大学物理(华中科技版)第15章习题答案
大学物理下15章习题参考答案中国石油大学

15章习题参考答案15-3求各图中点P 处磁感应强度的大小和方向。
[解] (a) 因为长直导线对空间任一点产生的磁感应强度为:()210cos cos 4θθπμ-=aIB 对于导线1:01=θ,22πθ=,因此aI B πμ401=对于导线2:πθθ==21,因此02=BaIB B B πμ4021p =+= 方向垂直纸面向外。
(b) 因为长直导线对空间任一点产生的磁感应强度为:()210cos cos 4θθπμ-=aIB 对于导线1:01=θ,22πθ=,因此r Ia I B πμπμ44001==,方向垂直纸面向内。
对于导线2:21πθ=,πθ=2,因此rIaIB πμπμ44002==,方向垂直纸面向内。
半圆形导线在P 点产生的磁场方向也是垂直纸面向内,大小为半径相同、电流相同的圆形导线在圆心处产生的磁感应强度的一半,即rIr I B 4221003μμ==,方向垂直纸面向内。
所以,rI rI rI rI rI B B B B 4244400000321p μπμμπμπμ+=++=++=(c) P 点到三角形每条边的距离都是a d 63=o 301=θ,o 1502=θ每条边上的电流在P 点产生的磁感应强度的方向都是垂直纸面向内,大小都是()aI d IB πμπμ23150cos 30cos 400000=-=故P 点总的磁感应强度大小为aIB B πμ29300==方向垂直纸面向内。
15-4在半径为R 和r 的两圆周之间,有一总匝数为N 的均匀密绕平面线圈,通有电流I ,方向如图所示。
求中心O 处的磁感应强度。
[解] 由题意知,均匀密绕平面线圈等效于通以 I 圆盘,设单位长度线圈匝数为nrR Nn -=建立如图坐标,取一半径为x 厚度为的 圆环,其等效电流为:x r R NIx j I d d d -== )(2d 2d d 000r R x xNI xIB -==μμrR r R NIr R x xNI B B RrNIln)(2)(2d d 0000-=-==⎰⎰μμ所以方向垂直纸面向外.15-5电流均匀地流过一无限长薄壁半圆筒,设电流5.0A ,圆筒半径 m 100.12⨯如图所示。
大学物理(华中科技版)第14章习题答案

习 题(第14章)14—1 有一单缝,宽mm a 10.0=,在缝后放一焦距为cm 50的会聚透镜。
用平行绿光(nm 0.546=λ)垂直照射单缝,试求位于透镜焦平面处的屏幕上的中央明条纹及第二级明纹宽度。
解:中央明纹的宽度为f nax λ2=∆ 空气中,1=n ,所以33101046.51010.01054605.02---⨯=⨯⨯⨯⨯=∆x m 第二级明纹的宽度m f nax 31073.2-⨯==∆λ14—2 一单色平行光束垂直照射在宽为mm 0.1的单缝上。
在缝后放一焦距为m 0.2的会聚透镜。
已知位于透镜焦平面上的中央明条纹宽度为mm 5.2。
求入射光波长。
解:中央明纹的宽度为f nax λ2=∆nmmm f a 500105400615.0868.04=⨯=⨯⨯==-λ故入射光的波长为500nm.14—3 在复色光照射下的单缝衍射图样中,其中某一波长的第3级明纹位置恰与波长nm 600=λ的单色光的第2级明纹位置重合,求这光波的波长。
解:据单逢衍射明纹条件26001222)132(2)12(sin )(则有未知+⨯=+⨯+±=λλθk a得未知波长为428.5nm.14—4 用波长nm 4001=λ和nm 7002=λ的混合光垂直照射单缝。
在衍射图样中,1λ的第1k 级明纹中心位置恰与2λ的第2k 级暗纹中心位置重合,求1k 和2k 。
试问1λ的暗纹中心位置能否与2λ的暗纹中心位置重合? 解:据题意有(1)21212211457002400)12(2)12(k k k k k k ==+⨯=+⨯λλ即nm 7002=λ的第4,8,12等4的整数倍级明纹与nm 4001=λ的第5,10,15等5的整数倍级明纹重叠。
(2)置于两衍射图样中的暗纹中心位置能否重合,则由暗纹条件21221147k k k k ==λλ即nm 7002=λ的第4,8,12等4的整数倍级暗纹与nm 4001=λ的第7,14,21等7的整数倍级暗纹重叠。
大学物理15章答案

第15章 磁介质的磁化15.1 一均匀磁化的磁介质棒,直径为25mm ,长为75mm ,其总磁矩为12000A·m 2.求棒的磁化强度M 为多少?[解答]介质棒的面积为S = πr 2,体积为 V = Sl = πr 2l ,磁矩为p m = 12000A·m 2,磁化强度为m m p p M V V ∑==∆32312000(2510/2)7510π--=⨯⨯⨯=3.26×108(A·m -1).15.2一铁环中心线的周长为30cm ,横截面积为1.0cm 2,在环上密绕线圈共300匝,当通有电流32mA 时,通过环的磁通量为2.0×10-6Wb ,求:(1)环内磁感应强度B 的值和磁场强度H 的值;(2)铁的磁导率μ、磁化率χm 和磁化强度M .[解答](1)根据公式B = Φ/S 得磁感应强度为642.0101.010B --⨯=⨯= 0.02(T).根据磁场的安培环路定理∑⎰=⋅,d I L l H由于B 与d l 的方向相同,得磁场强度为3230032103010NI H l --⨯⨯==⨯= 32(A·m -1).(2)根据公式B = μH ,得铁的磁导率为0.0232B H μ=== 6.25×10-4(Wb·A -1·m -1).由于μ = μr μ0,其中μ0 = 4π×10-7为真空磁导率,而相对磁导率为μr = 1 + χm ,所以磁化率为470 6.251011496.4410m μχμπ--⨯=-=-=⨯.磁化强度为M = χm H = 496.4×32 = 1.59×104(A·m -1).15.3一螺绕环中心周长l = 10cm ,线圈匝数N = 200匝,线圈中通有电流I = 100mA .求:(1)管内磁感应强度B 0和磁场强度H 0为多少?(2)设管内充满相对磁导率μr = 4200的铁磁质,管内的B 和H 是多少?(3)磁介质内部由传导电流产生的B 0和由磁化电流产生的B`各是多少?[解答](1)管内的磁场强度为302200100101010NI H l --⨯⨯==⨯= 200(A·m -1).磁感应强度为B = μ0H 0 = 4π×10-7×200 = 2.5×10-4(T).(2)当管内充满铁磁质之后,磁场强度不变H = H 0 =200(A·m -1).磁感应强度为B = μH = μr μ0H= 4200×4π×10-7×200 = 1.056(T).(3)由传导电流产生的B 0为2.5×10-4T .