必选且只选一种),绘制成如图所示的统计图,已知参加踢毽子的人数比参加打篮球的人数少6人,则参加“其他”活动的人数为10人.【分析】先由扇形统计图得出参加踢毽子与打篮球的人数所占的百分比,结合参加踢毽子的人数比参加打篮球的人数少6人,求出参加课外活动一共的人数,进一步可求参加“其他”活动的人数.【解答】解:6÷(30%﹣15%)=40(人),40×25%=10(人).答:参加“其他”活动的人数为10人.故答案为:10.15.定义一种新运算:a⊗b=a b,则5⊗(﹣2)的值为.【分析】根据运算的定义即可直接求解【解答】解:5⊗(﹣2)=5﹣2=.故答案为:.16.如图是用三角尺和直尺画平行线的示意图,将三角尺ABC沿着直尺PQ平移到三角尺A′B′C′的位置,就可以画出AB的平行线A′B′.若AC′=9cm,A′C=2cm,则直线AB平移的距离为 5.5cm.【分析】根据线段的和差关系可求AC+A′C′的长度,除以2可求A′C′的长度,再根据线段的和差关系可求CC′的长度,即为直线AB平移的距离.【解答】解:AC+A′C′=AC′﹣A′C=9﹣2=7(cm),A′C′=7÷2=3.5(cm),CC′=A′C+A′C′=2+3.5=5.5(cm).故直线AB平移的距离为5.5cm.故答案为:5.5.17.已知关于x,y的方程组的解互为相反数,则常数a的值为15.【考点】97:二元一次方程组的解.【专题】521:一次方程(组)及应用;66:运算能力.【分析】②﹣①求出2x+2y=a﹣15,根据已知得出a﹣15=0,求出即可.【解答】解:∵②﹣①得:2x+2y=a﹣15,∵关于x,y的方程组的解互为相反数,∴x+y=0,即2x+2y=0,∴a﹣15=0,∴a=15,故答案为15.18.如图1是小圆设计的班徽,其中“Z”字型部分按以下作图方式得到:如图2,在正方形ABCD边AB,CD上分别取点E,F,再在CB和AD的延长线上分别取点G,H,使得BE=BG=DF=DH,连结AG,EG,AF,CE,FH和CH.记△AEG与△CFH的面积之和为S1,四边形AECF的而积为S2,若=,S1+S2=20,则正方形ABCD面积为.【考点】KD:全等三角形的判定与性质;LE:正方形的性质;N4:作图—应用与设计作图.【专题】13:作图题;69:应用意识.【分析】设BE=BG=DF=DH=x,AE=CF=y.想办法构建方程组求出x,y即可解决问题.【解答】解:设BE=BG=DF=DH=x,AE=CF=y.∵四边形ABCD是正方形,∴AB=BC=CD=AD=x+y,∠ABC=∠ABG=90°,∠ADF=∠CDH=90°,∵BE=BG=DF=DH,∴△BGE≌△DFH(SAS),∠BEG=∠DFH=45°,∴EG=FH,∠AEG=∠CFH=135°,∵EA=FC,∴△AEG≌△CFH(SAS),∴S△AEG=S△CFH,∴xy+y(x+y)=20 ①,=②,由①②可得,∴正方形的面积=(2+)2=.故答案为.三.解答题19.化简或计算:(1)(a+1)2﹣a2;(2)(8x2y﹣4x3)÷(2x).【考点】4C:完全平方公式;4H:整式的除法.【专题】512:整式;66:运算能力.【分析】(1)根据完全平方公式展开后,再合并同类项即可;(2)根据大学生除以单项式的运算法则计算即可.【解答】解:(1)原式=a2+2a+1﹣a2=2a+1;(2)原式=(8x2y)÷(2x)﹣(4x3)÷(2x)=4xy﹣2x2.20.解方程(组):(1);(2)+1=.【考点】98:解二元一次方程组;B3:解分式方程.【专题】524:一元一次不等式(组)及应用;66:运算能力.【分析】(1)利用加减消元法解方程组;(2)去分母得到整式方程﹣2x+x﹣1=1,然后解整式方程后进行检验确定原方程的解.【解答】解:(1),①+②×2得3x+2x=9+16,解得x=5,把x=5代入②得5﹣y=8,解得y=﹣3,所以方程组的解为;(2)去分母得﹣2x+x﹣1=1,解得x=2,经检验,原方程的解为x=﹣2.21.先化简,再求值:(1﹣)•,请在﹣1,0,1,2中选一个数代入求值.【考点】6D:分式的化简求值.【专题】513:分式;66:运算能力.【分析】先按照分式的混合运算法则进行化简,再代入使原式有意义的值进行计算.【解答】解:原式==,∵m=±1或0时,原式无意义,∴取m=2时,原式=.22.某厂随机抽取一批电灯泡并对其使用寿命进行检测,得到如图的频数直方图(每组含前一个边界值,不含后一个边界值),请根据这个直方图回答下列问题.