Face Detection
人脸识别face_detection

⼈脸识别face_detection⼀、⼈脸识别与检测face_detection⽂件夹中保存着如下⽂件:1. test_detection_mtcnn.py中利⽤tensorflow和mtcnn实现⼈脸检测和五个特征点的定位2. test_classifier.py 检测完后加载分类器,对分类结果进⾏判断3. train_classifier.py ⾃⾏训练的⼀个性别的检测器,将训练集中图⽚⼈脸部分裁出,然后加载映射后进⾏分类训练.使⽤的图⽚在train⽂件夹中\train\Female和\train\male。
4. detect_face.py(实现MTCNN⽹络三个阶段的检测)和facenet.py(实现将⼈脸图像映射到128维度的欧⼏⾥得空间中,三联⼦的损失函数进⾏计算损失进⽽优化)分别从两个项⽬中下载得到的5. model_check_point⽂件夹中knn_classifier_gender为性别分类器模型model-20160506.ckpt-500000是从mtcnn项⽬中下载的⼀个模型,就不⽤花费超级多时间来训练在终端中运⾏注意需要下载opencv,因为我们在程序中导⼊opencv的CV2模块来读取图⽚:注意:源代码可以不全掌握,但是test的全部代码需要看懂。
⼆、⼈脸分类此章节需要⽤到face_net,利⽤train_classifier.py程序来训练,直接在cmd中:python train_classifier.py使⽤该⽣成模型进⾏测试,利⽤test_classifier.py程序来测试:(记得传⼊⼀张图⽚给程序) python test_classifier.py \images\female01.jpeg注意:本程序是Tensorflow0.12来训练的,这取决于mtcnn是⽤⽼版本的TensorFlow来写的。
由于tensorflow版本变化很⼤,还不稳定,若⽤1.0之后的版本来restrore复原的时候,可能有的参数有出⼊,从⽽没有办法来复原模型,⽆法使⽤模型。
使用计算机视觉技术进行人脸检测的方法

使用计算机视觉技术进行人脸检测的方法近年来,计算机视觉技术的发展和应用日益成熟,人脸检测已经成为其中一个重要的研究领域。
人脸检测是指在图像或视频中准确地定位和识别人脸的过程。
在实际应用中,人脸检测被广泛地应用于人脸识别、视频监控、虚拟现实等领域。
本文将介绍几种常用的人脸检测方法,包括基于特征和机器学习的方法、基于深度学习的方法以及基于卷积神经网络的方法。
一、基于特征和机器学习的方法传统的人脸检测方法主要是基于特征和机器学习的方法。
这些方法主要通过提取图像中的特征,如颜色、纹理、边缘等,然后使用机器学习算法进行分类和识别。
其中,Haar特征是比较经典的人脸检测方法之一。
Haar特征是一种基于图像亮度差异的特征描述子,可以描述图像中不同区域的亮度变化情况。
通过计算和比较不同区域的Haar特征,可以判断该区域是否含有人脸。
通过训练和优化,可以得到一个检测器,可以在图像中快速准确地检测出人脸。
二、基于深度学习的方法近年来,随着深度学习的发展,基于深度学习的人脸检测方法取得了很大的突破。
深度学习通过构建多层的神经网络模型,可以学习到更加复杂和抽象的特征表示,从而提高人脸检测的准确率。
基于深度学习的人脸检测方法主要使用卷积神经网络(CNN)进行特征提取和分类。
CNN通过多层的卷积和池化操作,可以在图像中学习到不同层次的特征表示。
通过训练大规模数据集,CNN可以学习到辨别人脸和非人脸的特征,从而实现准确的人脸检测。
三、基于卷积神经网络的方法基于卷积神经网络的人脸检测方法是深度学习方法的一种变体。
这种方法的主要思想是通过训练一个多层的卷积神经网络模型,使其在图像中能够准确地检测出人脸。
基于卷积神经网络的人脸检测方法主要由两个阶段组成:候选框生成和候选框分类。
首先,使用滑动窗口的方式在图像中生成大量的候选框,然后使用卷积神经网络对这些候选框进行分类,判断是否为人脸。
通过训练和优化,可以得到一个准确的人脸检测器。
总结起来,人脸检测是计算机视觉领域的一个重要问题,在实际应用中有着广泛的应用前景。
人脸识别英文专业词汇

gallery set参考图像集Probe set=test set测试图像集face renderingFacial Landmark Detection人脸特征点检测3D Morphable Model 3D形变模型AAM (Active Appearance Model)主动外观模型Aging modeling老化建模Aging simulation老化模拟Analysis by synthesis 综合分析Aperture stop孔径光标栏Appearance Feature表观特征Baseline基准系统Benchmarking 确定基准Bidirectional relighting 双向重光照Camera calibration摄像机标定(校正)Cascade of classifiers 级联分类器face detection 人脸检测Facial expression面部表情Depth of field 景深Edgelet 小边特征Eigen light-fields本征光场Eigenface特征脸Exposure time曝光时间Expression editing表情编辑Expression mapping表情映射Partial Expression Ratio Image局部表情比率图(,PERI) extrapersonal variations类间变化Eye localization,眼睛定位face image acquisition 人脸图像获取Face aging人脸老化Face alignment人脸对齐Face categorization人脸分类Frontal faces 正面人脸Face Identification人脸识别Face recognition vendor test人脸识别供应商测试Face tracking人脸跟踪Facial action coding system面部动作编码系统Facial aging面部老化Facial animation parameters脸部动画参数Facial expression analysis人脸表情分析Facial landmark面部特征点Facial Definition Parameters人脸定义参数Field of view视场Focal length焦距Geometric warping几何扭曲Street view街景Head pose estimation头部姿态估计Harmonic reflectances谐波反射Horizontal scaling水平伸缩Identification rate识别率Illumination cone光照锥Inverse rendering逆向绘制技术Iterative closest point迭代最近点Lambertian model朗伯模型Light-field光场Local binary patterns局部二值模式Mechanical