由于B = B 0 + B`,所以磁化电流产生的磁感应强度为B` = B - B 0 ≈1.056(T).15.4一根无限长的直圆柱形铜导线,外包一层相对磁导率为μr 的圆筒形磁介质,导线半径为R 1,磁介质外半径为R 2,导线内有电流I 通过(I 均匀分布),求:(1)磁介质内、外的磁场强度H 和磁感应强度B 的分布,画H-r ,B-r 曲线说明之(r 是磁场中某点到圆柱轴线的距离);(2)磁能密度分布.[解答](1)导线的横截面积为S 0 = πR 12,导线内的电流密度为 δ = I/S 0 = I/πR 12.在导线内以轴线的点为圆心作一半径为r 的圆,其面积为 S =πr 2,通过的电流为 ΣI = δS = Ir 2/R 12.根据磁场中的安培环路定理∑⎰=⋅,d I L l H环路的周长为l = 2πr ,由于B 与d l 的方向相同,得磁场强度为 212I Ir H l R π∑==,(0≦r ≦R 1).在介质之中和介质之外同样作一半径为r 的环路,其周长为l = 2πr ,包围的电流为I ,可得磁场强度为2I I H l r π∑==,(r ≧R 1).导线之内的磁感应强度为00121,(0)2Ir B H r R R μμπ==≤≤;介质之内的磁感应强度为0012,()2r r I B H H R r R r μμμμμπ===≤≤;介质之外的磁感应强度为002,()2I B H r R r μμπ==≥. (2)导线之内的磁能密度为200001122m w H μ=⋅=B H 2201241,(0)8I r r R R μπ=≤≤;介质之中的磁能密度为220111222m r w H H μμμ=⋅==B H201222,()8r I R r R r μμπ=≤≤;介质之外的磁感应强度为220022211,()228m I w H r R r μμπ=⋅==≥B H .15.5一根磁棒的矫顽力为H c = 4.0×103A·m -1,把它放在每厘米上绕5匝的线圈的长螺线管中退磁,求导线中至少需通入多大的电流?[解答]螺线管能过电流I 时,产生的磁感应强度为 B = μ0nI . 根据题意,螺线管产生的磁场强度至少要与磁棒的矫顽力大小相等,但方向相反,因此 B = μ0H c ,所以电流强度为I = H c /n = 4.0×103/500 = 8(A).15.6 同轴电缆由两个同轴导体组成.内层是半径为R 1的圆柱,外层是半径分别为R 2和R 3的圆筒,如图所示.两导体间充满相对磁导率为μr 2的均匀不导电的磁介质.设电流强度由内筒流入由外筒流出,均匀分布是横截面上,导体的相对磁导率为μr 1.求H 和B 的分布以及i m 为多少?[解答](1)导体圆柱的横截面积为S 0 = πR 12,圆柱体内的电流密度为δ = I/S 0 = I/πR 12.在圆柱体内以轴线的点为圆心作一半径为r 的圆,其面积为 S = πr 2,通过的电流为 ΣI = δS = Ir 2/R 12.根据磁场中的安培环路定理∑⎰=⋅,d I L l H环路的周长为l = 2πr ,由于B 与d l 的方向相同,得磁场强度为图15.6212I Ir H l R π∑==,(0≦r ≦R 1).磁感应强度为1010212r r IrB H R μμμμπ==,(0≦r ≦R 1).(2)在介质之中同样作一半径为r 的环路,其周长为l = 2πr ,包围的电流为I ,可得磁场强度为2I I H l r π∑==,(R 1≦r ≦R 2).磁感应强度为20202r r IB H r μμμμπ==,(R 1≦r ≦R 2).磁化强度为220(1)(1)2r r I BM H H r μμμπ-=-=-=.磁化面电流的线密度为 i m = M ×n 0,n 0是介质表面的法向单位矢量.在介质的两个圆形表面,由于M 与n 0垂直,i m = |M ×n 0| = M .在介质的内表面,由于r = R 1,所以磁化电流为21(1)2r m Ii R μπ-=.在介质的外表面,由于r = R 2,所以22(1)2r m Ii R μπ-=.(3)导体圆筒的横截面积为S` = π(R 32 - R 22),圆筒内的电流密度为δ` = I/S`.在圆筒内以作一半径为r 的圆,其面积为 S = π(r 2 - R 22), 圆所包围的电流为``SI I S I I S δ=-=-∑22223222223232(1)R r r R I I R R R R --=-=--, 根据安培环路定理∑⎰=⋅,d I L l H 得磁场强度为 2232232()22()I R r I H r R R r ππ-∑==-,(R 2≦r ≦R 3).磁感应强度为22103102232()2()r r I R r B H R R r μμμμπ-==-,(R 2≦r ≦R 3).(4)在圆筒之外作一圆,由于包围的电流为零,所以磁场强度和磁感应强度都为零.15.7在平均半径r = 0.1m ,横截面积S = 6×10-4m 2铸钢环上,均匀密绕N = 200匝线圈,当线圈内通有I 1 = 0.63安的电流时,钢环中的磁通量Φ1 = 3.24×10-4Wb .当电流增大到I 2 = 4.7安时,磁通量Φ2 =6.18×10-4Wb ,求两种情况下钢环的绝对磁导率.[解答]钢环中的磁感应强度为 B = Φ/S ;根据安培环路定理∑⎰=⋅,d I L l H 得磁场强度为H = NI /2πr .根据公式B = μH ,得绝对磁导率为2B r H NIS πΦμ==.(1)在第一种情况下4420.1 3.24102000.63610πμ--⨯⨯⨯=⨯⨯⨯= 2.69×10-3(H·m -1) .(2)在第二种情况下4420.1 6.1810200 4.7610πμ--⨯⨯⨯=⨯⨯⨯= 6.88×10-4(H·m -1) .15.8 一矩磁材料,如图所示.反向磁场一超过矫顽力H c ,磁化方向立即翻转.用矩磁材料制造的电子计算机中存储元件的环形磁芯,其外径为0.8mm ,内径为0.5mm ,高为0.3mm .若磁芯原来已被磁化,方向如图所示,现在需使磁芯从内到外的磁化方向全部翻转,导线中脉冲电流I 的峰值至少需要多大?设磁性材料的矫顽力H c 12π=⨯103(A·m -1).[解答]直线电流I 产生磁感应强度为B = μ0I /2πr ,产生的磁场为 H = B/μ0 = I /2πr .为了磁芯从内到外的磁化方向全部翻转,电流在磁芯外侧r = 0.4mm 处产生的磁场应该为 H = H c ,即 H c =I /2πr ,图15.8所以,脉冲电流为I = 2πrH c33120.410100.4(A)2ππ-=⨯⨯⨯=。
大学物理习题答案

