1photosynthesis植物光合作用
光合作用的定义及作用机制

光合作用(Photosynthesis),即光能合成作用,是指含有叶绿体绿色植物、动物和某些细菌,在可见光的照射下,经过光反应和碳反应(旧称暗反应),利用光合色素,将二氧化碳(或硫化氢)和水转化为有机物,并释放出氧气(或氢气)的生化过程。
定义
光合作用(Photosynthesis)是绿色植物利用叶绿素等光合色素和某些细菌(如带紫膜的嗜盐古菌)利用其细胞本身,在可见光的照射下,将二氧化碳和水(细菌为硫化氢和水)转化为储存着能量的有机物,并释放出氧气(细菌释放氢气[1])的生化过程。
同时也有将光能转变为有机物中化学能的能量转化过程。
植物之所以被称为食物链的生产者,是因为它们能够通过光合作用利用无机物生产有机物并且贮存能量。
通过食用,食物链的消费者可以吸收到植物及细菌所贮存的能量,效率为10%~20%左右。
对于生物界的几乎所有生物来说,这个过程是它们赖以生存的关键。
而地球上的碳氧循环,光合作用是必不可少的。
作用机制
作用原理
植物与动物不同,它们没有消化系统,因此它们必须依靠其他的方式来进行对营养的摄取,植物就是所谓的自养生物的一种。
对于绿色植物来说,在阳光充足的白天(在光照强度太强的时候植物的气孔会关闭,导致光合作用强度减弱),它们利用太阳光能来进行光合作用,以获得生长发育必需的养分。
这个过程的关键参与者是内部的叶绿体。
叶绿体在阳光的作用下,把经由气孔进入叶子内部的二氧化碳和由根部吸收的水转变成为淀粉等物质,同时释放氧气。
光合作用是将太阳能转化为ATP中活跃的化学能再转化为有机物中稳定的化学能的过程!。
植物生理学习题大全——第3章植物的光合作用

植物⽣理学习题⼤全——第3章植物的光合作⽤第三章光合作⽤⼀. 名词解释光合作⽤(photosynthesis):绿⾊植物吸收阳光的能量,同化⼆氧化碳和⽔,制造有机物质并释放氧⽓的过程。
光合⾊素(photosynthetic pigment):植物体内含有的具有吸收光能并将其光合作⽤的⾊素,包括叶绿素、类胡萝⼘素、藻胆素等。
吸收光谱(absorption spectrum):反映某种物质吸收光波的光谱。
荧光现象(fluorescence phenomenon):叶绿素溶液在透射光下呈绿⾊,在反射光下呈红⾊,这种现象称为荧光现象。
磷光现象(phosphorescence phenomenon):当去掉光源后,叶绿素溶液还能继续辐射出极微弱的红光,它是由三线态回到基态时所产⽣的光。
这种发光现象称为磷光现象。
光合作⽤单位(photosynthetic unit):结合在类囊体膜上,能进⾏光合作⽤的最⼩结构单位。
作⽤中⼼⾊素(reaction center pigment):指具有光化学活性的少数特殊状态的叶绿素a分⼦。
聚光⾊素(light harvesting pigment ):指没有光化学活性,只能吸收光能并将其传递给作⽤中⼼⾊素的⾊素分⼦。
原初反应(primary reaction):包括光能的吸收、传递以及光能向电能的转变,即由光所引起的氧化还原过程。
光反应(light reactio):光合作⽤中需要光的反应过程,是⼀系列光化学反应过程,包括⽔的光解、电⼦传递及同化⼒的形成。
暗反应(dark reaction):指光合作⽤中不需要光的反应过程,是⼀系列酶促反应过程,包括CO2的固定、还原及碳⽔化合物的形成。
光系统(photosystem,PS):由不同的中⼼⾊素和⼀些天线⾊素、电⼦供体和电⼦受体组成的蛋⽩⾊素复合体,其中PS Ⅰ的中⼼⾊素为叶绿素a P700,PS Ⅱ的中⼼⾊素为叶绿素a P680。
植物的光合作用过程 英语作文