vibration机械振动Multi-view videos多视点视频Band selection波段选择Capture systems获取系统Frontal lighting正面光照Open-set identification开集识别Operating point操作点Person detection行人检测Person tracking行人跟踪Photometric stereo光度立体技术Pixellation像素化Pose correction姿态校正Privacy concern隐私关注Privacy policies隐私策略Profile extraction轮廓提取Rigid transformation刚体变换Sequential importance sampling序贯重要性抽样Skin reflectance model,皮肤反射模型Specular reflectance镜面反射Stereo baseline 立体基线Super-resolution超分辨率Facial side-view面部侧视图Texture mapping纹理映射Texture pattern纹理模式Rama Chellappa读博计划:完成先前关于指纹细节点统计建模的相关工作。
人脸识别程序源代码

1 .利用OpenCV进行人脸检测人脸检测程序主要完成3部分功能,即加载分类器、加载待检测图象以及检测并标示。
本程序使用OpenCV中提供的"haarcascade_frontalface_alt.xml”文件存储的目标检测分类,用cvLoa d函数载入后,进行强制类型转换。
OpenCV中提供的用于检测图像中目标的函数是cvHaarDete ctObjects,该函数使用指针对某目标物体(如人脸)训练的级联分类器在图象中找到包含目标物体的矩形区域,并将这些区域作为一序列的矩形框返回。
分类器在使用后需要被显式释放,所用的函数为cvReleaseHaarClassifierCascade。
这些函数原型请参看有关OpenCV手册。
2 .程序实现1)新建一个VisualC++MFC项目,取名为“FaceDetection",选择应用程序类型为“单文档”。
将菜单中多余的项去掉,并添加一项“人脸检测”,其ID为"ID_FaceDetected”,并生成该菜单项的消息映射函数。
2)在“FaceDetectionView.h”头文件中添加以下灰底色部分程序代码:〃南京森林公安高等专科学校江林升//FaceDetectionView.h:CFaceDetectionView 类的接□#pragmaonce#include"cv.h"#include"highgui.h"classCFaceDetectionView:publicCView<protected:〃仅从序列口化创建CFaceDetectionView();DECLARE_DYNCREATE(CFaceDetectionView)精心整理public:CFaceDetectionDoc*GetDocument()const;CvHaarClassifierCascade*cascade;〃特征器分类CvMemStorage*storage;voiddetect_and_draw(IplImage*img);IplImage*src; 〃载入的图像3)在,小2。
人脸识别英文专业词汇

gallery set参考图像集Probe set=test set测试图像集face renderingFacial Landmark Detection人脸特征点检测3D Morphable Model 3D形变模型AAM (Active Appearance Model)主动外观模型Aging modeling老化建模Aging simulation老化模拟Analysis by synthesis 综合分析Aperture stop孔径光标栏Appearance Feature表观特征Baseline基准系统Benchmarking 确定基准Bidirectional relighting双向重光照Camera calibration摄像机标定(校正)Cascade of classifiers级联分类器face detection 人脸检测Facial expression面部表情Depth of field 景深Edgelet 小边特征Eigen light-fields本征光场Eigenface特征脸Exposure time曝光时间Expression editing表情编辑Expression mapping表情映射Partial Expression Ratio Image局部表情比率图(,PERI) extrapersonal variations类间变化Eye localization,眼睛定位face image acquisition人脸图像获取Face aging人脸老化Face alignment人脸对齐Face categorization人脸分类Frontal faces 正面人脸Face Identification人脸识别Face recognition vendor test人脸识别供应商测试Face tracking人脸跟踪Facial action coding system面部动作编码系统Facial aging面部老化Facial animation parameters脸部动画参数Facial expression analysis人脸表情分析Facial landmark面部特征点Facial Definition Parameters人脸定义参数Field of view视场Focal length焦距Geometric warping几何扭曲Street view街景Head pose estimation头部姿态估计Harmonic reflectances谐波反射Horizontal scaling水平伸缩Identification rate识别率Illumination cone光照锥Inverse rendering逆向绘制技术Iterative closest point迭代最近点Lambertian model朗伯模型Light-field光场Local binary patterns局部二值模式Mechanical vibration机械振动Multi-view videos多视点视频Band selection波段选择Capture systems获取系统Frontal lighting正面光照Open-set identification开集识别Operating point操作点Person detection行人检测Person tracking行人跟踪Photometric stereo光度立体技术Pixellation像素化Pose correction姿态校正Privacy concern隐私关注Privacy policies隐私策略Profile extraction轮廓提取Rigid transformation刚体变换Sequential importance sampling序贯重要性抽样Skin reflectance model,皮肤反射模型Specular reflectance镜面反射Stereo baseline立体基线Super-resolution超分辨率Facial side-view面部侧视图Texture mapping纹理映射Texture pattern纹理模式Rama Chellappa读博计划:1.完成先前关于指纹细节点统计建模的相关工作。