大学物理习题答案大学物理习题答案Final revision by standardization team on December 10, 2020.B 班级学号姓名第1章质点运动学1-2 已知质点的运动方程为r i 3j 6k e e t t -=++。
(1)求:自t =0至t =1质点的位移。
(2)求质点的轨迹方程。
解:(1) ()k j i r 630++= ()k j i r 6e 3e 1-1++=质点的位移为()j i r-+-=3e31e ?(2) 由运动方程有t x e =,t y -=e 3, 6=z 消t 得轨迹方程为1=xy 且6=z1-3运动质点在某瞬时位于矢径()y x,r 的端点处,其速度的大小为( D )(A)dt dr (B)dt d r(C)dt d r (D)22+??? ??dt dy dt dx1-5某质点的运动方程为k j i r 251510t t ++-=,求:t =0,1时质点的速度和加速度。
解:由速度和加速度的定义得k j r v t dt d 1015+==, k va 10==dtd 所以 t =0,1时质点的速度和加速度为 015==t jv 11015=+=t kj v 1010,ka ==t1-8 一质点在平面上运动,已知质点的运动方程为j i r 2235t t +=,则该质点所作运动为[ B ](A) 匀速直线运动 (B) 匀变速直线运动 (C) 抛体运动 (D) 一般的曲线运动*1-6一质点沿Ox 轴运动,坐标与时间之间的关系为t t x 233-=(SI)。
则质点在4s 末的瞬时速度为142m ·s -1 ,瞬时加速度为72m ·s -2 ;1s 末到4s 末的位移为 183m ,平均速度为61m ·s -1 ,平均加速度为45m ·s -2。
解题提示:瞬时速度计算dt dxv =,瞬时加速度计算22dtx d a =;位移为()()14x x x -=?,平均速度为()()1414--=x x v ,平均加速度为 ()()1414--=v v a1-11 已知质点沿Ox 轴作直线运动,其瞬时加速度的变化规律为t a x 3=2s m -?。
大学物理答案第15章

第十五章 机械振动15-1 已知一简谐振动的振幅m 1022-⨯=A ,周期T =0.5s, 初相4/πϕ=.试写出振动方程;并作出该振动的x-t ,v -t ,a-t 曲线.分析 振动方程的基本形式为)cos(ϕω+=t A x .通过作曲线, 进一步了解v 、a表达式的意义以及x 、v 、a 间的相位关系.解 rad/s 4 rad/s 5.022πππω===T振动方程为m)4/4cos(1022ππ+⨯=-t xx15-2 一弹簧支持的椅子构成在太空测量人体失重状态下质量的装置——人体称重器.飞船进入空间轨道时,宇航员坐在椅子上测出振动周期.(1)如m '为宇航员的质量,m 为人体称重器中的有效质量(如椅子等),试证明mkT m -='224π其中T 是振动周期,k 是弹簧的劲度系数;(2)现k =605.6 N/m ,椅子空着时的振动周期T =0.9015 s, 求有效质量m ;(3)在太空,宇航员坐在椅子上, 测出振动周期为2.299s, 求宇航员在失重状态下的质量.分析 当宇宙飞船在空间轨道上绕地球旋转自由运行时,地球对飞船及飞船上所有物体的引力就是使它们作圆周轨道运动的向心力,于是飞船及飞船上所有物体如果处于相对静止状态,相互之间就不存在作用力,就不能用地面上通常使用的质量或重量测量仪器进行测量.考虑到无外力作用时,弹簧振子振动周期决定于弹簧劲度系数以及物体质量,如果已知弹簧劲度系数,通过测量振动周期可测出物体质量.解 (1) 弹簧振子系统振动周期为km m T +'=π2 (1)宇航员的质量为 m kT m -='224π(2) 椅子空着时,0='m ,由(1)式得kg 66.12kg 6.605142.349015.042222=⨯⨯==πkT m(3) kg 50.68kg 66.12kg 142.34299.26.60542222=-⨯⨯=-='m kT m π15-3 一质量为0.20kg 的质点作简谐振动,其振动方程为 x =0.60cos(5t -π/2), 其中x 以m 为单位, t 以s 为单位.求:(1)质点的初速度;(2)质点在正向位移一半处所受的力.分析 物体振动速度tx d d =v , 物体所受恢复力x m ma F 2ω-==,方向指向平衡位置.解 (1)据已知)2/5(60.0π-=t x ,得t t t A tx 5cos 3)2/5sin(560.0)sin(d d =-⨯-=+-==πϕωωv当t=0时,得 v 0=3 m/s(2) 正向最大位移一半处,x =0.30 m ,所受的力为N 5.1N 3.052.022-=⨯⨯-=-==x m ma F ω方向指向平衡位置.15-4 一物体沿x 轴作简谐振动,振幅为0.12m ,周期为2s ,当t =0时,位移为0.06m ,且向x 轴正方向运动.求(1)该物体的振动方程;(2)t =0.5s 时,物体的位置、速度、加速度;(3)在x =-0.06m 处,且向x 轴负方向运动时,物体的速度、加速度,以及物体从这一位置回到平衡位置所需的时间.分析 求解振动方程的难点是确定振动物体的初相ϕ.初相取决于计时起点t =0时物体的位置和速度.确定初相可用三角函数法或旋转矢量法.解 (1) 已知振幅为A = 0.12 m ,角频率为πππω===222Trad/s ,t = 0时初始位置和初速度分别为x 0=A cos ϕ =0.06 (1)v 0=ϕωsin A - >0 (2)从(1)式得2112.006.0cos 0===Ax ϕ得 33ππϕ或-=从(2)式得0sin <ϕ,所以应取3/πϕ-=此外,由t = 0时初始位置和初速度可以确定其旋转矢量如图15-4所示,即3/πϕ-=.振动方程为m)3/cos(12.0ππ-=t x(2) t =0.5s 时, x =)3/cos(12.0ππ-t =0.104 mv m/s188.0)3/sin(12.0-=--=πππt22m/s03.1)3/cos(12.0-=--=πππt a(3) 在1x =-0.06 m 处,物体向x 轴负向运动时,设1t t =,则06.0)3/cos(11-=-=ππt A x m (3)v 1)3/sin(1ππω--=t A < 0 (4)从(3)式得 2112.006.0)3/cos(11-=-==-Ax t ππ解得 ππππππn n t 2322323/1+-+=-或 (n =0,1,2…)又从(4)式得 0)3/sin(1>-ππt 应取 ππππn t 2323/1+=- (n =0,1,2…)故 )12(1+=n tm/s 592.0 m/s 326.0211=-= a v设回到平衡位置时2t t =,则0)3/cos(22=-=ππt A x (5)v 2)3/sin(2ππω--=t A >0 (6)从(5)式得 ππππn t 2233/2+=-或ππππn t 223/2+=- (n =1,2…)从(6)式得 )3/sin(2ππ-t <0 应取 ππππn t 2233/2+=- (n =1,2…)65)12(2++=n t回到平衡位置所需时间 s 83.0s 6512==-=t t t ∆15-5 一个质点作简谐振动,其振动方程为x =0.24cos(πt /2+π/3)m ,其中x 以m 计, t 以s 计.