The Process of Photosynthesis in PlantsPhotosynthesis is a fundamental process that occurs in plants,enabling them to convert light energy from the sun into chemical energy stored in glucose.This process not only sustains the plants themselves but also supports life on Earth by producing oxygen and serving as the foundation of the food chain.Understanding the process of photosynthesis helps us appreciate the vital role that plants play in maintaining ecological balance and supporting life.In this essay,we will explore the key stages and components involved in photosynthesis.Photosynthesis takes place primarily in the leaves of plants,within specialized cell structures called chloroplasts.Chloroplasts contain a green pigment known as chlorophyll,which is essential for capturing light energy.The process of photosynthesis can be divided into two main stages:the light-dependent reactions and the light-independent reactions,also known as the Calvin cycle.The light-dependent reactions occur in the thylakoid membranes of the chloroplasts and require direct sunlight to proceed.When light strikes the chlorophyll molecules,it excites the electrons,raising them to a higher energy level.These high-energy electrons are then transferred through a series of proteins embedded in the thylakoid membrane, known as the electron transport chain.As the electrons move along the chain,their energy is used to pump protons(hydrogen ions)into the thylakoid lumen,creating a proton gradient.The energy from this proton gradient is harnessed by an enzyme called ATP synthase to produce ATP(adenosine triphosphate),a molecule that stores and transports energy within cells.Additionally,the excited electrons eventually combine with NADP+(nicotinamide adenine dinucleotide phosphate)to form NADPH,another energy-rich molecule. Both ATP and NADPH are crucial for the next stage of photosynthesis. During the light-dependent reactions,water molecules are also split(a process known as photolysis),releasing oxygen as a byproduct.This oxygen is then expelled into the atmosphere,contributing to the air we breathe.The light-independent reactions,or the Calvin cycle,take place in the stroma of the chloroplasts and do not require direct sunlight.Instead,they use the ATP and NADPH produced during the light-dependent reactions to convert carbon dioxide into glucose.The Calvin cycle can be broken down into three main phases:carbon fixation,reduction,and regeneration.In the carbon fixation phase,carbon dioxide molecules from the atmosphere are captured by an enzyme called ribulose-1,5-bisphosphate carboxylase/oxygenase,commonly known as RuBisCO.RuBisCO attaches the carbon dioxide to a five-carbon sugar molecule called ribulose-1,5-bisphosphate(RuBP),resulting in a six-carbon compound that quickly splits into two three-carbon molecules of3-phosphoglycerate(3-PGA).During the reduction phase,the3-PGA molecules are converted into glyceraldehyde-3-phosphate(G3P)using the energy from ATP and the reducing power of NADPH.G3P is a three-carbon sugar that serves as the building block for glucose and other carbohydrates.Some of the G3P molecules exit the Calvin cycle to be used in the synthesis of glucose and other organic compounds.The final phase,regeneration,involves the rearrangement of the remaining G3P molecules to regenerate RuBP,the molecule necessary for carbon fixation.This regeneration process requires additional ATP and ensures that the Calvin cycle can continue,allowing the plant to continuously capture carbon dioxide and produce glucose.The glucose produced through photosynthesis serves as an essential source of energy and building material for the plant.It can be used immediately for cellular respiration,stored as starch for later use,or converted into other organic compounds such as cellulose,which provides structural support to the plant.In conclusion,photosynthesis is a complex yet remarkably efficient process that enables plants to convert light energy into chemical energy, producing glucose and oxygen as vital end products.The light-dependent reactions capture and convert sunlight into ATP and NADPH, while the light-independent reactions,or Calvin cycle,use these energy-rich molecules to fix carbon dioxide and synthesize glucose.This process not only sustains plant life but also supports the entire biosphere by producing oxygen and forming the base of the food chain. Understanding photosynthesis highlights the incredible role that plantsplay in maintaining life on Earth and underscores the importance of protecting and preserving our natural environment.。
关于植物生理学光合作用

