高等数学练习题(附答案)

合集下载

大学高等数学上考试题库(附答案)

大学高等数学上考试题库(附答案)

《高数》试卷1(上)一.选择题(将答案代号填入括号内,每题3分,共30分).1.下列各组函数中,是相同的函数的是( ).(A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()2g x x =(C )()f x x = 和 ()()2g x x =(D )()||x f x x=和 ()g x =1 2.函数()()sin 420ln 10x x f x x a x ⎧+-≠⎪=+⎨⎪=⎩ 在0x =处连续,则a =( ).(A )0 (B )14(C )1 (D )23.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ).(A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ).(A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微5.点0x =是函数4y x =的( ).(A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点6.曲线1||y x =的渐近线情况是( ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7.211f dx x x⎛⎫' ⎪⎝⎭⎰的结果是( ). (A )1f C x ⎛⎫-+ ⎪⎝⎭(B )1f C x ⎛⎫--+ ⎪⎝⎭(C )1f C x ⎛⎫+ ⎪⎝⎭(D )1f C x ⎛⎫-+ ⎪⎝⎭8.x x dxe e -+⎰的结果是( ).(A )arctan xe C + (B )arctan xe C -+ (C )x x e e C --+ (D )ln()x x e e C -++9.下列定积分为零的是( ).(A )424arctan 1x dx x ππ-+⎰ (B )44arcsin x x dx ππ-⎰ (C )112x xe e dx --+⎰ (D )()121sin x x x dx -+⎰ 10.设()f x 为连续函数,则()12f x dx '⎰等于( ).(A )()()20f f - (B )()()11102f f -⎡⎤⎣⎦(C )()()1202f f -⎡⎤⎣⎦(D )()()10f f -二.填空题(每题4分,共20分)1.设函数()2100x e x f x x a x -⎧-≠⎪=⎨⎪=⎩在0x =处连续,则a =.2.已知曲线()y f x =在2x =处的切线的倾斜角为56π,则()2f '=.3.21xy x =-的垂直渐近线有条. 4.()21ln dxx x =+⎰.5.()422sin cos xx x dx ππ-+=⎰.三.计算(每小题5分,共30分) 1.求极限①21lim xx x x →∞+⎛⎫⎪⎝⎭②()20sin 1lim x x x x x e →-- 2.求曲线()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分 ①()()13dx x x ++⎰ ②()220dxa x a >-⎰ ③x xe dx -⎰四.应用题(每题10分,共20分) 1. 作出函数323y x x =-的图像.2.求曲线22y x =和直线4y x =-所围图形的面积.《高数》试卷1参考答案一.选择题1.B 2.B 3.A4.C 5.D 6.C 7.D 8.A9.A10.C 二.填空题1.2-2.33-3.24.arctan ln x c+5.2三.计算题1①2e②162.11xyx y'=+-3. ①11ln||23xCx+++②22ln||x a x C-++③()1xe x C--++四.应用题1.略2.18S=《高数》试卷2(上)一.选择题(将答案代号填入括号内,每题3分,共30分) 1.下列各组函数中,是相同函数的是( ).(A) ()f x x =和()2g x x = (B) ()211x f x x -=-和1y x =+(C) ()f x x =和()22(sin cos )g x x x x =+ (D) ()2ln f x x =和()2ln g x x =2.设函数()()2sin 21112111x x x f x x x x -⎧<⎪-⎪⎪==⎨⎪->⎪⎪⎩,则()1lim x f x →=( ). (A) 0 (B) 1 (C) 2 (D) 不存在3.设函数()y f x =在点0x 处可导,且()f x '>0, 曲线则()y f x =在点()()00,x f x 处的切线的倾斜角为{ }. (A) 0 (B)2π(C) 锐角 (D) 钝角 4.曲线ln y x =上某点的切线平行于直线23y x =-,则该点坐标是( ). (A) 12,ln2⎛⎫⎪⎝⎭ (B) 12,ln 2⎛⎫- ⎪⎝⎭ (C)1,ln 22⎛⎫⎪⎝⎭ (D) 1,ln 22⎛⎫- ⎪⎝⎭5.函数2x y x e -=及图象在()1,2内是( ).(A)单调减少且是凸的 (B)单调增加且是凸的 (C)单调减少且是凹的 (D)单调增加且是凹的6.以下结论正确的是( ).(A) 若0x 为函数()y f x =的驻点,则0x 必为函数()y f x =的极值点. (B) 函数()y f x =导数不存在的点,一定不是函数()y f x =的极值点. (C) 若函数()y f x =在0x 处取得极值,且()0f x '存在,则必有()0f x '=0. (D) 若函数()y f x =在0x 处连续,则()0f x '一定存在. 7.设函数()y f x =的一个原函数为12xx e ,则()f x =( ).(A) ()121x x e - (B) 12x x e - (C) ()121x x e + (D) 12xxe 8.若()()f x dx F x c =+⎰,则()sin cos xf x dx =⎰( ).(A) ()sin F x c + (B) ()sin F x c -+ (C) ()cos F x c + (D) ()cos F x c -+ 9.设()F x 为连续函数,则12x f dx ⎛⎫' ⎪⎝⎭⎰=( ). (A) ()()10f f - (B)()()210f f -⎡⎤⎣⎦ (C) ()()220f f -⎡⎤⎣⎦ (D) ()1202f f ⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦10.定积分badx ⎰()a b <在几何上的表示( ).(A) 线段长b a - (B) 线段长a b - (C) 矩形面积()1a b -⨯ (D) 矩形面积()1b a -⨯ 二.填空题(每题4分,共20分)1.设 ()()2ln 101cos 0x x f x xa x ⎧-⎪≠=⎨-⎪=⎩, 在0x =连续,则a =________.2.设2sin y x =, 则dy =_________________sin d x .3.函数211xy x =+-的水平和垂直渐近线共有_______条. 4.不定积分ln x xdx =⎰______________________.5. 定积分2121sin 11x x dx x-+=+⎰___________. 三.计算题(每小题5分,共30分) 1.求下列极限:①()1lim 12x x x →+②arctan 2lim 1x x xπ→+∞-2.求由方程1y y xe =-所确定的隐函数的导数x y '.3.求下列不定积分:①3tan sec x xdx ⎰ ②()220dx a x a>+⎰③2x x e dx ⎰ 四.应用题(每题10分,共20分) 1.作出函数313y x x =-的图象.(要求列出表格)2.计算由两条抛物线:22,y x y x ==所围成的图形的面积.《高数》试卷2参考答案一.选择题:CDCDB CADDD二填空题:1.-2 2.2sin x 3.3 4.2211ln 24x x x c -+ 5.2π三.计算题:1. ①2e ②1 2.2yx e y y '=- 3.①3sec 3xc + ②()22ln x a x c +++ ③()222x x x e c -++四.应用题:1.略 2.13S =《高数》试卷3(上)一、 填空题(每小题3分, 共24分)1. 函数219y x=-的定义域为________________________.2.设函数()sin 4,0,0xx f x x a x ⎧≠⎪=⎨⎪=⎩, 则当a =_________时, ()f x 在0x =处连续.3. 函数221()32x f x x x -=-+的无穷型间断点为________________.4. 设()f x 可导, ()x y f e =, 则____________.y '=5. 221lim _________________.25x x x x →∞+=+- 6. 321421sin 1x xdx x x -+-⎰=______________.7. 20_______________________.x td e dt dx-=⎰ 8. 30y y y '''+-=是_______阶微分方程.二、求下列极限(每小题5分, 共15分)1. 01lim sin x x e x →-;2. 233lim 9x x x →--; 3. 1lim 1.2xx x -→∞⎛⎫+ ⎪⎝⎭ 三、求下列导数或微分(每小题5分, 共15分)1. 2xy x =+, 求(0)y '. 2. cos x y e =, 求dy .3. 