试用旋转矢量法求出质点由初始状态运动到 x =-0.12m, v <0状态所需的最短时间.分析 根据振动方程,当0t =0时旋转矢量A 与Ox 于x =-0.12m, v <0状态时,A 32π,如图15-5所示.因此,从0t 位置转到新位置偏转3/π解 如图15-5所示, t '时刻的相位为πϕ32=A 沿逆时针方向从0t 位置转过角度3/π所需的时间为s 32231=÷ππ15-6 作简谐振动的单摆在一个周期内的几个运动状态如图15-6所示.(1)若以(a )图所示的状态为计时起点;(2)若以(b )图所示的状态为计时起点,问单摆的初相位和其它各图所示状态的相位各为何值?分析 应从本题得出的结论是: 初相与计时起点(即初始条件)有关; 相位与与计时起点无关而与振动物体的瞬时状态有关.解 (1)以图(a )状态为计时起点,t =0时m m cos θϕθθ==得0=ϕ,因此对图(b)有0)cos(=+=ϕωθθt m (1)0)sin(d d <+-=ϕωωθθt tm(2)从(1)式得 2πϕω±=+t从(2)式得 )s i n (ϕω+t >0 所以图(b)的相位应取 2)(πϕω=+t同理,对图(c) πϕω=+)(t 对图(d)3)(πϕω=+t0cos ==ϕθθm (3)0sin d d <-=ϕωθθm t(4)(3)式(4)式联立,解得 2πϕ=同理,对图(c) πϕω=+)(t 对图(d) 23)(πϕω=+t对图(a) 0)(=+ϕωt15-7 一物块在水平面上作简谐振动,振幅为0.1m ,在距平衡位置0.06m 处速度为0.4m/s ,(1)求振动周期;(2)当速度为±0.12m/s 时,位移为多少?(3)若有另一物体置于该振动物块之上,当物块运动至端点时正好滑动,问摩擦系数μ为多大?分析 当所讨论问题涉及物体正好要滑动的条件时,由于物体尚未滑动,所受摩擦力仍为静摩擦力,静摩擦力方向与物体运动趋势方向相反.解 (1)设物块的振动方程为)cos(1.0ϕω+=t x物块位于06.01=x m 时, 速度v 1= 0.4m/s, 即x 1=A )cos(ϕω+t =0.06 m (1) v 1=)sin(ϕωω+-t A =0.4 m/s (2)以上两式平方相加, 代入A =0.1m ,解得 5=ωrad/s 26.12==ωπT s(2)由 v 2=)sin(ϕωω+-t A =±0.12 得 24.0)sin( =+ϕωt971.0)(sin 1)cos(2±=+-±=+ϕωϕωt t 则位移为x 2=0.1)cos(ϕω+t =±9.7×10-2m(3)物块运动至端点时正好物体开始滑动,即最大恢复力等于最大静摩擦力,物块受力如图15-7所示,因最大静摩擦力mg F μ=f ,最大恢复力A m F 2max ω=,得mg A m μω=226.08.91.05 22=⨯==gA ωμ15-8 一个轻弹簧在60N 的拉力作用下可伸长30cm , 将一物体悬挂在弹簧下端,并在它上面放一小物体,它们的总质量为4kg , 待其静止后再把物体向下拉10cm , 然后释放. 问(1)此小物体是停在振动物体上还是离开它? (2)如果使放在振动物体上的小物体与振动物体分离, 则振幅A 需满足什么条件? 二者在何位置开始分离?分析 根据胡克定律,由弹簧在外力作用下的形变量可以求出弹簧的劲度系数.当两物体脱离接触时,它们之间的正压力等于零,以此为条件可以判断小物体是否停在振动物体上. 解 (1) 根据胡克定律,得N/m 200N/m 3.060Δ===lF k由定义得 rad/s50rad/s 4200===mk ω弹簧、物体和小物体组成一个弹簧振子系统,把物体下拉10cm 后释放,故该弹簧振子的振幅为A =0.1m .设小物体质量为m ,小物体随系统一起运动,最大加速度为A a 2ω=,小物体受力情况如图15-8所示,当达最高点时,所受物体的正压力有最小值,即Am ma F mg N 2ω==+ (1)当A =0.1m 时,得 N 2.192=-=-=kA mg A m mg F N ω 即F N > 0 ,因而小物体仍停留在振动物体上.(2) 两物体脱离接触条件为0N =F ,代入(1)式得m196.0m 508.92==='ωgA即振幅大于0.196m ,两物体将在平衡位置上方分离,分离的位置即在0.196m 处.15-9 如图15-9(a )所示,在一个倾角为θ的光滑斜面上,固连一原长为L ,劲度系数为k ,质量忽略不计的弹簧,弹簧与质量为m 的重物相连,求重物作简谐振动的平衡位置和周期.分析 平衡位置是系统所受合外力为零的位置. 在建立振动方程时,一般都把取平衡位置为坐标原点.放在斜面上的弹簧振子处于静止状态时,物体所受弹簧的弹性力与重力沿斜面向下的分量大小相等,方向相反.解 弹簧和物体组成一个弹簧振子系统.物体受力情况如图15-9(b )所示.设在平衡位置弹簧的伸长量为0x ,有0sin 0=-kx mg θ 解得 k mg x θsin 0=即处于平衡位置时弹簧长度为0x L +. 根据定义,弹簧振子系统作简谐振动的角频率为mk =ω周期为 km T π2=15-10 如图15-10(a)所示,密度计玻璃管的直径为d ,浮在密度为ρ的液体中.若在竖直方向轻轻推一下,任其自由振动,试证明:若不计液体的沾滞阻力,密度计的运动是简谐振动;设密度计的质量为m , 试求振动周期.分析 若物体运动为简谐振动,应该具有如下特征:物体所受合外力与位移成正比而方向相反,即加速度与位移成正比而方向相反;或者位移是时间的余弦F F(a) (b)图15-9函数或正弦函数.解 密度计受力分析如图15-10(b)所示.设密度计截面积为S , 当处于平衡状态时,设浸入水中部分高度为h , 浮力则为ghS F ρ=B ,有0=-ghS mg ρ(1) 取平衡位置为坐标原点,向下为x 轴正向,当密度计向下位移为x 时,有22d d )(t xm S x h g mg =+-ρ (2) 由(1)和(2)式得gxS t x m ρ-=22d d 即加速度与位移成正比而方向相反,因此运动为简谐振动,且有g m dT mg d mgS ρππρρω4 2===15-11 如图15-11,劲度系数为k 的轻弹簧上端与质量为m 的平板相连,下端与地固连.