一、光合作用(photosynthesis)概念
1.狭义的概念 2.广义的概念 3.光合作用的实质
• 狭义的:
绿色植物 利用光能把CO2和水合 成有机物,同时释放氧气的过程。
CO2+ H2O 光 绿色植物 (CH2O)+O2 CO2+2H2O* 光 绿色植物(CH2O)+ O2*+ H2O
主要有四类:即光系统Ⅰ(PSI)、光系统Ⅱ (PSⅡ)、Cytb6/f复合体和ATP酶复合体(ATPase)。
❖参与了光能吸收、 传递与转化、电 子传递、H+输送 以及ATP合成等 反应。
❖光合膜。
光系统Ⅰ(PSI)
光系统Ⅱ(PSⅡ)
Organization of the protein subunits of the
• 氧化还原反应, CO2被还原; H2A被氧化。
• 但这是一个弱氧化剂和弱还原剂的反应,违背 氧化还原化学反应原理,在植物体内为什么能 发生呢?
二、光合作用的意义
CO2+H2O→(CH2O)+O2 (△G=478kJ/mol)
为4什4 么1没8 有3光0 合3作2 用重也量就比没有繁荣的生物世界?
3.类囊体
类囊体片层堆叠的生理意义
1.膜的堆叠意味着捕获光能机构高度密集,更有效地收 集光能。 2.膜系统常是酶排列的支架,膜的堆叠易构成代谢的 连接带,使代谢高效地进行。 3.类囊体片层堆叠成基粒是高等植物细胞所特有的膜 结构,它有利于光合作用的进行。
(四)类囊体膜上的蛋白复合体
蛋白复合体:由多种亚基、多种成分组成的复合体。
光合作用研究简史
➢ 1771——1864(第一阶段,近93年) ➢ 1864——1945(第二阶段,共81年) ➢ 1945——至今(第三阶段) ➢ 当前,光合作用的分子生理学研究
六年级科学上册植物的光合作用课件1新人教版

(4个异戊二烯)相联接。
②叶黄素由胡萝卜素衍生而来,分子式为C40H56O2,是 个醇类物质,它在叶绿体的结构中与脂类物质相结合。
⑶藻胆素
藻类进行光合作用的主要色素,不溶于有机溶剂,溶于
水。常与蛋白质结合为藻胆蛋白(藻红蛋白和藻蓝蛋 白)。
叶绿醇则以酯键与在 第Ⅳ吡珞环侧键上的 丙酸结合
庞大的共轭体系,起着吸收 光能,传递电子,以诱导共 振的方式传递能量,但不参 与H的传递或氧化还原
H+,Cu2+可取代Mg
图3-3 叶绿素a的结构式
返回
⑵胡萝卜素和叶黄素:四萜类、有α- 、β-、γ- 三种异构 体。不溶于水,但能溶于有机溶剂。
①胡萝卜素:
Chapter3 Photosynthesis in Plant
本章内容: 光合作用的意义和研究历史 叶绿体和光合色素 光合作用机理 光呼吸 影响光合速率的外界因素 光合作用与农业生产
概述
一、自养植物和异养植物
1、异养植物(Heterophyte)
2、自养植物(Autophyte)
二、碳素同化作用(Carbon assimilation)
chla: C32H30ON4Mg
COOCH3 COOC20H39
COOCH3 chlb: C32H28O2N4Mg COOC20H39 下一页
看下图
极 性 头 部
疏 水 尾 部
叶绿素b以-CHO
代替-CH3
CH3
4个吡咯环和4个甲烯基
连成一个大环—卟啉环
镁原子居卟啉环的中央
1个含羰基和羧基的副 环(同素环Ⅴ),羧 基以酯键和甲醇结合
第四章-光合作用

原初反应 (primary reaction) 指光合作用中最 初旳反应,从光合色素分子受光激发起到引起 第一种光化学反应为止旳过程,它涉及光能旳 吸收、传递与光化学反应。原初反应旳成果使 反应中心发生电荷分离。
光合单位 (photosynthetic unit) =聚光色素+反应中心
反应中心色素分子 (reaction center pigment) 是处于反应中心中旳 一种特殊性质旳叶绿素 a 分子,它不但能捕获光能,还具有光化学活 性,能将光能转换成电能。光系统Ⅰ和光系统Ⅱ旳反应中心色素分子 分别是 P700 和 P680 ,这里 P 代表色素 (pigment) , P 后旳数值代 表色素分子在受光激发被氧化时,该色素分子吸收光谱中变化最大旳 波长位置,也即用氧化态吸收光谱与还原态吸收光谱间旳差值最大处 旳波长来作为色素分子旳标志。 P700 和 P680 表达它们受光激发被 氧化时,吸收光谱中变化最大旳波长位置分别是近 700nm 和 680nm 处。是光能旳“捕获器”、“转换器”。
➢ Chl(基态)+hυ 10-15s Chl*(激发态)
激发态旳叶绿素分子 回至基态时,能够光 子形式释放能量。
处于第一单线态旳叶 绿素分子回至基态时 所发出旳光称为荧光。
而处于三线态旳叶绿 素分子回至基态时所 发出旳光称为磷光。
➢因为叶绿素分子吸收旳光能有一 部分消耗在分子内部旳振动上,且 荧光又总是从第一单线态旳最低振 动能级辐射旳,辐射出旳光能肯定 低于吸收旳光能,所以叶绿素旳荧 光旳波长总要比被吸收旳波长长些。
温保鲜旳原因之一
(3) 营养元素
➢ 叶绿素旳形成必须有一定旳营养元素。
➢ 氮和镁是叶绿素旳构成成份,铁、锰、铜、锌等则在叶绿素旳生物合 成过程中有催化功能或其他间接作用。
photosynthesis光合作用 Chlorophyll 叶绿素