设x y xy e +=, 求dydx .四、求下列积分 (每小题5分, 共15分)1. 12sin x dx x ⎛⎫+ ⎪⎝⎭⎰. 2.ln(1)x x dx +⎰.3.120x e dx ⎰五、(8分)求曲线1cos x t y t=⎧⎨=-⎩在2t π=处的切线与法线方程.六、(8分)求由曲线21,y x =+ 直线0,0y x ==和1x =所围成的平面图形的面积, 以及此图形绕y 轴旋转所得旋转体的体积. 七、(8分)求微分方程6130y y y '''++=的通解.八、(7分)求微分方程x yy e x'+=满足初始条件()10y =的特解. 《高数》试卷3参考答案一.1.3x < 2.4a = 3.2x = 4.'()x x e f e 5.126.07.22x xe -8.二阶二.1.原式=0lim 1x xx→= 2.311lim36x x →=+ 3.原式=112221lim[(1)]2x x e x--→∞+=三.1.221','(0)(2)2y y x ==+2.cos sin x dy xe dx =-3.两边对x 求写:'(1')x y y xy e y +==+'x y x y e y xy yy x e x xy++--⇒==-- 四.1.原式=lim 2cos x x C -+2.原式=2221lim(1)()lim(1)[lim(1)]22x x x d x x d x x +=+-+⎰⎰=22111lim(1)lim(1)(1)221221x x x x dx x x dx x x+-=+--+++⎰⎰ =221lim(1)[lim(1)]222x x x x x C +--+++3.原式=1221200111(2)(1)222x x e d x e e ==-⎰五.sin 1,122dy dy tt t y dx dx ππ=====且 切线:1,1022y x y x ππ-=---+=即 法线:1(),1022y x y x ππ-=--+--=即六.12210013(1)()22S x dx x x =+=+=⎰11224205210(1)(21)228()5315V x dx x x dxx x x ππππ=+=++=++=⎰⎰七.特征方程:2312613032(cos 2sin 2)xr r r iy eC x C x -++=⇒=-±=+八.11()dxdxxx x y ee edx C -⎰⎰=+⎰1[(1)]x x e C x=-+ 由10,0y x C ==⇒=1xx y e x-∴=《高数》试卷4(上)一、选择题(每小题3分) 1、函数 2)1ln(++-=x x y 的定义域是( ).A []1,2-B [)1,2-C (]1,2-D ()1,2- 2、极限xx e ∞→lim 的值是( ).A 、 ∞+B 、 0C 、∞-D 、 不存在3、=--→211)1sin(limx x x ( ).A 、1B 、 0C 、 21-D 、21 4、曲线 23-+=x x y 在点)0,1(处的切线方程是( ) A 、 )1(2-=x y B 、)1(4-=x y C 、14-=x y D 、)1(3-=x y 5、下列各微分式正确的是( ).A 、)(2x d xdx = B 、)2(sin 2cos x d xdx = C 、)5(x d dx --= D 、22)()(dx x d = 6、设⎰+=C xdx x f 2cos2)( ,则 =)(x f ( ).A 、2sinx B 、 2sin x - C 、 C x +2sin D 、2sin 2x - 7、⎰=+dx x x ln 2( ).A 、C x x++-22ln 212 B 、 C x ++2)ln 2(21C 、 C x ++ln 2lnD 、 C x x++-2ln 18、曲线2x y = ,1=x ,0=y 所围成的图形绕y 轴旋转所得旋转体体积=V ( ). A 、⎰104dx x π B 、⎰1ydy π C 、⎰-10)1(dy y π D 、⎰-14)1(dx x π 9、⎰=+101dx e e xx( ).A 、21lne + B 、22ln e + C 、31ln e+ D 、221ln e +10、微分方程 x e y y y 22=+'+'' 的一个特解为( ). A 、x e y 273=* B 、x e y 73=* C 、x xe y 272=* D 、x e y 272=*二、填空题(每小题4分)1、设函数x xe y =,则 =''y ;2、如果322sin 3lim 0=→x mx x , 则 =m .3、=⎰-113cos xdx x ;4、微分方程 044=+'+''y y y 的通解是 .5、函数x x x f 2)(+= 在区间 []4,0 上的最大值是 ,最小值是 ;三、计算题(每小题5分) 1、求极限 xx x x --+→11lim; 2、求x x y s i n ln cot 212+= 的导数;3、求函数 1133+-=x x y 的微分;4、求不定积分⎰++11x dx;5、求定积分 ⎰eedx x 1ln ; 6、解方程21xy xdx dy -=;四、应用题(每小题10分)1、 求抛物线2x y = 与 22x y -=所围成的平面图形的面积.2、 利用导数作出函数323x x y -= 的图象.参考答案一、1、C ; 2、D ; 3、C ; 4、B ; 5、C ; 6、B ; 7、B ; 8、A ; 9、A ; 10、D ;二、1、x e x )2(+; 2、94; 3、0 ; 4、x e x C C y 221)(-+= ; 5、8,0三、1、 1; 2、x 3cot - ; 3、dx x x 232)1(6+ ; 4、C x x +++-+)11ln(212;5、)12(2e- ; 6、C x y =-+2212 ; 四、1、38; 2、图略《高数》试卷5(上)一、选择题(每小题3分) 1、函数)1lg(12+++=x x y 的定义域是( ).A 、()()+∞--,01,2B 、 ()),0(0,1+∞-C 、),0()0,1(+∞-D 、),1(+∞- 2、下列各式中,极限存在的是( ).A 、 x x c o slim 0→ B 、x x arctan lim ∞→ C 、x x sin lim ∞→ D 、xx 2lim +∞→ 3、=+∞→xx xx )1(lim ( ). A 、e B 、2e C 、1 D 、e1 4、曲线x x y ln =的平行于直线01=+-y x 的切线方程是( ). A 、 x y = B 、)1)(1(ln --=x x y C 、 1-=x y D 、)1(+-=x y 5、已知x x y 3sin = ,则=dy ( ).A 、dx x x )3sin 33cos (+-B 、dx x x x )3cos 33(sin +C 、dx x x )3sin 3(cos +D 、dx x x x )3cos 3(sin + 6、下列等式成立的是( ).A 、⎰++=-C x dx x 111ααα B 、⎰+=C x a dx a x x ln C 、⎰+=C x xdx sin cos D 、⎰++=C x xdx 211tan 7、计算⎰xdx x e x cos sin sin 的结果中正确的是( ).A 、C ex+sin B 、C x e x +cos sinC 、C x ex+sin sin D 、C x e x +-)1(sin sin8、曲线2x y = ,1=x ,0=y 所围成的图形绕x 轴旋转所得旋转体体积=V ( ). A 、⎰104dx xπ B 、⎰10ydy πC 、⎰-10)1(dy y π D 、⎰-104)1(dx x π 9、设a ﹥0,则=-⎰dx x a a22( ).A 、2a B 、22a πC 、241a 0D 、241a π 10、方程( )是一阶线性微分方程.A 、0ln2=+'xyy x B 、0=+'y e y x C 、0sin )1(2=-'+y y y x D 、0)6(2=-+'dy x y dx y x二、填空题(每小题4分)1、设⎩⎨⎧+≤+=0,0,1)( x b ax x e x f x ,则有=-→)(lim 0x f x ,=+→)(lim 0x f x ;2、设 x xe y = ,则 =''y ;3、函数)1ln()(2x x f +=在区间[]2,1-的最大值是 ,最小值是 ;4、=⎰-113cos xdx x ;5、微分方程 023=+'-''y y y 的通解是 .三、计算题(每小题5分) 1、求极限 )2311(lim 21-+--→x x x x ;2、求 x x y arccos 12-= 的导数;3、求函数21xx y -=的微分;4、求不定积分⎰+dx xxln 21 ;5、求定积分 ⎰eedx x 1ln ;6、求方程y xy y x =+'2满足初始条件4)21(=y 的特解.四、应用题(每小题10分)1、求由曲线 22x y -= 和直线 0=+y x 所围成的平面图形的面积.2、利用导数作出函数 49623-+-=x x x y 的图象.参考答案(B 卷)一、1、B ; 2、A ; 3、D ; 4、C ; 5、B ; 6、C ; 7、D ; 8、A ; 9、D ; 10、B.二、1、 2 ,b ; 2、x e x )2(+ ; 3、 5ln ,0 ; 4、0 ; 5、x x e C e C 221+. 三、1、31 ; 2、1arccos 12---x x x ; 3、dx xx 221)1(1-- ; 4、C x ++ln 22 ; 5、)12(2e - ; 6、x e xy 122-= ;四、1、 29; 2、图略。