另一质量为m '的物体,从h 高处自由落下,与平板发生完全非弹性碰撞后一起运动. 若以平板开始运动为计时起点,取向下为坐标正向,求振动的周期,振幅和初相位.分析 m '与m 发生完全非弹性碰撞后一起运动,与轻弹簧组成振动系统, 平衡位置是(m '+ m )所受合外力为零的位置,并选取为坐标原点.以发生碰撞后平板开始运动为计时起点,此时平板m 的坐标就是系统的初位移0x ,碰后(m '+ m )的共同速度v 0就是系统的初速度,而且可以依据碰撞中动量守恒求出.解 m '自由下落, 以gh 2的速度与m 发生完全非弹性碰撞,设碰后m '+ m 的共同速度为v 0,方向向下,应用动量守恒定律,得)(2m m gh m +'='v 0v 0mm gh m +''=2m '、m和弹簧组成振动系统,设m '+m 所受合外力为零时,弹簧的压缩量为x ∆,此位置是系统的平衡位置,则有0Δ)(=-+'x k g m m (1)取系统的平衡位置为坐标原点,向下为x 轴正向,当m '+m 位移为x 时,有d d )()()(22tx m m x x k g m m +'=+-+'∆ (2)由(1)和(2)式得0d d 22=+'+x mm k t x且有 km m T mm k +'=+'=πω2取m '与m 相碰的瞬间为振动的初始时刻t =0,有mm gh m kmg x +''=-=2 00v即 kmg A x -==ϕcos 0 (3)mm gh m A +''=-=2sin 0ϕωv (4)(3)与(4)式联立,得振动的周期和初相位分别为)(212020gm m kh kg m x A +'+'=⎪⎭⎫ ⎝⎛+=ωvgm m kh mm x )(2tan 0+''=-=ωϕv又因ϕ , 0 , 000><v x 在第三象限,则)(2 tanarc πϕ++''=gm m kh mm15-12 弹簧下端挂一物体后,弹簧伸长量为2108.9-⨯m , 若令物体上下振动,(1)求振动周期;(2)使其在平衡位置上方0.1m 处由静止开始运动,求振幅、初相及振动方程.(3)使其在平衡位置以0.8m/s 向上的初速度开始运动,求振幅、初相及振动方程.分析 计算结果表明,同一系统在不同初始条件下的振动方程不同. 解 (1)设挂上物体达平衡时弹簧的伸长量为x ∆, 根据胡克定律和平衡条件有mgx k =∆由定义得 10===xgmk ∆ω rad/s 63.02==gx T ∆πs(2)如图15-12所示,取平衡位置为坐标原点, 向上为x 轴正向.初始条件为: t =0时, x 0=0.1m v 0=0,即1.0cos 0==ϕA x (1)0sin 0=-=ϕωA v (2) 由(1)和(2)式联立解得m 1.01.022020==⎪⎭⎫ ⎝⎛+=ωv x A0=ϕ振动方程为 t x 10cos 1.0= m(3) 初始条件为:t =0时,x 0=0 v 0=0.8,即cos 0==ϕA x (3)08.0sin 0>=-=ϕωA v (4)由(3)和(4)式联立解得A =2020⎪⎭⎫ ⎝⎛+ωv x 0.08m从(3)式得 2πϕ=或 23πϕ=从(4)式得 0sin <ϕ 所以取 23πϕ=振动方程为 )2310cos(08.0π+=t x m15-13 如图15-13(a )所示的弹簧,其一端固定在天花板上,另一端挂着质量都是1.0kg 的两个物体A 和B .当物体静止时,弹簧伸长量为2108.9-⨯m , 如果物体B 突然脱落掉下,不计弹簧质量,(1)求物体A 的振动周期;(2)若从物体B 脱落时开始计时,求物体A 的振幅、初相和振动方程.分析 虽然弹簧下悬挂着两物体,但由于物体B 脱落,振动系统实为弹簧和 物体A 组成. 据题意, 物体B 脱落之时t=0,因此物体A 的位置为系统的初始位置,且物体B 从静止状态脱落,系统初速度为0.解 物体B 脱落之前,两个物体A 和B 处于重力和弹簧的弹性力作用下的平衡状态,弹簧伸长量为m 108.9Δ2-⨯=l ,则l k mg Δ2=N/m200N/m 108.98.912Δ22=⨯⨯⨯==-lmg k物体B 脱落后,物体A 和弹簧组成弹簧振子系统,设平衡位置处弹簧伸长量为0l ,则 00=-kl mg (1) 取平衡位置为坐标原点,向下为x 轴正向,如图15-13(b )所示,当物体A 位移x 时,应用牛顿第二定律,得220d d )(tx ml x k mg =-- (2)由(1)和(2)式得22d d tx mkx =-由定义得 rad/s2100.1200===mk ω s44.02==ωπT0=t 时,物体B 脱落,有m 109.4ΔΔ200-⨯==-=-=kmg kmg l l l x即 m 109.4cos 20-⨯==ϕA x (3) 0sin 0=-=ϕωA v (4)(3)和(4) 式联立解得 2220109.4)(-⨯=+=ωv x A m从(3)式0=ϕ,满足(4)式, 所以 0=ϕ振动方程为 t x 210cos 109.42-⨯= m讨论: (1)我们现在是取向下为x 轴正向,如果取向上为正,则初相为π,振动方程有所不同.这就是解题中强调要给出坐标取向的理由.(2)如果A 、B 质量不等,例如A B m m 2=,会有不同的l Δ值,则初始条件0x 不同,将导致振动特征参量的改变.15-14 如图15-14(a )所示,一质量可忽略的盘挂在劲度系数为k 的轻弹簧之下,一质量为m 的物体自h 高处自由下落至盘中,并与盘粘在一起作简谐振动. 设m =0.1kg ,k =4.9 N/m ,h =0.3m ,若以物体刚落至盘中时为计时起点,求系统的振动方程.解 如图15-14(b), 弹簧、质量为m 的物体和盘组成振动系统.取平衡位置为坐标原点, 向上为x 轴正向.平衡时弹簧伸长为0l l-,平衡方程为)(0=--l l k mg(1)当盘的位移为x 时,应用牛顿第二定律,得220d d )(tx ml x l k mg=-+- (2)由(1)和(2)式,得 22d d tx mkx=-由定义得71.09.4===mk ω rad/s质量为m 的物体与盘相碰时, t =0,弹簧伸长量为m 2.0m 9.48.91.0k0=⨯-=-=mg x相碰时,物体下落速度为gh 2,忽略盘质量,应用动量守恒定律,碰后物与盘的共同速度方向向下,大小为m/s 3.2m/s 3.08.922=⨯⨯==gh v即 x 0=ϕcos A =0.2 m (3)ϕωsin 0A -=v <0 (4)(3)和(4)式联立解得220)(ωv +=x A =0.4 m从(3)式得21cos 0==Ax ϕ,3πϕ±=.