Robust real-time face detection

Robust Real-time Face DetectionPaul Viola and Michael JonesCompaq Cambridge Research LaboratoryOne Cambridge Center Cambridge,MA 02142We have constructed a frontal face detection system which achieves detection and false positive rates which are equivalent to the best published results [7,5,6,4,1].This face detection system is most clearly distinguished from previous approaches in its ability to detect faces extremely rapidly.Operating on 384by 288pixel images,faces are de-tected at 15frames per second on a conventional 700MHz Intel Pentium III.In other face detection systems,auxiliary information,such as image differences in video sequences,or pixel color in color images,have been used to achieve high frame rates.Our system achieves high frame rates working only with the information present in a single grey scale image.These alternative sources of information can also be integrated with our system to achieve even higher frame rates.The first contribution of this work is a new image repre-sentation called an integral image that allows for very fast feature evaluation.Motivated in part by the work of Papa-georgiou et al.our detection system does not work directly with image intensities [3].Like these authors we use a set of features which are reminiscent of Haar Basis functions.In order to compute these features very rapidly at many scales we introduce the integral image representation for images.The integral image can be computed from an image using a few operations per pixel.Once computed,any one of these Harr-like features can be computed at any scale or location in constant time.The second contribution of this work is a method for con-structing a classifier by selecting a small number of impor-tant features using AdaBoost [2].Within any image sub-window the total number of Harr-like features is very large,far larger than the number of pixels.In order to ensure fast classification,the learning process must exclude a large ma-jority of the available features,and focus on a small set of critical features.Motivated by the work of Tieu and Viola,feature selection is achieved through a simple modification of the AdaBoost procedure:the weak learner is constrained so that each weak classifier returned can depend on only a single feature [8].As a result each stage of the boosting process,which selects a new weak classifier,can be viewed as a feature selection process.The third major contribution of this work is a method forcombining successively more complex classifiers in a cas-cade structure which dramatically increases the speed of thedetector by focusing attention on promising regions of the image.More complex processing is reserved only for these promising regions.Those sub-windows which are not re-jected by the initial classifier are processed by a sequence of classifiers,each slightly more complex than the last.If any