高等数学微积分练习题集全套(含答案)

高等数学微积分练习题集全套(含答案)

高等数学试题一、单项选择题(本大题共5小题,每小题2分,共10分)1.设f(x)=lnx ,且函数ϕ(x)的反函数1ϕ-2(x+1)(x)=x-1,则[]ϕ=f (x)( ) ....A B C D x-2x+22-x x+2 ln ln ln ln x+2x-2x+22-x2.()002lim 1cos tt x x e e dt x -→+-=-⎰( )A .0B .1C .-1D .∞ 3.设00()()y f x x f x ∆=+∆-且函数()f x 在0x x =处可导,则必有( ).lim 0.0.0.x A y B y C dy D y dy ∆→∆=∆==∆= 4.设函数,131,1x x x ⎧≤⎨->⎩22x f(x)=,则f(x)在点x=1处( )A.不连续B.连续但左、右导数不存在C.连续但不可导D. 可导5.设C +⎰2-x xf(x)dx=e ,则f(x)=( )2222-x -x -x -x A.xe B.-xe C.2e D.-2e二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。

错填、不填均无分。

6.设函数f(x)在区间[0,1]上有定义,则函数f(x+14)+f(x-14)的定义域是__________. 7.()()2lim 1_________n n a aq aq aq q →∞++++<=8.arctan lim _________x x x→∞= 9.已知某产品产量为g 时,总成本是2g C(g)=9+800,则生产100件产品时的边际成本100__g ==MC 10.函数3()2f x x x =+在区间[0,1]上满足拉格朗日中值定理的点ξ是_________.11.函数3229129y x x x =-+-的单调减少区间是___________.12.微分方程3'1xy y x -=+的通解是___________.13.设2ln 2,6a a π==⎰则___________.14.设2cos x z y =则dz= _______. 15.设{}2(,)01,01y D D x y x y xedxdy -=≤≤≤≤=⎰⎰,则_____________.三、计算题(一)(本大题共5小题,每小题5分,共25分)16.设1x y x ⎛⎫= ⎪⎝⎭,求dy.17.求极限0ln cot lim ln x x x+→18.求不定积分.dx19.计算定积分I=0.a⎰ 20.设方程2z x 2e 1y xz -+=确定隐函数z=z(x,y),求','x y z z 。