从(4)式得0sin >ϕ,所以应取3πϕ=振动方程为 )37cos(4.0π+=t xm15-15 单摆长为l ,小球质量为m ,带有电荷+q ,悬挂在场强大小为E 、方向由左向右的均匀电场中,如图15-15(a )所示.(1)求小球处在平衡位置时悬线与竖直向下方向所成的角;(2)假设单摆对平衡位置的偏角很小,求单摆的周期.分析 由于带电小球受到均匀电场的电场力作用,合外力为零的平衡位置将与铅垂位置有一偏角.解 (1)如图15-15(b )所示, 小球受重力m g 、静电力E q 和张力F T 作用,设平衡位置偏角为0θ,则0cos 0T =-θF mgsin 0T =-qE F θmg qEarctan 0=θ (1) (2)当摆线从平衡位置偏离θ角时,与铅垂位置偏角为)(0θθ+,应用牛顿第二定律,得小球切向运动微分方程为2220200d d d )(d )sin()cos(tmltmlmg qE θθθθθθθ=+=+-+ (2)由(1)式可得0tan θmg qE =代入(2)式,得2200d d ]cos )sin(sin )[cos(cos tmlmg θθθθθθθθ=+-+应用三角函数公式,得θθθsin cos d d 022l g t-=当θ很小时,θθ≈sin,得θωθθθ222cos d d -=-=l g t表明角加速度与角位移成正比,且方向相反,因此小球作简谐振动,并得222222222 cos Eq gm ml T mlEq gm l g +=+==πθω15-16 劲度系数分别为1k 和2k 的两根弹簧串在一起,竖直地悬挂着,下面挂一质量为m 的小球,作成一个在竖直方向振动的弹簧振子.试求其振动周期.分析 这是两根弹簧串联(首尾相连)的问题.处理这类连接体问题仍要用隔离物体法.当两弹簧质量均可忽略时,无论处于运动或静止状态,两弹簧中的弹性力相等,并等于相互作用力. 解 两根串联弹簧和小球组成振动系统. 隔离物体,对小球作受力分析如图15-16所示.取平衡位置为坐标原点,向下为x 轴正向.设平衡时弹簧1的伸长量为10x ,弹簧2的伸长量为20x ,小球受力平衡方程为101=-x k mg (1)两弹簧连接处相互作用力等大而反向,即0202101=-x k x k (2)小球相对于平衡位置下移x 时,设弹簧1伸长量为1x ,弹簧2伸长量为2x ,应用牛顿第二定律,得2211d d tx mx k mg =- (3)两弹簧连接处相互作用力等大而反向,即2211x k x k =,因201021x x x x x ++=+,得 )(20102121x x x k k k x +++=代入(3)式得 22212101d d )(tx mx k k k x k mg =++- (4)由(1)和(4)式,得222121d d tx mx k k k k =+-表明加速度与位移成正比,且方向相反,因此小球作简谐振动,并得)(2 )(21212121k k k k m T k k m k k +=+=πω15-17 两弹簧劲度系数分别为1k =1N/m , 2k =3N/m .在光滑的水平面上将此二弹簧分别连接到质量为m =0.1kg 的物体的两端,弹簧的其余两端分别固定在支柱1P 及2P 上,如图15-17所示.今使物体有一向右初位移m10320-⨯=x ,向右初速度m/s10402-⨯=v ,(1)试证物体作简谐振动;(2)求振动方程(设物体在振动中,两弹簧始终处于被拉伸状态).分析 当物体运动时,两弹簧的形变量大小相同,并等于物体的位移量. 解 以物体为研究对象, 受力如图15-17所示. 设平衡时两弹簧伸长量分别为1l 、2l ,有2211l k l k = (1) 取平衡位置为坐标原点,向右为x轴正向.当物体向右位移为x 时,应用牛顿第二定律,得221122d d )( )(tx mx l k x l k =+-- (2)由(1)和(2)式得2221d d )(-tx mx k k =+由定义,得 r a d /s102rad/s 1.0421==+=mk k ω已知t =0时, m/s 1040 m 1032020--⨯=⨯=v x即 ϕcos 0A x = = m 1032-⨯ (3)v 0= ϕωsin A - >0 (4)(3)和(2)式联立,解得220)(ωv +=x A =2×10-2m从(3)式得23cos 0==Ax ϕ,6πϕ±=,从(4)式得ϕsin <0,则应取6πϕ-=所以振动方程为 m )6102cos(1022π-⨯=-t x15-18 已知某简谐振动的振动曲线如图15-18(a),试求此简谐振动的振动方程.分析 振动曲线是振动物体位移x 与时间t 的关系曲线.从振动曲线上可得出振幅和初始条件.由图15-18(a)可以看出,当t 稍大于零时,物体将向x 轴负向运动,所以物体初速度v 0< 0.由旋转矢量图可以比较容易地确定振动的角频率,即旋转矢量1s 内转过的角度便是角频率.解 由图15-18(a)看出,A = 2 m ,32πϕ=.t =1s 时的位移和速度分别为)cos(1ϕω+=t A x = 0 (1)v 1= )sin(ϕωω+-t A <0 (2)(1)式给出cos )(ϕω+t = 0,得2)(πϕω=+t ,显然满足(2)式,即为1s 时的相位.旋转矢量图如图15-18(b)所示,t =0时的旋转矢量为)0(=t A ,可以看出,1s 内A 沿逆时针方向转过的角度即角频率为rad/s61123ππππω=++=振动方程为 )32611cos(2ππ+=t xm15-19 (1)、(2)两个简谐振动的周期相同,振动曲线如图15-19.求(1)、(2)两个简谐振动的相位差. 分析 根据振动曲线可以判断指定点的相位.若两振动的相位差012>-ϕϕ,通常说,振动2的相位比振动1超前或振动1的相位比振动2落后.解 从图15-19知,振动(1)的初始条件是10cos ϕA x ==0 (1)v 0= 0sin 1>-ϕωA (2)由(1)式得 21πϕ±=由(2)式得 0sin 1<ϕ 则振动(1)的初相应取 21πϕ-=振动(2)的初始条件是20cos ϕA x = =A (3)v 0= 2sin ϕωA -=0 (4)由(3)式得02=ϕ,满足(4)式,即为振动(2)的初相.因两振动的角频率相同, 所以振动(1)与振动(2)相位差为2π-, 且振动(1)比振动(2)相位落后2π.15-20 一质量为0.1kg 的物体作振幅为0.01m 的简谐振动,最大加速度为0.042m/s .试求(1)振动的周期;(2)总的振动能量;(3)物体在何处时,其动能和势能相等?分析 作简谐振动的弹簧振子系统机械能守恒, 动能和势能都随时间周期变化且相互转换,这是系统运动过程中只有重力、弹性力等保守力作功,外力和非保守内力不作功的条件下才成立的.