classifier rejects the sub-window,no further processing is performed.The structure of the cascaded detection pro-cess is essentially that of a degenerate decision tree,and as such is related to the work of Amit and Geman [1].The complete face detection cascade has 32classifiers.Nevertheless the cascade structure results in extremely rapid average detection times.The face detector runs at about 15frames per second on 384by 288pixel images which is about 15times faster than any previous system.On the MIT+CMU dataset,containing 507faces and 75million sub-windows,our detection rate is 90%with 78false detec-tions (which is 1false positive in about 961,000queries).References[1]Y .Amit,D.Geman,and K.Wilder.Joint induction of shapefeatures and tree classifiers,1997.[2]Y .Freund and R.Schapire.A decision-theoretic generaliza-tion of on-line learning and an application to boosting.In Eurocolt ’95,pages 23–37.Springer-Verlag,1995.[3] C.Papageorgiou,M.Oren,and T.Poggio.A general frame-work for object detection.In ICCV ,1998.[4] D.Roth,M.Yang,and N.Ahuja.A snow-based face detector.In NIPS 12,2000.[5]H.Rowley,S.Baluja,and T.Kanade.Neural network-basedface detection.In IEEE PAMI ,volume 20,1998.[6]H.Schneiderman and T.Kanade.A statistical method for 3Dobject detection applied to faces and cars.In ICCV ,2000.[7]K.Sung and T.Poggio.Example-based learning for view-based face detection.In IEEE PAMI ,volume 20,pages 39–51,1998.[8]K.Tieu and P.Viola.Boosting image retrieval.In ICCV ,2000.10-7695-1143-0/01 $10.00 (C) 2001 IEEEProceedings of the Eighth IEEE International Conference on Computer Vision (ICCV’01) 0-7695-1143-0/01 $17.00 © 2001 IEEE。
人脸搜索项目开源了:人脸识别(M:N)-Java版

⼈脸搜索项⽬开源了:⼈脸识别(M:N)-Java版⼀、⼈脸检测相关概念⼈脸检测(Face Detection)是检测出图像中⼈脸所在位置的⼀项技术,是⼈脸智能分析应⽤的核⼼组成部分,也是最基础的部分。
⼈脸检测⽅法现在多种多样,常⽤的技术或⼯具⼤多有insightface、pcn、libfacedetection、Ultra-Light-Fast-Generic-Face-Detector-1MB、CenterFace、RetinaFace MobileNet0.25等等。
⽬前具有⼴泛的学术研究价值和业务应⽤价值,⽐如⼈脸识别、⼈脸属性分析(年龄估计、性别识别、颜值打分和表情识别)、⼈脸Avatar、智能视频监控、⼈脸图像过滤、智能图像裁切、⼈脸AR游戏等等。
⼆、⼈脸识别的相关概念⼈脸识别(Facial Recognition),即通过视频采集设备获取⽤户的⾯部图像,再利⽤核⼼的算法对其脸部的五官位置、脸型和⾓度进⾏计算分析,进⽽和⾃⾝数据库⾥已有的范本进⾏⽐对,从⽽判断出⽤户的真实⾝份.⼈脸识别算法,在检测到⼈脸并定位⾯部关键特征点之后,主要的⼈脸区域就可以被裁剪出来,经过预处理之后,馈⼊后端的识别算法。
识别算法要完成⼈脸特征的提取,并与库存的已知⼈脸进⾏⽐对,完成最终的分类。
服务架构图如下:三、⼈脸⽐对的相关概念⼈脸⽐对算法的输⼊是两张⼈脸图⽚(⼈脸特征),输出是两个特征之间的相似度。
⼈脸验证、⼈脸识别、⼈脸检索都是在⼈脸⽐对的基础上加⼀些策略来实现。
相对⼈脸提特征过程,单次的⼈脸⽐对耗时相对较短。
另外值得⼀提的是⼈脸相似度计算⼀般使⽤的是cos距离,可以将相似度控制在[-1,1]中。
四、⼈脸识别的M:N模式M:N 是通过计算机对场景内所有⼈进⾏⾯部识别并与⼈像数据库进⾏⽐对的过程。
M:N作为⼀种动态⼈脸⽐对,其使⽤率⾮常⾼,能充分应⽤于多种场景,例如公共安防,迎宾,机器⼈应⽤等。
但是M:N模式仍存在很⼤的弊端,因为其必须依靠海量的⼈脸数据库才能运⾏,并且由于识别基数过⼤,设备分辨率不⾜等因素,使M:N模式会产⽣很⾼的错误率从⽽影响识别结果。
人脸识别基本名词

人脸识别基本名词在人脸识别领域,有一些基本的名词和概念,下面是其中一些常用的:1.人脸检测(Face Detection):人脸检测是指通过算法和技术来自动检测图像或视频中的人脸区域。
它是人脸识别的第一步,用于确定图像中是否存在人脸。
2.人脸对齐(Face Alignment):人脸对齐是将检测到的人脸在图像上进行标准化和调整,使得人脸区域具有一致的位置、大小和朝向,以便进行后续的特征提取和比对。
3.特征提取(Feature Extraction):特征提取是从人脸图像或人脸区域中提取出有助于识别和表征的关键特征。
常用的特征包括颜色、纹理、形状和局部特征等。
4.特征向量(Feature Vector):特征向量是特征提取过程中得到的数值化表示,它将人脸特征转换为向量形式,用于进行人脸匹配和识别。
5.人脸匹配(Face Matching):人脸匹配是指对两个或多个人脸图像或人脸特征进行比对,以确定它们是否属于同一个人或是否相似。
匹配过程可以采用相似度度量方法,如欧氏距离、余弦相似度等。
6.人脸识别(Face Recognition):人脸识别是指将输入的人脸图像与已知数据库中的人脸进行比对,然后确定其身份或标识。