高等数学考试题库(附答案解析).docx

高等数学考试题库(附答案解析).docx

《高数》试卷 1 (上)一.选择题(将答案代号填入括号内,每题 3 分,共 30 分) .1 .下列各组函数中,是相同的函数的是().(A )f x ln x2和 g x2ln x( B )(C )f x x 和g x2x( D )f x| x | 和g x x2f x| x |g x1和xsin x 4 2x02 .函数f x ln 1x0 处连续,则a() .在 xa x0(A ) 0( B )1( D )2(C ) 143 .曲线y x ln x 的平行于直线 x y 1 0 的切线方程为() .(A )y x 1( B )y( x 1)( C)y ln x 1x 1(D)y x 4 .设函数f x| x |,则函数在点x0 处() .(A )连续且可导( B )连续且可微( C)连续不可导( D )不连续不可微5 .点x0 是函数y x4的().(A )驻点但非极值点(B)拐点(C)驻点且是拐点(D)驻点且是极值点6.曲线 y1的渐近线情况是() . | x |(A )只有水平渐近线(B )只有垂直渐近线( C)既有水平渐近线又有垂直渐近线(D )既无水平渐近线又无垂直渐近线7.f112 dx 的结果是().x x(A )f 1C (B)f1C (C) f1C1C x x x( D )fx8.dx的结果是().e x e x(A )arctan e x C(B )arctan e x C( C)e x e x C( D )ln( e x e x )C 9.下列定积分为零的是() .(A )4arctanx4 x arcsinx dx(C) 1e x e x1x2x sin x dx 1x2dx (B)12dx (D)44110 .设f x12x dx 等于(为连续函数,则f).(A )f 2 f 0( B )1f 11 f 0 (C)1f 2 f 0 (D) f 1 f 0 22二.填空题(每题4分,共 20 分)1.设函数 f x e 2x 1x0在 x0 处连续,则 a.xa x02.已知曲线y f x 在 x5,则 f2.2 处的切线的倾斜角为x 63. y的垂直渐近线有条 .x214.dx. x 1ln 2 x5.2x4 sin x cosx dx.2三.计算(每小题 5 分,共 30 分) 1 .求极限1 x2 xx sin x①limx②limx e x 2xx 012 .求曲线y ln x y 所确定的隐函数的导数y x .3 .求不定积分①dx②dx a 0③ xe x dxx 1 x 3x 2 a 2四.应用题(每题 10 分,共 20 分)1 . 作出函数 yx 3 3x 2 的图像 .2 .求曲线 y 22x 和直线 y x 4所围图形的面积 .《高数》试卷 1 参考答案一.选择题1 . B2 . B3 . A4 . C5 . D6 . C7 . D8 . A9 . A 10 .C 二.填空题1 . 22 .3 24. arctanln x c5.23.3三.计算题1① e 2② 12. y x16 xy 13. ① 1 ln |x 1| C ② ln | x 2a 2x | C③ e x x 1 C2x 3四.应用题1.略2.S 18《高数》试卷 2 (上)一. 选择题 (将答案代号填入括号内 ,每题 3 分 , 共 30 分 )1. 下列各组函数中 , 是相同函数的是 ().(A)f xx 和 g xx 2(B)f xx 2 1 和 y x 1x 1(C)f xx 和 g xx(sin 2 x cos 2 x)(D)f xln x 2 和 g x 2ln xsin 2x 1 x 1x 12. 设函数 fx2x 1,则 lim fx() .x 2x11x 1(A) 0(B)1(C)2(D) 不存在3. 设函数 y f x 在点 x 0 处可导,且 fx >0, 曲线则 yf x 在点 x 0 , f x 0处的切线的倾斜角为 {}.(A)(B) 2(C)锐角(D)钝角4. 曲线 yln x 上某点的切线平行于直线 y2 x3 , 则该点坐标是 ().(A) 2,ln1(B)2, ln1(C)1(D)1ln 222,ln 2,225. 函数y x2e x及图象在1,2内是 ().(A) 单调减少且是凸的(B) 单调增加且是凸的(C)单调减少且是凹的(D) 单调增加且是凹的6. 以下结论正确的是 ().(A)若 x0为函数y f x的驻点 ,则x0必为函数y f x的极值点 .(B)函数 y f x导数不存在的点 ,一定不是函数y f x的极值点 .(C)若函数 y f x在 x0处取得极值,且f x0存在,则必有 f x0=0.(D)若函数 y f x在 x0处连续,则f x0一定存在 .17.设函数 y f x的一个原函数为x2e x,则f x=().1111(A)2x 1 e x(B)2x e x(C)2x 1 e x(D)2xe x8.若f x dx F x c ,则 sin xf cosx dx().(A) F sin x c(B)F sin x c(C)F cosx c(D)F cosx c设 F x 1x dx =(9.为连续函数 ,则f).02(A) f1f0(B) 2f1f0(C)2f2f0(D) 2 f 1f210. 定积分bdx a b 在几何上的表示(). a(A) 线段长b a(B)线段长 a b (C)矩形面积a b1(D)矩形面积 b a1二. 填空题 (每题 4 分, 共 20 分 )ln1x2x 0, 在x 0连续 ,则a =________.1.设 f x1cos xa x02.设 y sin2x ,则 dy_________________ d sin x .x3.函数 y1 的水平和垂直渐近线共有_______条.x2 14. 不定积分x ln xdx______________________.1x2 sin x1___________.5. 定积分1x 2dx1三. 计算题 (每小题 5 分 , 共 30分 )1.求下列极限 :①lim 1 2xx0 1arctanx x② lim2x1x2. 求由方程y 1 xe y所确定的隐函数的导数y x.3.求下列不定积分 :①tan x sec3xdx②dxa 0③x2e x dx x2a2四.应用题 (每题 10 分 ,共 20 分 )1. 作出函数y1x3x 的图象.(要求列出表格)32. 计算由两条抛物线:y2x, y x2所围成的图形的面积.《高数》试卷 2 参考答案一. 选择题: CDCDB CADDD二填空题: 1. - 22. 2sin x3.34.1 x2 ln x 1 x 2 c 5.2 42三. 计算题: 1.① e 2 ② 12.y xe yy 23. ① sec 3x c② lnx 2a 2 xc ③ x 22 x 2 e xc3四. 应用题: 1. 略2. S13《高数》试卷 3 (上)一、填空题 (每小题 3 分, 共 24 分)1.函数 y1的定义域为 ________________________.9x 22. 设函数 fxsin 4x , x 0, 则当 a=_________时, f x 在 x0 处连续 .xa, x 03. 函数 f (x)x 2 1的无穷型间断点为 ________________.x 23x 24.设 f ( x) 可导 , yf (e x ) , 则 y____________.5. limx 2 1_________________.2x 2x 5x6.1 x 3 sin2 x dx =______________.1x4x 217. d x 2e tdt _______________________.dx 0 8. yyy 30 是_______阶微分方程 .二、 求下列极限 (每小题 5分, 共 15 分)ex1x 31x1. lim ;2. lim;3. lim1 .sin xx 29 2xx 0x 3x三、求下列导数或微分 (每小题 5 分, 共 15 分)1. yx x , 求 y (0) . 2.ye cos x , 求 dy .2 求 dy . 3. 设 xy e x y ,dx四、求下列积分(每小题 5 分,共 15分)1.12sin x dx . 2. x ln(1x)dx . x3.1e2x dx五、 (8 分 )求曲线xtcost在 t2处的切线与法线方程 . y1六、 (8 分 )求由曲线 yx 2 1, 直线 y 0, x 0 和 x 1 所围成的平面图形的面积 , 以及此图形绕 y 轴旋转所得旋转体的体积 .七、 (8 分 )求微分方程 y 6 y 13 y0 的通解 .八、 (7 分 )求微分方程 yye x 满足初始条件 y 10 的特解 .x《高数》试卷3 参考答案一. 1 . x 32. a 43. x 24. e x f '(e x )5.16.07. 2xe x28. 二阶2二 .1. 原式 = lim x1x 0x2. lim1 1 x 3x 363. 原式 = lim[(11 11)2 x ] 2 e 2x2x三 .1.2.y '212)2, y '(0)( x2dysin xe cos x dx3. 两边对 x 求写: yxy ' e x y (1 y ')y 'e x y yxy yx exyx xy四.1. 原式 = lim x2cos x C2212. 原式 = lim(1 x)d (xxlim(1x)2x)]) x 2 x d [lim(12=x22lim(1x) 1 1 x dx x lim(1 x)1 ( x11 )dx22 x 2 21 x=x22lim(1x) 1 [ xx lim(1 x)] C22 2 3. 原式 =11 2xd (2 x)2x 121)e1 e 01(e222五.dysin tdy t21且t, y 1dxdx2 切线: y1 x,即 y x 1 22法线: y1( x ),即 y x 122六. S1 ( x21)dx ( 1x2x) 10 3 022V 11)2 dx 12x21)dx(x 2( x 4( x 5 2 x 2 x) 10 285 315七.特征方程 : r 2 6r 13 0r3 2iye 3x (C 1 cos2 x C 2 sin 2 x)11dxdx八. y e x( e x e x dx C )1 [( x 1)e x C ] x由 y x10,C0y x 1 e xx《高数》试卷 4 (上)一、选择题(每小题 3 分)1 、函数 y ln(1x) x 2 的定义域是() . A2,1B2,1C 2,1D2,12 、极限 lim ex的值是() .xA 、B 、C 、D 、 不存在3 、 lim sin(x1) () .x 11x 21 1A 、 1B 、 0C 、2D 、24 、曲线 y x 3 x 2 在点 (1,0) 处的切线方程是()A 、 y2( x1)B 、 y 4( x 1)C 、 y 4x 1D 、 y 3( x 1)5 、下列各微分式正确的是( ) .A 、 xdx d (x 2 )B 、 cos 2xdx d(sin 2x)C 、 dx d (5 x)D 、 d (x 2 ) ( dx) 26 、设f (x)dx2 cosxC ,则f (x) () .2A 、 sinxB 、22 ln x) .7 、 dx (xxxxsinC 、 sinC D 、 2 sin222A 、2 1ln 2 x CB 、 1(2 ln x)2Cx222C 、 ln 2ln xC1 ln xCD 、x28 、曲线 yx 2 , x 1 , y0 所围成的图形绕y 轴旋转所得旋转体体积 V() .11A 、x 4dxB 、ydyC 、1 y)dy1 (1 x 4)dx(1 D 、1e x 9 、e x dx () .11 e2 e1 e1 2eA 、 ln2B 、 ln 2C 、 lnD 、 ln3210 、微分方程 y y y2e 2 x 的一个特解为() .A 、 y3 e 2x B 、 y3 e x C 、 y2 xe 2 x D 、 y2 e 2 x7777二、填空题(每小题4 分)1 、设函数 y xe x ,则 y;2 、如果 lim3sin mx2 , 则 m.x 02x 313、 x3 cos xdx;14、微分方程y 4 y 4 y0 的通解是.5、函数 f (x)x2x在区间0,4 上的最大值是,最小值是;三、计算题(每小题 5 分)1 、求极限lim 1 x 1 x ;2 、求y 1cot 2 x ln sin x 的导数;x 0x2x314 、求不定积分dx;3 、求函数y的微分;xx3111eln x dx ;dy x5 、求定积分6 、解方程1;e dx y 1 x2四、应用题(每小题10 分)1 、求抛物线y x 2与y2 x 2所围成的平面图形的面积.2 、利用导数作出函数y 3x2x3的图象.参考答案一、 1 、 C; 2 、 D ; 3 、 C; 4 、B ; 5 、 C; 6 、 B ;7 、B ;8 、 A ;9 、 A;10 、 D;二、 1 、(x2)e x; 2 、4; 3 、0; 4 、y(C1 C2 x)e 2 x;5、8,0 9三、1 、 1 ; 2 、cot 3 x ; 3 、6x 2dx ; 4 、2 x 1 2 ln(1x 1) C ; 5 、2(21) ;6、y2 2 1 x2 C ;( x31)2e四、 1 、8;32、图略《高数》试卷 5 (上)一、选择题(每小题 3 分)1、函数 y2x1的定义域是(). lg( x 1)A、2,10, B 、1,0(0,)C、(1,0)(0,) D 、(1,)2、下列各式中,极限存在的是() .A、lim cosx B 、lim arctanx C、lim sin x D 、lim 2xx0x x x3、 lim (x) x() .x 1 xA 、eB 、e2C、1 D 、1e4 、曲线y x ln x 的平行于直线x y 1 0 的切线方程是() .A、y x B 、y(ln x 1)( x 1)C、y x 1 D 、y( x 1)5 、已知y x sin 3x ,则 dy().A、(cos3x 3sin 3x)dx B 、C、(cos 3x sin 3x)dx D 、(sin 3x3x cos3x) dx (sin 3x x cos3x)dx6 、下列等式成立的是().A 、x dx1 x 1 CB 、 a x dx a x ln x C11C 、 cosxdx sin x CD 、 tan xdxCx 217 、计算e sin xsin xcos xdx 的结果中正确的是() .A 、 e sin x CB 、 e sin x cos x CC 、 e sin x sin x CD 、 e sin x (sin x 1)C8 、曲线 yx 2 , x1 , y0 所围成的图形绕 x 轴旋转所得旋转体体积 V().1x 4dx1A 、B 、ydy 01 (1 y)dy1 (1 x4)dxC 、D 、a a 2x 2dx () .9 、设 a ﹥ 0 ,则A 、 a2B 、 a2C 、 1a2D 、 1a 224410 、方程()是一阶线性微分方程 .A 、 x 2ylnyB 、 y e x y 0xC 、 (1x 2 ) y y sin yD 、 xy dx ( y 26x)dy 0二、填空题(每小题 4 分)1 、设 f ( x)e x 1, x, lim f ( x);,则有 lim f ( x)ax b, xx 0 x 02 、设 y xex,则 y;3 、函数 f (x)ln(1x 2 ) 在区间1,2 的最大值是,最小值是;14 、 x 3cos xdx;15 、微分方程y 3 y 2 y 0 的通解是.三、计算题(每小题 5 分)1 、求极限 lim (11 x23 ) ; x 1x x 22 、求y1 x2 arccosx 的导数;3 、求函数 yx 的微分;1 x 24 、求不定积分1dx ;x 2ln x5 、求定积分eln x dx ;1e6 、求方程x2y xy y 满足初始条件y( 1 ) 4 的特解.2四、应用题(每小题10 分)1 、求由曲线y2 x2和直线x y 0 所围成的平面图形的面积.2 、利用导数作出函数y x 36x29x 4的图象.一、 1 、 B ; 2 、A ; 3 、 D; 4 、 C ; 5 、 B ;参考答案( B卷)6 、 C;7 、 D ;8 、 A ;9 、 D ;10 、 B.二、 1 、 2 , b ; 2 、( x2)e x; 3 、ln 5 , 0 ;4、 0 ;5、C1e x C 2 e2 x.三、 1、1; 2 、x arccos 1 ; 3 、1dx ;3 1 x 2x(1 x 2 ) 1 x 24 、2 2ln x C ;1; 6 、y221 5 、2(2)xe x ;e四、 19; 2 、图略、2。