Photosynthesis光合作用Chlorophyll 叶绿素Pseudocyclic 假循环电子传递途径Thylakoid membranes 类囊体膜Rubisco 二磷酸核酮糖羧化酶RUBP 1,5二磷酸核酮糖BSC 维管束鞘细胞SE-CC 伴胞复合体PEPC 丙酮酸羧化酶PC 质兰素Polyamine 多胺Gibberellin 赤霉素Kinetin 细胞分裂素Polar transport 极性运输SAM 腺苷甲硫氨酸Salicylic acid水杨酸Seed viability 种子生活力Photochrome 光敏色素Photomorphogenesis 光形态发生Phytin 植酸钙镁Water potential 水势Pore 气孔Imbibition吸涨作用Cytoplasm细胞质Guttation吐水Plasmolysis 质壁分离Plant physiology 植物生理学Osmosis 渗透Root pressure 根压Soil aeration 土壤通气性Ion antagonism 离子对抗性Hydroponics 水培法Deficiency symptom 缺素症H+-ATPase ATP质子分解酶Anion 阴离子Facilitated diffusion协助扩散Pinocytosis胞饮Mineral element矿物质Foliar nutrition叶面营养Channel protein通道蛋白Alternative oxidase 交替氧化酶PPP 戊糖磷酸途径Glyoxylate cycle 乙醛酸循环Anaerobic respiration 无氧呼吸Mitochondria线粒体Carbon dioxide 二氧化碳Glucose葡萄糖Respiratory climacteric呼吸跃变EMP pathway 糖酵解途径Respiratory rate呼吸速率Free water: 自由水不被胶体颗粒或渗透物质亲水基团所吸引或吸引力很小,可以自由移动的水分。
光合作用的作用及意义

光合作用的作用及意义光合作用的意义:1、能量转换:植物在同化无机碳化物的同时,把太阳能转变为化学能,储存在所形成的有机化合物中。
2、调节大气:大气之所以能经常保持21%的氧含量,主要依赖于光合作用。
光合作用(photosynthesis)是绿色植物利用叶绿素等光合色素和某些细菌(如带紫膜的嗜盐古菌)利用其细胞本身,在可见光的照射下,将二氧化碳和水(细菌为硫化氢和水)转化为储存着能量的有机物,并释放出氧气(细菌释放氢气)的生化过程。
同时也有将光能转变为有机物中化学能的能量转化过程。
植物之所以被称作食物链的生产者,是因为它们能通过光合作用利用无机物生产有机物并且储藏能量。
通过食用,食物链的消费者可以稀释至植物及细菌所储藏的能量,效率为10%~20%左右。
对于生物界的几乎所有生物来说,这个过程就是它们赖以生存的关键。
而地球上的碳氧循环,光合作用就是必不可少的。
能量转换:植物在同化无机碳化物的同时,把太阳能转型为化学能,储存在所构成的有机化合物中。
每年光合作用所同化的太阳能约为3x10^2j,约为人能所须要能量的10倍。
有机物中所存储的化学能,除了可供植物本身和全部异养生物之用外,更关键的就是供人类营养和活动的能量来源。
植物每年可吸收co2约7x10^11t合成约5x10^11t的有机物。
人类所需的粮食、油料、纤维、木材、糖、水果等,无不来自光合作用,没有光合作用,人类就没有食物和各种生活用品。
换句话说,没有光合作用就没有人类的生存和发展。
调节大气:大气之所以能经常保持21%的氧含量,主要依赖于光合作用。
光合作用一方面为有氧呼吸提供了条件,另一方面,o2的积累,逐渐形成了大气表层的臭氧层。
臭氧层能吸收太阳光中对生物体有害的强烈的紫外辐射。
植物的光合作用虽然能清除大气中大量的co2,但大气中co2的浓度仍然在增加,这主要是由于城市化及工业化所致。