实际的振动系统起码要受到阻力作用, 因而必定有能量的损耗,系统机械能不守恒.解 (1)由A a m 2ω= 得s 14.3s 04.001.022===ππma A T(2)总振动能量为J102J 01.004.01.02121215-m22⨯=⨯⨯⨯===A maAm E ω(3)设动能和势能相等时, 物体距平衡位置x 远, 则 2P 21kx E =又由 mk E E E ===2k P , 21ω得 m 1007.7m 04.01.001.010235--⨯=⨯⨯⨯==mma EA x15-21 质点作简谐振动,已知振动频率为ν, 则振动动能变化的频率为多少?当其位移为振幅的一半时,其动能为总能量的几分之几?分析 只要大致勾画出k E -t 和x-t 曲线轮廓,便可得出动能变化频率与振动频率间关系.解 振动动能为)]2(2cos 1[41 )2(sin 2122222k t A m t A m E πνωπνω-==所以振动动能变化频率为ν2,k E -t 曲线如图15-21所示.当 A x 21=时, 振动势能为)21(41)2(2122p kA A k E ==此时振动动能为)21(43)21(4121222P k kA kA kA E E E =-=-= 即为总能量的3/4.15-22 两同方向简谐振动,其振动方程分别为)4110cos(106, )4310cos(1052221ππ+⨯=+⨯=--t x t x式中x 以m 为单位,t 以s 为单位.(1)求合振动的振幅和初相;(2)若另有一同方向简谐振动)10cos(10723ϕ+⨯=-t x ,问 ϕ为何值时,合振动 31x x +的振幅为最大; 又 ϕ为何值时,合振动 32x x +的振幅为最小?(3)用旋转矢量法表示(1)、(2)的结果.分析 先体会给出的两个振动方程,哪里体现了同方向?哪里体现了同频率?作两个同方向同频率振动合成,最简单的方法是旋转矢量法(不妨也尝试一下解析法),只要画出了合成矢量,简单的几何关系便给出合振动的振幅及初相.本题的另一部分是讨论振动加强减弱条件,这为后面讨论机械波、光波的干涉加强减弱作舖垫.解 (1)如图15-22,两矢量间夹角为2π所以合振动振幅m 107.81 m106522222221--⨯=⨯+=+=A A A合振动初相8484465 tanarc 0'=+=πϕ(2) 合振动A 再与第三个振动合成.据振动叠加条件, πϕϕk 21±=-时合振动有极大值,即ππϕk 243±=(k =0,1,2…)当πϕϕ)12(1+±=-k 时合振动有极小值, 即ππϕ)12(43+±=k (k =0,1,2…)15-23 有两个同方向同频率的简谐振动,其合振动的振幅为0.2m ,相位与第一振动的相位差为π61,若第一振动的振幅为1103-⨯m ,用旋转矢量法求第二振动的振幅及第一、第二两个振动的相位差.分析 本题与上题相反, 为已知合振动求分振动. 解 作旋转矢量如图15-23所示,由几何关系得m1.030cos 212122=︒-+=AA A A A再由)cos(2122122212ϕϕ-++=A A A A A 解得20)cos(1212πϕϕϕϕ=-=-15-24 示波管的电子束受到两个互相垂直的电场的作用,若电子在两个方向上的位移分别为t A x ωcos =和)cos(ϕω+=t A y .求在0=ϕ、30=ϕ、90=ϕ各种情况下,电子在荧光屏上的轨道方程,并分别说明电子沿轨道的运动方向.分析 这是两个频率相同、振动方向相互垂直简谐振动的合成. 解 轨道方程为)(sin )cos(21221221222212ϕϕϕϕ-=--+A A xy Ay Ax因 A A A ===-2112 ϕϕϕϕϕ2222sin cos 2A xy y x =-+当0=ϕ时,得x=y ,为一过原点的直线.说明电子沿直线作往返运动.当 30=ϕ时,得 222413Axy y x =-+为一椭圆,且运动方程为)30cos(cos+==t A y t A x ωω当 90=t ω时,电子位于)21,0(A -处,此后瞬间x <0, y <0,电子位于第三象限内,表明电子顺时针转动.当 90=ϕ时,得 222A y x =+ 为一圆.且运动方程为)90cos(cos+==t A y t A x ωω当0=t ω时, 电子位于)0, (A 处, 此后瞬间x >0, y <0,电子位于第四象限内, 表明电子仍顺时针转动.。
第15章 光的偏振习题答案

思 考 题15-1 在双缝干涉实验中,用单色自然光在屏上形成干涉条纹,若在两缝后放一个偏振片,则( )(A)干涉条纹的间距不变,但明纹的亮度加强。
(B)干涉条纹的间距不变,但明纹的亮度减弱。
(C)干涉条纹的间距变窄,且明纹的亮度减弱。
(D)无干涉条纹。
答:放一个偏振片后,唯一的影响是投射到屏上的光强变弱。
选(B)。
15-2 光强为I o 的一束自然光垂直穿过两个偏振片,此两偏振片偏振化方向之间的夹角α=30︒,若不考虑偏振片的反射和吸收,则穿过两个偏振片后的光强为( )(A)4o I 。
(B)43o I 。
(C)8o I 。
(D)83o I 。
答:(D)15-3一束光是自然光和线偏振光的混合光。
现垂直通过一偏振片,旋转偏振片侧得透射光强最大值是最小值的5倍,则入射光中自然光I 。
与线偏振光I 之比为( )。
(A)21 (B)51 (C)31 (D)32答:(A)15-4 两偏振片堆叠在一起,一束自然光垂直入射其上时没有光线通过。
当其中一偏振片慢慢转动180°时,透射光强度发生的变化为( )(A) 光强单调增加。
(B) 光强单调减小。
(C) 光强先增加,后又减小至零。
(D) 光强先增加,后减小,再增加。
(E) 光强先增加,后减小,再增加,再减小至零。
答:透过两偏振片的光强α2cos 2o I I =,故选(C)。
15-5 使一光强为I o 的平面偏振光先后通过两个偏振片P 1和P 2。
P 1和P 2的偏振化方向与入射光光矢量振动方向的夹角分别是α和90°,则通过这两个偏振片后的光强I 是( )(A) α2cos 2o I I =。
(B) I =0。
(C) α2sin 42o I I =。
(D) α2sin 4o I I =。
(E) α4cos o I I =答:透射光强)90(cos cos 22αα-= o I I =α2sin 42o I ,选(C)。
大学物理 下册 9-15章 (彭志华 付茂林 著) 华中科技大学出版社 课后答案 12章节习题 课后答案【khdaw_lxywy

12-4 一导线 ac 弯成如图所示形状,且 ab=bc=10cm,若使导线在磁感应强度 B= 问 ac 间电势差多大?哪一端 2 5 10-2 T 的均匀磁场中,以速度 v 1.5 cm·s-1 向右运动。 电势高? 解:
w.