高等数学试题及答案大全

高等数学试题及答案大全

高等数学试题及答案大全一、选择题1. 下列函数中,不是周期函数的是()。

A. y = sin(x)B. y = cos(x)C. y = e^xD. y = tan(x)2. 函数f(x) = x^2 + 3x - 2在区间[-5, 2]上的最大值是()。

A. 0B. 3C. 4D. 5二、填空题1. 若函数f(x) = 2x - 3在x = 1处的导数为5,则原函数在x = 1处的值为______。

2. 曲线y = x^3 - 2x^2 + x在x = 2处的切线斜率为______。

三、解答题1. 求函数f(x) = ln(x) + 1的导数,并说明其在x = e处的导数值。

2. 已知函数f(x) = x^3 - 6x^2 + 11x - 6,求其极值点。

四、证明题1. 证明函数f(x) = x^3在R上的单调性。

2. 证明等差数列的前n项和公式S_n = n(a_1 + a_n)/2。

五、应用题1. 某工厂生产一种产品,其成本函数为C(x) = 3x + 200,销售价格为P(x) = 50 - 0.05x,其中x表示产品数量。

求该工厂的盈利函数,并求出其盈利最大时的产品数量。

2. 一个圆的半径为r,求其面积与周长的比值。

答案:一、选择题1. C解析:函数y = e^x不是周期函数,其他选项都是周期函数。

2. D解析:函数f(x) = x^2 + 3x - 2的导数为f'(x) = 2x + 3,令其等于0,解得x = -3/2,但x = -3/2不在区间[-5, 2]内。

检查区间端点,f(-5) = -8,f(2) = 5,因此最大值为5。

二、填空题1. -1解析:由f'(x) = 2,且f'(1) = 5,可得f(1) = f'(1) * (1 - 0) + f(0) = 5 + f(0),又因为f(0) = -3,所以f(1) = 5 - 3 = 2。

2. -4解析:由y' = 3x^2 - 4x + 1,代入x = 2,得y' = 3 * 2^2 - 4 * 2 + 1 = 12 - 8 + 1 = 5。

高等数学考试题库(附答案解析)

高等数学考试题库(附答案解析)