它可以用于人脸认证、身份验证、身份辨认等应用。
7.人脸数据库(Face Database):人脸数据库是存储人脸图像、人脸特征和标注信息的集合,用于人脸识别系统的建立和训练。
通常包括多个人的人脸数据。
8.活体检测(Liveness Detection):活体检测是为了防止使用照片、视频或面具等伪造物进行攻击而引入的技术。
它通过分析人脸动作、纹理、光照等特征,判断图像或视频中的人脸是否为真实的活体。
以上是人脸识别领域的一些基本名词和概念,它们构成了人脸识别技术的基础,用于实现人脸的检测、对齐、特征提取、匹配和识别等功能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Research Issues
• • • • • • Representation: How to describe a typical face? Scale: How to dal with face of different size? Search strategy: How to spot these faces? Speed: How to speed up the process? Precision: How to locate the faces precisely? Post processing: How to combine detection results?
• Cons: Difficult to translate human knowledge into rules precisely: detailed rules fail to detect faces and general rules may find many false positives Difficult to extend this approach in different poses: implausible to enumerate all the possible cases
The models (or templates) are learned from a set of training images which capture the representative variability of facial appearance
• Appearance-based methods:
Why Face Detection is Difficult?
• • • • • • Pose(Out-of-Plane Rotation) Presence or absence of structural components Facial expression Occlusion Orientation (In-Plane Rotation) Imaging conditions
Face Detection
--------A brief introduction
Face Detection: A Solved Problem?
• Recent results have demonstrated excellent results: fast, multi pose, partial occlusion,… • So, is Face Detection a solved problem? • No, not quite…
Knowledge-Based Method
• Pros: Easy to come up with simple rules to describe the features of a face and their relationships Based on the coded rules, facial features in an input image are extracted first, and face candidates are identified Work well for face localization in uncluttered background
• Feature invariant approaches:
• Template matching methods:
Several standard patterns stored to describe the face as a whole or the facial features separately
Methods to Detect/Locate Faces
• Knowledge-based methods:
Encode human knowledge of what constitutes a typical face (usually, the relationships between facial features) Aim to find structural features of a face that exits even when the pose, viewpoint, or lighting conditions vary
Knowledge-Based Method
•
•
• •
Multi-resolution focus-ofattention approach Level 1 (lowest resolution): Apply the rule “the center part of the face has 4 cells with a basically uniform intensity” to search for candidates Level 2: local histogram Equalization followed by edge detection Level 3: search for eye and mouth Features for validation
Face Detection
• Identify and locate human faces in an image regardless of their
Position Scale
In-plane rotation
Orientation Pose(out-out-plane rotation) And illumination
Thank you for listening.
Where are the faces? If any…
Why Face Detection is Important?
• First step for any fully automatic face recognition system • First step in may surveillance systems • Face is a highly non-rigid object • Lots of applications • A step towards Automatic Target Recognition(ATR) or generic object detection/recognition