C 端电势高。
Hale Waihona Puke kh Bvbc sin 30 0
1.88×10-5 (V)
A B A B
D
D
C
v
A
D
C v I l 0 Idl 0 Idl 1 1 v 0 [ ] B 2 ( a vt ) 2 (b vt ) 2 a vt b vt
实际上, 某 t 时刻线簇内的电动势就等于 AD 和 BC 两段导线在:时刻切割磁力线产生的电动 势之差,因此也可以直接写出
课后答案网,用心为你服务!
大学答案 --- 中学答案 --- 考研答案 --- 考试答案 最全最多的课后习题参考答案,尽在课后答案网()! Khdaw团队一直秉承用心为大家服务的宗旨,以关注学生的学习生活为出发点, 旨在为广大学生朋友的自主学习提供一个分享和交流的平台。 爱校园() 课后答案网() 淘答案()
Ii
(2)在 2 秒内通过线圈 A 的感应电量为
q
t2 t1
12-2 一条铜棒长为 L = 0.5m,水平放置,可绕距离 A 端为 L/5 处和棒垂直的轴 OO` 在水平面内旋转,每秒转动一周。铜棒置于竖直向上的匀强磁场中,如习题图 12-2 所示, O` 磁感应强度 B = 1.0×10-4T。求: (1)A、B 两端的电势差; (2)A、B 两 B 端哪一点电势高? ω A B 解:设想一个半径为 R 的金属棒绕一端做匀速圆周运动,角速度为 L/5 ω,经过时间 dt 后转过的角度为 O dθ = ωdt 习题 12-2 图 扫过的面积为 dS = R2dθ/2 切割的磁通量为 L dΦ = BdS = BR2dθ/2 ω l 动生电动势的大小为 dθ o ε = dΦ/dt = ωBR2/2 R 根据右手螺旋法则,圆周上端点的电势高。 AO 和 BO 段的动生电动势大小分别为
第15章 电力系统运行稳定性的基本概念

Pe
Eq
δ1
Eq
ωN
o
δ0
δ1
δ
PT ωN
δ0
V
送端和受端两台发电机转子放在一张图上, 当送端发电机转子加速,最后在δ1稳定下来
15.2 功角的概念
功角δ 与发电机转子运动的关系
当有两台机接于无穷大母线时: δ2.δ1,表征两发电机转子q 轴轴线之间的电气夹角 → 表征发电机转子之间的相 对空间位置
概述 功角的概念 发电机电势间相位差——电气量 发电机转子相对位置——机械量,用电气角度表示 静态稳定的初步概念 暂态稳定的初步概念 负荷稳定 电压稳定的概念 发电机转子运动方程式
15.1 概述
基本概念 同步运行:所有并联运行的同步电机(主要是发电机)具有相同的电 角速度 全系统统一频率,发电机并联运行必须严格保持同步 同步电机转子运动状态,不平衡是绝对的,平衡是相对的 电力系统同步稳定问题:电力系统受到大的或小的干扰以后能否继续 保持发电机间同步运行的问题(功率失衡后的暂态过程中,发电机之 间出现相对运动,能否保持同步) 表征发电机同步运行的变量:发电机转子之间的相对位置角(发电机 电势之间的相角差)——功角 电压稳定问题:负荷端电压不可逆转的持续下降导致的稳定性破坏。 主要意义 同步运行是发电机安全可靠发电的先决条件
摘自文献[ P. kundur, Power System Stability and Control ],36页(共1176页)
15.1 概述
稳定的分类
PSS/E 对 PJM 系统中故障的仿真结果:
0.1秒短路,0.149秒切除故障
15.1 概述
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习 题
15-1
解:由马吕斯定律,得
102201002014932930cos 30cos 28860cos 2I I I I I I I I I ====⇒==
又有 即透射光强为第一此透射光强的9/4.
15-2
解:(1)由马吕斯定律有
33arccos 31cos 6213
1cos 2112010max max 1201=⇒==⇒=
==ααα则
因为透射光强的最大值
I I I I I I I (2) 3
32arccos 32cos 31cos 222202201=⇒===
ααα则I I I
15-3
解:设入射光中自然光强为0I ,线偏振光光强为1I ,则总光强为10I I I +=,当光束通过一偏振片时,先偏振光被吸收,最小光强为自然光光强的一半,
即 0min 2
1I I = 最大光强是线偏振光光强与自然光光强的一半之和,就是线偏振光的偏振化方向与偏振片的透射方向同。
即 10max 21I I I += 2
/5/62
12110010min max ==+=I I I I I I I 即入射光中自然光和线偏振光的强度之比为5/2.
15-4
解:当光由水射向玻璃时,水的折射率为1n ,玻璃的折射率为2n ,据布儒斯特定律 61.20376.0arctan 376.0tan 1
2==⇒==b b n n θθ 当光由玻璃射向水时, 39.6966.2arctan 66.2tan 21=='⇒=='b b
n n θθ 可见两角度互余。
15-5
解:(1)据题意,当反射光为线偏振光时,折射角与入射角互余,即 583290=-=r θ入射角
(2)由布儒斯特定律,6.158tan 158tan 2212==⇒==
n n n n
15-6
解:提图参考教材图15—14,由图可知通过第一各偏振片单色自然光变成与P1偏振方向相同的线偏振光,而此线偏振光通过拨片后,分成两相互垂直的线偏振光,其中包括与波晶片光轴平行的非寻常光(其振幅为e E )和与光轴垂直的寻常光(振幅为O E ),这两束偏振光中却只有平行于P2透射方向的分量2e E 和2o E 能透过,且透射光满足相干条件。
有关系如下
11112360sin 2160cos E E E E E E o e ==== 以及 1121124
3212360cos 43232160sin E E Eo E E E E E o e e =⨯===⨯== (1)因为是1/4波片引入的附加位相差为
2
π,而总的相位差ππϕ+=∆2,其中π是因为透射的两分量振动方向刚好相反。
则出射的光强为
0022122163)23cos 1(1632cos 1)602(sin I I E E I =+=∆+⨯==πϕ (2)对于半玻片,引入的附加位相差为π,而总的相位差πππϕ2=+=∆, 00228
3)2cos 1(163I I E I =+==π。