《高数》试卷1(上)一.选择题(将答案代号填入括号内,每题3分,共30分).1.下列各组函数中,是相同的函数的是( ).(A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()g x =(C )()f x x = 和 ()2g x =(D )()||x f x x=和 ()g x =1 2.函数()00x f x a x ≠=⎨⎪=⎩ 在0x =处连续,则a =( ).(A )0 (B )14(C )1 (D )23.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ).(A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ).(A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微5.点0x =是函数4y x =的( ).(A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点6.曲线1||y x =的渐近线情况是( ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7.211f dx x x⎛⎫' ⎪⎝⎭⎰的结果是( ). (A )1f C x ⎛⎫-+ ⎪⎝⎭(B )1f C x ⎛⎫--+ ⎪⎝⎭(C )1f C x ⎛⎫+ ⎪⎝⎭(D )1f C x ⎛⎫-+ ⎪⎝⎭8.x x dxe e -+⎰的结果是( ).(A )arctan xe C + (B )arctan xe C -+ (C )x x e e C --+ (D )ln()x x e e C -++9.下列定积分为零的是( ).(A )424arctan 1x dx x ππ-+⎰ (B )44arcsin x x dx ππ-⎰ (C )112x xe e dx --+⎰ (D )()121sin x x x dx -+⎰ 10.设()f x 为连续函数,则()12f x dx '⎰等于( ).(A )()()20f f - (B )()()11102f f -⎡⎤⎣⎦(C )()()1202f f -⎡⎤⎣⎦(D )()()10f f -二.填空题(每题4分,共20分)1.设函数()2100x e x f x x a x -⎧-≠⎪=⎨⎪=⎩在0x =处连续,则a =.2.已知曲线()y f x =在2x =处的切线的倾斜角为56π,则()2f '=.3.21xy x =-的垂直渐近线有条. 4.()21ln dxx x =+⎰.5.()422sin cos xx x dx ππ-+=⎰.三.计算(每小题5分,共30分) 1.求极限①21lim xx x x →∞+⎛⎫⎪⎝⎭ ②()20sin 1lim xx x x x e →-- 2.求曲线()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分 ①()()13dxx x ++⎰ ②()220dx a x a >-⎰ ③x xe dx -⎰四.应用题(每题10分,共20分) 1. 作出函数323y x x =-的图像.2.求曲线22y x =和直线4y x =-所围图形的面积.《高数》试卷1参考答案一.选择题1.B 2.B 3.A 4.C 5.D 6.C 7.D 8.A 9.A 10.C 二.填空题 1.2- 2.- 3. 2 4.arctanln x c + 5.2 三.计算题 1①2e ②162.11xy x y '=+- 3. ①11ln ||23x C x +++②ln ||x C + ③()1x e x C --++四.应用题1.略 2.18S =《高数》试卷2(上)一.选择题(将答案代号填入括号内,每题3分,共30分) 1.下列各组函数中,是相同函数的是( ).(A) ()f x x =和()g x = (B) ()211x f x x -=-和1y x =+(C) ()f x x =和()22(sin cos )g x x x x =+ (D) ()2ln f x x =和()2ln g x x =2.设函数()()2sin 21112111x x x f x x x x -⎧<⎪-⎪⎪==⎨⎪->⎪⎪⎩,则()1lim x f x →=( ). (A) 0 (B) 1 (C) 2 (D) 不存在3.设函数()y f x =在点0x 处可导,且()f x '>0, 曲线则()y f x =在点()()00,x f x 处的切线的倾斜角为{ }.(A) 0 (B)2π(C) 锐角 (D) 钝角 4.曲线ln y x =上某点的切线平行于直线23y x =-,则该点坐标是( ). (A) 12,ln2⎛⎫ ⎪⎝⎭ (B) 12,ln 2⎛⎫- ⎪⎝⎭ (C) 1,ln 22⎛⎫ ⎪⎝⎭ (D) 1,ln 22⎛⎫- ⎪⎝⎭5.函数2xy x e-=及图象在()1,2内是( ).(A)单调减少且是凸的 (B)单调增加且是凸的 (C)单调减少且是凹的 (D)单调增加且是凹的6.以下结论正确的是( ).(A) 若0x 为函数()y f x =的驻点,则0x 必为函数()y f x =的极值点. (B) 函数()y f x =导数不存在的点,一定不是函数()y f x =的极值点. (C) 若函数()y f x =在0x 处取得极值,且()0f x '存在,则必有()0f x '=0. (D) 若函数()y f x =在0x 处连续,则()0f x '一定存在.7.设函数()y f x =的一个原函数为12xx e ,则()f x =( ). (A) ()121x x e - (B)12x x e - (C) ()121x x e + (D) 12xxe8.若()()f x dx F x c =+⎰,则()sin cos xf x dx =⎰( ).(A) ()sin F x c + (B) ()sin F x c -+ (C) ()cos F x c + (D) ()cos F x c -+ 9.设()F x 为连续函数,则12x f dx ⎛⎫' ⎪⎝⎭⎰=( ). (A) ()()10f f - (B)()()210f f -⎡⎤⎣⎦ (C) ()()220f f -⎡⎤⎣⎦ (D) ()1202f f ⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦10.定积分badx ⎰()a b <在几何上的表示( ).(A) 线段长b a - (B) 线段长a b - (C) 矩形面积()1a b -⨯ (D) 矩形面积()1b a -⨯ 二.填空题(每题4分,共20分)1.设 ()()2ln 101cos 0x x f x xa x ⎧-⎪≠=⎨-⎪=⎩, 在0x =连续,则a =________.2.设2sin y x =, 则dy =_________________sin d x . 3.函数211xy x =+-的水平和垂直渐近线共有_______条. 4.不定积分ln x xdx =⎰______________________.5. 定积分2121sin 11x x dx x -+=+⎰___________. 三.计算题(每小题5分,共30分)1.求下列极限:①()10lim 12xx x →+ ②arctan 2lim 1x x xπ→+∞-2.求由方程1yy xe =-所确定的隐函数的导数x y '.3.求下列不定积分: ①3tan sec x xdx ⎰ ②()220dx a x a>+⎰③2x x e dx ⎰ 四.应用题(每题10分,共20分) 1.作出函数313y x x =-的图象.(要求列出表格)2.计算由两条抛物线:22,y x y x ==所围成的图形的面积.《高数》试卷2参考答案一.选择题:CDCDB CADDD二填空题:1.-2 2.2sin x 3.3 4.2211ln 24x x x c -+ 5.2π三.计算题:1. ①2e ②1 2.2yx e y y '=- 3.①3sec 3xc +②)ln x c + ③()222x x x e c -++四.应用题:1.略 2.13S =《高数》试卷3(上)一、 填空题(每小题3分, 共24分)1.函数y =的定义域为________________________.2.设函数()sin 4,0,0xx f x x a x ⎧≠⎪=⎨⎪=⎩, 则当a =_________时, ()f x 在0x =处连续.3. 函数221()32x f x x x -=-+的无穷型间断点为________________.4. 设()f x 可导, ()xy f e =, 则____________.y '=5. 221lim _________________.25x x x x →∞+=+- 6. 321421sin 1x xdx x x -+-⎰=______________. 7. 20_______________________.x td e dt dx -=⎰8. 30y y y '''+-=是_______阶微分方程.二、求下列极限(每小题5分, 共15分)1. 01lim sin xx e x →-; 2. 233lim 9x x x →--; 3. 1lim 1.2xx x -→∞⎛⎫+ ⎪⎝⎭三、求下列导数或微分(每小题5分, 共15分)1. 2xy x =+, 求(0)y '. 2. cos x y e =, 求dy . 3. 设x y xy e +=, 求dydx .四、求下列积分 (每小题5分, 共15分)1. 12sin x dx x ⎛⎫+ ⎪⎝⎭⎰. 2. ln(1)x x dx +⎰.3.120xedx ⎰五、(8分)求曲线1cos x t y t=⎧⎨=-⎩在2t π=处的切线与法线方程.六、(8分)求由曲线21,y x =+ 直线0,0y x ==和1x =所围成的平面图形的面积, 以及此图形绕y 轴旋转所得旋转体的体积. 七、(8分)求微分方程6130y y y '''++=的通解. 八、(7分)求微分方程x yy e x'+=满足初始条件()10y =的特解. 《高数》试卷3参考答案一.1.3x< 2.4a = 3.2x = 4.'()x x e f e5.126.07.22x xe -8.二阶二.1.原式=0lim 1x xx→= 2.311lim36x x →=+ 3.原式=112221lim[(1)]2x x e x--→∞+= 三.1.221','(0)(2)2y y x ==+2.cos sin x dy xe dx =-3.两边对x 求写:'(1')x y y xy e y +==+'x y x y e y xy yy x e x xy++--⇒==--四.1.原式=lim 2cos x x C -+2.原式=2221lim(1)()lim(1)[lim(1)]22x x x d x x d x x +=+-+⎰⎰=22111lim(1)lim(1)(1)221221x x x x dx x x dx x x +-=+--+++⎰⎰=221lim(1)[lim(1)]222x x x x x C +--+++3.原式=1221200111(2)(1)222x x e d x e e ==-⎰五.sin 1,122dy dy tt t y dx dx ππ=====且 切线:1,1022y x y x ππ-=---+=即 法线:1(),1022y x y x ππ-=--+--=即六.12210013(1)()22S x dx x x =+=+=⎰11224205210(1)(21)228()5315V x dx x x dxx x x ππππ=+=++=++=⎰⎰七.特征方程:2312613032(cos 2sin 2)xr r r iy e C x C x -++=⇒=-±=+八.11()dxdxxx x y e e edx C -⎰⎰=+⎰1[(1)]x x e C x=-+ 由10,0y x C ==⇒=1xx y e x-∴=《高数》试卷4(上)一、选择题(每小题3分) 1、函数 2)1ln(++-=x x y 的定义域是( ).A []1,2-B [)1,2-C (]1,2-D ()1,2- 2、极限xx e ∞→lim 的值是( ).A 、 ∞+B 、 0C 、∞-D 、 不存在 3、=--→211)1sin(limx x x ( ).A 、1B 、 0C 、 21-D 、214、曲线 23-+=x x y 在点)0,1(处的切线方程是( ) A 、 )1(2-=x y B 、)1(4-=x y C 、14-=x y D 、)1(3-=x y 5、下列各微分式正确的是( ).A 、)(2x d xdx = B 、)2(sin 2cos x d xdx =C 、)5(x d dx --=D 、22)()(dx x d =6、设⎰+=C xdx x f 2cos 2)( ,则 =)(x f ( ). A 、2sin x B 、 2sin x- C 、 C x +2sin D 、2sin 2x -7、⎰=+dx xx ln 2( ).A 、C x x++-22ln 212 B 、 C x ++2)ln 2(21C 、 C x ++ln 2lnD 、 C xx++-2ln 1 8、曲线2x y = ,1=x ,0=y 所围成的图形绕y 轴旋转所得旋转体体积=V ( ). A 、⎰14dx x π B 、⎰1ydy πC 、⎰-1)1(dy y π D 、⎰-104)1(dx x π9、⎰=+101dx e e xx( ). A 、21lne + B 、22ln e + C 、31ln e + D 、221ln e + 10、微分方程 xe y y y 22=+'+'' 的一个特解为( ).A 、x e y 273=* B 、x e y 73=* C 、x xe y 272=* D 、x e y 272=*二、填空题(每小题4分)1、设函数xxe y =,则 =''y ; 2、如果322sin 3lim 0=→x mx x , 则 =m .3、=⎰-113cos xdx x;4、微分方程 044=+'+''y y y 的通解是 .5、函数x x x f 2)(+= 在区间 []4,0 上的最大值是 ,最小值是 ;三、计算题(每小题5分) 1、求极限 x x x x --+→11lim; 2、求x x y sin ln cot 212+= 的导数;3、求函数 1133+-=x x y 的微分;4、求不定积分⎰++11x dx;5、求定积分⎰eedx x 1ln ; 6、解方程21xy xdx dy -=;四、应用题(每小题10分)1、 求抛物线2x y = 与 22x y -=所围成的平面图形的面积.2、 利用导数作出函数323x x y -= 的图象.参考答案一、1、C ; 2、D ; 3、C ; 4、B ; 5、C ; 6、B ; 7、B ; 8、A ; 9、A ; 10、D ;二、1、xe x )2(+; 2、94 ; 3、0 ; 4、xe x C C y 221)(-+= ; 5、8,0三、1、 1; 2、x 3cot - ; 3、dx x x 232)1(6+ ; 4、C x x +++-+)11ln(212; 5、)12(2e - ; 6、C x y =-+2212 ; 四、1、38; 2、图略《高数》试卷5(上)一、选择题(每小题3分) 1、函数)1lg(12+++=x x y 的定义域是( ).A 、()()+∞--,01,2B 、 ()),0(0,1+∞-C 、),0()0,1(+∞-D 、),1(+∞- 2、下列各式中,极限存在的是( ).A 、 x x cos lim 0→B 、x x arctan lim ∞→C 、x x sin lim ∞→D 、xx 2lim +∞→3、=+∞→xx xx )1(lim ( ). A 、e B 、2e C 、1 D 、e1 4、曲线x x y ln =的平行于直线01=+-y x 的切线方程是( ). A 、 x y = B 、)1)(1(ln --=x x y C 、 1-=x y D 、)1(+-=x y 5、已知x x y 3sin = ,则=dy ( ).A 、dx x x )3sin 33cos (+-B 、dx x x x )3cos 33(sin +C 、dx x x )3sin 3(cos +D 、dx x x x )3cos 3(sin + 6、下列等式成立的是( ).A 、⎰++=-C x dx x 111ααα B 、⎰+=C x a dx a x x ln C 、⎰+=C x xdx sin cos D 、⎰++=C xxdx 211tan 7、计算⎰xdx x e x cos sin sin 的结果中正确的是( ).A 、C ex+sin B 、C x e x +cos sinC 、C x ex+sin sin D 、C x e x +-)1(sin sin8、曲线2x y = ,1=x ,0=y 所围成的图形绕x 轴旋转所得旋转体体积=V ( ). A 、⎰14dx x π B 、⎰1ydy πC 、⎰-1)1(dy y π D 、⎰-104)1(dx x π9、设 a ﹥0,则=-⎰dx x a a22( ).A 、2a B 、22a πC 、241a 0D 、241a π 10、方程( )是一阶线性微分方程. A 、0ln2=+'xyy x B 、0=+'y e y x C 、0sin )1(2=-'+y y y x D 、0)6(2=-+'dy x y dx y x二、填空题(每小题4分)1、设⎩⎨⎧+≤+=0,0,1)( x b ax x e x f x ,则有=-→)(lim 0x f x ,=+→)(lim 0x f x ;2、设 xxe y = ,则 =''y ;3、函数)1ln()(2x x f +=在区间[]2,1-的最大值是 ,最小值是 ;4、=⎰-113cos xdx x;5、微分方程 023=+'-''y y y 的通解是 .三、计算题(每小题5分) 1、求极限 )2311(lim 21-+--→x x x x ;2、求 x x y arccos 12-= 的导数;3、求函数21xx y -=的微分;4、求不定积分⎰+dx xxln 21 ;5、求定积分 ⎰eedx x 1ln ;6、求方程y xy y x =+'2满足初始条件4)21(=y 的特解.四、应用题(每小题10分)1、求由曲线 22x y -= 和直线 0=+y x 所围成的平面图形的面积.2、利用导数作出函数 49623-+-=x x x y 的图象.参考答案(B 卷)一、1、B ; 2、A ; 3、D ; 4、C ; 5、B ; 6、C ; 7、D ; 8、A ; 9、D ; 10、B.二、1、 2 ,b ; 2、xe x )2(+ ; 3、 5ln ,0 ; 4、0 ; 5、xxeC e C 221+.三、1、31 ; 2、1arccos 12---x xx ; 3、dx x x 221)1(1-- ;4、C x ++ln 22 ;5、)12(2e- ; 6、x e x y 122-= ;四、1、 29; 2、图略。