(1)被检测的电灯泡共200只.(2)被检测电灯泡的最少使用寿命至少为1100时.(3)厂家规定使用寿命在1300小时以上(含1300小时)的电灯泡为合格,如果生产了40000只电灯泡,请估计合格的电灯泡有多少只?【考点】V5:用样本估计总体;V8:频数(率)分布直方图.【专题】54:统计与概率;65:数据分析观念.【分析】(1)根据直方图中的数据,可以得到被检测的灯泡一共多少只;(2)根据直方图中的数据,可以得到被检测电灯泡的最少使用寿命至少为多少时;(3)根据统计图中的数据,可以计算出合格的电灯泡有多少只.【解答】解:(1)被检测的电灯泡共10+80+70+40=200(只),故答案为:200;(2)被检测电灯泡的最少使用寿命至少为1100时,故答案为:1100;(3)40000×=38000(只),即合格的电灯泡有38000只.23.如图,长方形ABCD中,AD∥BC,E为边BC上一点,将长方形沿AE折叠(AE为折痕),使点B与点F重合,EG平分∠CEF交CD于G,过点G作HG⊥EG交AD于点H.(1)求证:HG∥AE.(2)若∠CEG=20°,求∠DHG的度数.【考点】JB:平行线的判定与性质.【专题】551:线段、角、相交线与平行线;556:矩形菱形正方形;558:平移、旋转与对称;67:推理能力.【分析】(1)由折叠的性质得出∠AEB=∠AEF,证出AE⊥EG,进而得出结论;(2)求出∠AEB=70°,由平行线的性质进而得出答案.【解答】(1)证明:由折叠知∠AEB=∠AEF,∵EG平分∠CEF,∴∠FEG=∠CEG,∵∠AEB+∠AEF+∠FEG+∠CEG=180°,∴∠AEG=∠AEF+∠FEG=90°,∴AE⊥EG,∵HG⊥EG,∴HG∥AE;(2)解:∵∠CEG=20°,∠AEG=90°,∴∠AEB=70°,∵四边形ABCD是长方形,∴AD∥BC,∴∠AEB=∠DAE=70°,∵HG∥AE,∴∠DHG=∠DAE=70°.24.目前,新型冠状病毒在我国虽可控可防,但不可松懈.某校欲购置规格分别为300ml和500ml的甲、乙两种免洗手消毒液若干瓶,已知购买2瓶甲和1瓶乙免洗手消毒液需要55元,购买3瓶甲和4瓶乙免洗手消毒液需要145元.(1)求甲、乙两种免洗手消毒液的单价.(2)该校在校师生共1000人,平均每人每天都需使用10ml的免洗手消毒液,若校方采购甲、乙两种免洗手消毒液共花费5000元,则这批消毒液可使用多少天?(3)为节约成本,该校购买散装免洗手消毒液进行分装,现需将9.6L的免洗手消毒液全部装入最大容量分别为300ml和500ml的两种空瓶中(每瓶均装满),若分装时平均每瓶需损耗20ml,请问如何分装能使总损耗最小,求出此时需要的两种空瓶的数量.【考点】95:二元一次方程的应用;9A:二元一次方程组的应用.【专题】521:一次方程(组)及应用;69:应用意识.【分析】(1)设甲种免洗手消毒液的单价为x元,乙种免洗手消毒液的单价为y元,根据“购买2瓶甲和1瓶乙免洗手消毒液需要55元,购买3瓶甲和4瓶乙免洗手消毒液需要145元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购进甲种免洗手消毒液a瓶,乙种免洗手消毒液b瓶,根据总价=单价×数量,即可得出关于a,b的二元一次方程,再结合可使用时间=免洗手消毒液总体积÷每天需消耗的体积,即可求出结论;(3)设分装300ml的免洗手消毒液m瓶,500ml的免洗手消毒液n瓶,根据需将9.6L 的免洗手消毒液进行分装且分装时平均每瓶需损耗20ml,即可得出关于m,n的二元一次方程,结合m,n均为正整数即可得出各分装方案,选择(m+n)最小的方案即可得出结论.【解答】解:(1)设甲种免洗手消毒液的单价为x元,乙种免洗手消毒液的单价为y元,依题意,得:,解得:.答:甲种免洗手消毒液的单价为15元,乙种免洗手消毒液的单价为25元.(2)设购进甲种免洗手消毒液a瓶,乙种免洗手消毒液b瓶,依题意,得:15a+25b=5000,∴===10.答:这批消毒液可使用10天.(3)设分装300ml的免洗手消毒液m瓶,500ml的免洗手消毒液n瓶,依题意,得:300m+500n+20(m+n)=9600,∴m=30﹣n.∵m,n均为正整数,∴和.∵要使分装时总损耗20(m+n)最小,∴,即分装时需300ml的空瓶4瓶,500ml的空瓶16瓶,才能使总损耗最小.。

相关文档
最新文档