高等数学考试题库(附答案)

高等数学考试题库(附答案)

.《高数》试卷 1(上)一.选择题(将答案代号填入括号内,每题3 分,共 30 分).1.下列各组函数中,是相同的函数的是() .(A ) f xln x2和 g x2ln x(B ) f x| x | 和 g x x22| x |(C ) f x x 和 g x x( D ) f x和 g x1xsin x 42x 02.函数 fxln 1 x在 x 0 处连续,则 a() .ax 0(A )0(B )1(C )1(D )243.曲线 y x ln x 的平行于直线 x y 1 0 的切线方程为() .(A ) y x 1 (B ) y( x 1) ( C ) yln x 1x 1( D ) y x4.设函数f x | x |,则函数在点 x 0 处() .(A )连续且可导 ( B )连续且可微( C )连续不可导 ( D )不连续不可微5.点 x 0 是函数 y x 4的() .(A )驻点但非极值点( B )拐点( C )驻点且是拐点( D )驻点且是极值点6.曲线 y1) .的渐近线情况是(| x |(A )只有水平渐近线 ( B )只有垂直渐近线 ( C )既有水平渐近线又有垂直渐近线(D )既无水平渐近线又无垂直渐近线7.1 1的结果是() .fxx 2dx(A ) f1 C(B ) f1 C( C ) f1 C(D )f1 Cxxxx8.dx 的结果是() .ex e x(A ) arctan exC ( B ) arctan exC( C ) exexC( D ) ln( exe x)C9.下列定积分为零的是( ) .(A )4arctan x dx ( B ) 4x arcsin x dx (C ) 1exe xdx ( D )1x 2 x sin x dx1x2121 4410 .设f x1) .为连续函数,则 f 2x dx 等于((A )f2 f 0(B)1f 11 f 0(C)1f 2 f 0( D)f 1 f 0 22二.填空题(每题 4 分,共 20 分).f x e 2x 1x0x0 处连续,则 a1x..设函数在a x02.已知曲线 y f x 在 x 2 处的切线的倾斜角为5.,则 f 2x 63. y的垂直渐近线有条.2x14.dx.ln 2 xx 15.2x4 sin x cosx dx.2三.计算(每小题 5 分,共 30分)1.求极限12 xx sin x①limx② limxx2x0x e1x2.求曲线y ln x y 所确定的隐函数的导数y x. 3.求不定积分①xdx②dx a0③ xe x dx 1x 3x2a2四.应用题(每题10 分,共 20 分)1.作出函数y x33x2的图像.2.求曲线y22x 和直线 y x 4 所围图形的面积..《高数》试卷 1 参考答案一.选择题1.B 2.B 3. A 4.C 5.D 6.C 7.D 8.A 9.A 10.C 二.填空题1.2 2 .33.24.arctanln x c5.23三.计算题1① e2② 12. y xx16y 13. ① 1 ln |x 1| C② ln | x2a2x | C③ exx 1 C2x3四.应用题1.略2. S 18.《高数》试卷 2(上)一. 选择题 (将答案代号填入括号内 ,每题 3 分,共 30 分)1.下列各组函数中 ,是相同函数的是 ().(A)f xx 和 g xx2(B)f xx 21和 y x 1x 1(C)f xx 和 g xx(sin 2 x cos 2x)(D)f xln x 2和 g x2ln xsin 2 x 1x 1x 12.设函数 fx2 x 1,则 limf x() .x2x11 x 1(A) 0(B)1 (C)2(D) 不存在3.设函数 y f x 在点 x 0 处可导,且 fx >0, 曲线则 yf x 在点 x 0 , f x 0处的切线的倾斜角为 {}.(A)0 (B)2(C)锐角(D)钝角4.曲线 y ln x 上某点的切线平行于直线 y2x3 ,则该点坐标是 ().(A)2,ln1(B)2, ln1(C)1,ln 2(D)1 , ln 222225.函数 y x 2e x及图象在 1,2 内是 ().(A) 单调减少且是凸的 (B)单调增加且是凸的(C) 单调减少且是凹的(D) 单调增加且是凹的6.以下结论正确的是 ().(A)若 x0为函数y f x的驻点 ,则x0必为函数y f x的极值点 .(B)函数 y f x导数不存在的点 ,一定不是函数y f x 的极值点.(C)若函数 y f x在 x0处取得极值,且f x0存在 ,则必有f x0=0.(D)若函数 y f x在 x0处连续,则f x一定存在 .17.设函数y f x的一个原函数为x2e x,则f x=()..1111 (A)2x 1 e x(B)2x e x(C)2x 1 e x(D)2xe x8.若(A)f x dx F x c ,则 sin xf cosx dx().F sin x c(B) F sin x c (C) F cosx c (D) F cos x c9.设F1xdx =(). x 为连续函数,则f02(A) f1f0(B)2 f1 f 0(C) 2 f 2f0(D) 2 f1f02 bdx a b 在几何上的表示(10. 定积分).a(A) 线段长b a (B)线段长 a b (C)矩形面积a b1(D) 矩形面积b a1二.填空题 (每题 4分,共 20分)ln1x2x 0, 在x1.设 f x1cos x0 连续,则a=________.a x02.设 y sin 2x ,则 dy_________________ d sin x .3.函数 y x1的水平和垂直渐近线共有 _______条 .21x4.不定积分x ln xdx______________________.5.1x2 sin x1___________.定积分1x 2dx1三.计算题 (每小题 5 分 ,共 30 分)1.求下列极限 :①lim 1 2xx0 1arctanx x② lim2x1x2.求由方程y 1 xe y所确定的隐函数的导数y x.3.求下列不定积分:①tan x sec3xdx②dxa 0③x2e x dx x2a2四.应用题 (每题 10 分,共 20 分)1.作出函数y 1 x3x 的图象.(要求列出表格)32.计算由两条抛物线:y2x, y x2所围成的图形的面积..《高数》试卷 2 参考答案一.选择题: CDCDB CADDD二填空题: 1. -2 2. 2sin x 3.3 4.1x2 ln x 1 x2c 5. 242三. 计算题: 1.2②1 2.y xe y① e y23.① sec3 x c② ln x2a2x c ③x22x 2 e x c3四.应用题: 1.略 2.S 13《高数》试卷3(上)一、填空题 (每小题 3分,共24分)1.函数 y1的定义域为 ________________________. 9x22.设函数 f x sin 4x , x0f x 在 x0处连续 .x, 则当 a=_________时,a,x03. 函数f (x)x21的无穷型间断点为 ________________.23xx24.设 f ( x) 可导,y f ( e x ) ,则 y ____________.5.limx21_________________. 2x2x 5x.6.1 x3sin 2xdx =______________.1x4x217. d x 2e tdt _______________________.dx 08. yyy30 是_______阶微分方程 .二、 求下列极限 (每小题 5 分,共15分)xx1x31 1. lim e;2. lim ;3. lim21.x 0sin xx 3x9x 2x三、求下列导数或微分 (每小题 5 分, 共 15 分)1. yx x, 求 y (0) .2. yecos x, 求 dy .2y ,求 dy .3. 设 xyexdx四、求下列积分 (每小题 5 分, 共15 分)1. 12sin x dx .2.x ln(1x)dx .x3.1e2xdxx t在 t处的切线与法线方程 .五、 (8 分)求曲线1 cost 2y六、 (8 分 )求由曲线 y x 21, 直线 y 0, x 0 和 x 1 所围成的平面图形的面积 , 以及此图形绕 y 轴旋转所得旋转体的体积 .七、 (8 分 )求微分方程 y 6 y13 y0的通解.八、 (7 分 )求微分方程 yy e x满足初始条件 y 10的特解 .x《高数》试卷 3 参考答案一. 1. x 32. a 43. x 24. e x f '(e x )5.16.07. 2 xex 28. 二阶2二 .1.原式 = limx1x 0x112. lim6x 3x33.原式 = lim[(1111)2 x] 2e 2x2x三 .1.2.y' 2 12 , y '(0)2(x2)dysin xecos xdx3.两边对 x 求写: yxy ' ex y(1 y ')x ye y xy y四.1.原式 = lim x2cos x C2.原式 = lim(1x)d (x2x 21) lim(1 x) x 2d[lim(1x)]22 x221( x1)dx= x lim(1 x) 11 xdx xlim(1 x)122x221 x22= xlim(1 x) 1 [ xx lim(1x)] C22 23.原式 = 11 2x12 x 1122 0 ed (2 x) 2e 02 (e1) 五. dysin t dy t 1且 t2, y 1dxdx 2.切线: y1 x,即 y x 1 22法线: y1( x ),即 y x 1 022六. S11)dx ( 1x2x) 103 ( x222V1 (x21)2dx12x21)dx0 ( x4( x52 x 2 x) 10 28 53 15r 2 6r13 0r 3 2i七.特征方程 : ye 3 x (C 1 cos2 x C 2 sin 2 x)1dx1dx八. y e x( e x e x dx C )1 [ (x 1e x)C ]x由 y x1 0, C 0x 1 x ye x《高数》试卷 4(上)一、选择题(每小题 3 分)1、函数 y ln(1 x)x 2 的定义域是( ) .A2,1B2,1C 2,1 D2,12、极限 lim e x的值是() .xA 、B 、C 、D 、不存在3、 limsin(x 1) ( ) .x 11 x 21 1A 、 1B 、 0C 、2 D 、24、曲线 y x3x 2 在点 (1,0) 处的切线方程是()A 、 y2( x 1)B 、 y 4( x 1)C 、 y 4x 1D 、 y 3( x 1)5、下列各微分式正确的是( ) .A 、xdx( x 2 )、 cos2xdx d(sin 2x)dBC 、 dx d (5 x)D 、 d (x 2 ) (dx)26、设f (x)dx2 cosxC ,则f ( x) () .2A 、 sinxB 、27、2 ln xdx() .xsinxC 、sinxCD 、2 sinx22 2A 、2 1 ln 2x C B 、 1(2 ln x)2Cx 222.C 、 ln 2ln x C1 ln xCD 、x28、曲线 yx2, x1 , y0 所围成的图形绕 y 轴旋转所得旋转体体积 V() .1x 4dx1 ydyA 、B 、1(1 y)dy1(1 x4)dxC 、D 、1exdx() .9、e x1A 、 ln1 eB 、 ln2 eC 、 ln1 eD 、 ln1 2e223210 、微分方程 yyy 2e2 x的一个特解为() .A 、 y3 e 2x B 、 y3 e x C 、 y2 xe 2x D 、 y2 e 2 x7777二、填空题(每小题 4 分)1、设函数 yxe x,则 y; 3sin mx2 则 m.2、如果 lim,x 02x313、 x 3cos xdx;14、微分方程 y4 y 4 y 0 的通解是.5、函数 f ( x)x2 x 在区间0,4 上的最大值是,最小值是;三、计算题(每小题5 分)1、求极限 lim1 x1 x ;2 、求 y1cot 2x ln sin x 的导数;x 0x23、求函数x 31 4 、求不定积分dx ;y的微分;xx31115、求定积分e ln x dx ;dyx 6、解方程1;edxy 1 x2四、应用题(每小题 10 分)1、求抛物线y x 2与y 2 x 2所围成的平面图形的面积.2、利用导数作出函数y 3x2x3的图象.参考答案.一、 1、C ;2、D ;3、C ;4、B ;5、 C ;6、 B ;7、B ;8、A ;9、A ; 10、D ;二、 1、 (x2)e x;2 、4;3、0 ;4 、 y(C 1 C 2 x)e 2 x; 5、 8,09三、1、1 ;2、cot 3x ;3、6 x 2dx ;4 、 2 x 1 2 ln(1x 1) C ;5、2(21) ; 6 、 y22 1 x2C ;( x 3 1) 2e四、1、 8;32、图略《高数》试卷 5(上)一、选择题(每小题3 分)1 、函数 y2x1 的定义域是() .lg( x 1)A 、2, 1 0,B 、 1,0(0,)C 、 ( 1,0) (0,)D 、( 1, )2 、下列各式中,极限存在的是( ) .A 、lim c o sxB 、 lim arctanxC 、 lim sin xD 、 lim 2xxxxx3 、 lim (x )x() .x1 xA 、 eB 、 e 2C 、 1D 、1e4、曲线 yx ln x 的平行于直线 x y 1 0 的切线方程是() .A 、 yxB 、C 、yx 1D 、 y (ln x 1)( x 1) y ( x 1)5、已知 yxsin 3x ,则 dy() .A、( cos3x3sin 3x)dxB、C、(cos 3x sin 3x) dx D 、6、下列等式成立的是() .(sin 3x3x cos3x) dx (sin 3x x cos3x)dxA、C、x dx1x 1C B 、a x dx a x ln x C11 cosxdx sin x C D 、tan xdx Cx 21.7、计算e sin x sin xcos xdx 的结果中正确的是() .A、e sin x CB、e sin x cos x CC、e sin x sin x CD、e sin x(sin x 1)C8、曲线y x2, x 1, y0 所围成的图形绕x 轴旋转所得旋转体体积V() .1x 4dx B 、1A、ydy001(1y)dy1(1 x 4 )dxC、 D 、009、设 a ﹥,则a22) .a dx(A、a2 B 、a2C、1a20D、1a2244 10 、方程()是一阶线性微分方程 .A、x2y ln y0B、y e x y 0 xC、(1x2 ) y y sin y0D、xy dx ( y26x)dy 0二、填空题(每小题 4 分)1、设f ( x)e x1, x0, lim f ( x);,则有 lim f (x)ax b, x0x 0x 02、设y xe x,则y;3、函数f ( x)ln(1x2 ) 在区间1,2 的最大值是,最小值是;14、x3cos xdx;15、微分方程y 3 y 2 y 0的通解是.三、计算题(每小题 5 分)1、求极限lim (11 x 23) ;x 1x x2 2、求y 1 x2 arccosx 的导数;3、求函数yx的微分;1x24、求不定积分1;dxx 2ln x.5、求定积分eln x dx ;1e6、求方程x2y xy y 满足初始条件y(1) 4 的特解.2四、应用题(每小题10 分)1、求由曲线y 2 x2和直线x y 0 所围成的平面图形的面积.2、利用导数作出函数y x 36x 29x 4的图象.参考答案( B 卷)一、 1、B;2、A;3、D;4、C;5、 B;6、C;7、 D;8、A;9、D;10 、B.二、 1、 2 , b ; 2 、( x2)e x; 3 、ln 5 , 0 ;4、 0 ;5、C1e x C 2 e2x.三、1、1; 2 、x arccosx 1 ; 3 、1dx ;3 1 x2(1 x2 ) 1 x 24、2 2ln x C ;5、2(21) ; 6 、y 2 e e x四、 1、9 ;2、图略21x;2。

高等数学练习册第八章习题参考答案(1)

高等数学练习册第八章习题参考答案(1)

解 令x a cos t, y a sin t,
I
2 0
1 a2
[a 2
(cos
t
sin
t
)(
sin
t
)
(cos
t
sin
t
)
cos
t
]dt
2
0 dt 2 .
p55. 2.计算 ( x2 2xy)dx ( y2 2xy)dy,其中 L
L为抛物线y x2上从点(1,1)到点(1,1)的一段弧.
C
(2)曲线弧C的重心坐标为
xG
1 x( x, y)ds
MC
,yG
1 y( x, y)ds .
MC
p51.2.设光滑曲线L关于x轴对称, L1是L在x轴上方的部分, (1)若f ( x, y)在L上连续,且关于y为奇函数,则Biblioteka f ( x, y)ds 0 ; L
(2)若f ( x, y)在L上连续,且关于y为偶函数,
(1)当p点从点A(a , 0)经位于第一象限的弧段到 B(0,b)时, F所作的功;
(2)当p点经过全椭圆时,F所作的功.
p56. 解 F | F | F 0 x2 y2 ( x , y ) x2 y2 x2 y2
( x, y),
(1) W F d s ( x)dx ( y)dy
0
22
a2
2
| cos
t
| dt
2a 2
2 cos udu 2a2 .
20
2
0
p52. 3.计算 | xy | ds,其中L :圆周x2 y2 a2. L
解法1
I 4
2
a3
sin t

《高等数学(二)》 作业及参考答案

《高等数学(二)》 作业及参考答案

《高等数学(二)》作业一、填空题1.点A (2,3,-4)在第 卦限。

2.设22(,)sin,(,)yf x y x xy y f tx ty x=--=则 .3。

4.设25(,),ff x y x y y x y∂=-=∂则。

5.设共域D 由直线1,0x y y x ===和所围成,则将二重积分(,)Df x y d σ⎰⎰化为累次积分得 。

6.设L 为连接(1,0)和(0,1)两点的直线段,则对弧长的曲线积分()Lx y ds +⎰= 。

7.平面2250x y z -++=的法向量是 。

8.球面2229x y z ++=与平面1x y +=的交线在0x y 面上的投影方程为 。

9.设22,z u v ∂=-=∂z而u=x-y,v=x+y,则x。

10.函数z =的定义域为 。

11.设n 是曲面22z x y =+及平面z=1所围成的闭区域,化三重积为(,,)nf x y z dx dy dz ⎰⎰⎰为三次积分,得到 。

12.设L 是抛物线2y x =上从点(0,0)到(2,4)的一段弧,则22()Lx y dx -=⎰。

13.已知两点12(1,3,1)(2,1,3)M M 和。

向量1212M M M M =的模 ;向量12M M 的方向余弦cos α= ,cos β= ,cos γ= 。

14.点M (4,-3,5)到x 轴的距离为 。

15.设sin ,cos ,ln ,dzz uv t u t v t dt=+===而则全导数。

16.设积分区域D 是:222(0)x y a a +≤>,把二重积分(,)Df x y dx dy ⎰⎰表示为极坐标形式的二次积分,得 。

17.设D 是由直线0,01x y x y ==+=和所围成的闭区域,则二重积分Dx d σ⎰⎰= 。

18.设L 为XoY 面内直线x=a 上的一段直线,则(,)Lp x y dx ⎰= 。

19.过点0000(,,)p x y z 作平行于z 轴的直线,则直线方程为 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

. 可编辑 《高等数学》

专业 年级 学号 姓名 一、判断题. 将√或×填入相应的括号内.(每题2分,共20分) ( )1. 收敛的数列必有界. ( )2. 无穷大量与有界量之积是无穷大量. ( )3. 闭区间上的间断函数必无界. ( )4. 单调函数的导函数也是单调函数.

( )5. 若)(xf在0x点可导,则)(xf也在0x

点可导.

( )6. 若连续函数)(xfy在0x

点不可导,则曲线)(xfy在))(,(00xfx点没有切

线. ( )7. 若)(xf在[ba,]上可积,则)(xf在[ba,]上连续.

( )8. 若),(yxfz在(00,yx

)处的两个一阶偏导数存在,则函数),(yxfz在

(00,yx

)处可微.

( )9. 微分方程的含有任意常数的解是该微分方程的通解. ( )10. 设偶函数)(xf在区间)1,1(内具有二阶导数,且 1)0()0(ff, 则

)0(f为)(xf的一个极小值.

二、填空题.(每题2分,共20分)

1. 设2)1(xxf,则)1(xf .

2. 若1212)(11xxxf,则0limx . 3. 设单调可微函数)(xf的反函数为)(xg, 6)3(,2)1(,3)1(fff则)3(g .

4. 设y

xxyu, 则du . . 可编辑 5. 曲线326yyx在)2,2(点切线的斜率为 .

6. 设)(xf为可导函数,)()1()(,1)1(2xfxfxFf,则)1(F .

7. 若),1(2)(02xxdttxf则)2(f . 8. xxxf2)(在[0,4]上的最大值为 . 9. 广义积分dxex20 . 10. 设D为圆形区域dxdyxyyxD5221,1

.

三、计算题(每题5分,共40分) 1. 计算))2(1)1(11(lim222nnnn.

2. 求1032)10()3()2)(1(xxxxy在(0,+)内的导数.

3. 求不定积分dxxx)1(1. 4. 计算定积分dxxx

053sinsin

.

5. 求函数22324),(yxyxxyxf

的极值.

6. 设平面区域D是由xyxy,围成,计算dxdyyyDsin. 7. 计算由曲线xyxyxyxy3,,2,1围成的平面图形在第一象限的面积. 8. 求微分方程y

xyy2的通解.

四、证明题(每题10分,共20分)

1. 证明:2tanarcsin1xarcxx )(x. . 可编辑 2. 设)(xf在闭区间[],ba上连续,且,0)(xf

dttfdttfxFxxb0)(1)()( 证明:方程0)(xF在区间),(ba内有且仅有一个实根.

《高等数学》参考答案 一、判断题. 将√或×填入相应的括号内(每题2分,共20分) 1.√ ;2.× ;3.×; 4.× ;5.×; 6.× ;7.× ;8.× ;9.√ ;10.√.

二、 填空题.(每题2分,共20分) 1.442

xx; 2. 1; 3. 1/2; 4.dyyxxdxyy)/()/1(2;

5. 2/3 ; 6. 1 ; 7. 336

; 8. 8 ; 9. 1/2 ; 10. 0.

三、计算题(每题5分,共40分) 1.解:因为 21(2)nn222111(1)(2)nnnL21nn

且 21lim0(2)nnn,21limnnn=0 由迫敛性定理知: ))2(1)1(11(lim222nnnn=0

2.解:先求对数)10ln(10)2ln(2)1ln(lnxxxy

101022111xxxyy

)(10()1(xxy)10102211xxx 3.解:原式=xdx1

12

=xdx2)(1

12 . 可编辑 =2cxarcsin

4.解:原式=dxxx

023cossin

=2023sincosxdxx

2

2

3sincosxdxx

=2023sinsinxxd

2

2

3sinsinxxd

=202

5][sin52x

2

2

5][sin52x

=4/5 5.解: 02832yxxfx 022yxfy

故 00yx 或22yx

当 00yx时8)0,0(xxf,2)0,0(yyf,2)0,0(xyf

02)2()8(2 且A=08

 (0,0)为极大值点 且0)0,0(f

当 22yx时4)2,2(xxf, 2)2,2(yyf,2)2,2(xyf

02)2(42 

无法判断

6.解:D=yxyyyx2

,10),(

102sinsinyyDdxyydydxdy

y

y=dyxyyyy2][sin10 . 可编辑 =dyyyy)sin(sin10

=1010cos]cos[yydy

=1010cos]cos[1cos1ydyyy

=1sin1 7.解:令xyu,x

yv;则21u,31v

vvuuvvvuuvyyxxJvuvu21222

1



 3ln212131DdvvdudA 8.解:令 uy2,知xuu42)( 由微分公式知:)4(222cdxxeeyudxdx )4(22cdxxeexx )2(222cexeexxx 四.证明题(每题10分,共20分) 1.解:设 21arcsinarctan)(xxxxf



222222211111111)(xxxxxxxxf

=0

cxf)( x 令0x 0000)0(cf 即:原式成立。 . 可编辑 2.解: ],[)(baxF在上连续

且 dttfaFab)(

1

)(<0,dttfbFba)()(>0

故方程0)(xF在),(ba上至少有一个实根. 又 )(1)()(xfxfxF

0)(xf

2)(xF 即 )(xF在区间],[ba上单调递增 )(xF在区间),(ba上有且仅有一个实根.

《高等数学》 专业 学号 姓名 一、判断题(对的打√,错的打×;每题2分,共10分) 1.)(xf在点0x处有定义是)(xf在点0x

处连续的必要条件.

2. 若)(xfy在点0x不可导,则曲线)(xfy在))(,(00xfx

处一定没有切线.

3. 若)(xf在],[ba上可积,)(xg在],[ba上不可积,则)()(xgxf在],[ba上必不可积.

4. 方程0xyz和0222

zyx

在空间直角坐标系中分别表示三个坐标轴和一个点.

5. 设*y是一阶线性非齐次微分方程的一个特解,y是其所对应的齐次方程的通解,则

*yyy为一阶线性微分方程的通解.

二、填空题(每题2分,共20分)

1. 设,5)(,12)3(afxxf则a . 2. 设xxxf3arcsin

)21ln()(,当)0(f 时,)(xf在点0x连续.

相关文档
最新文档