大学物理之习题答案

合集下载

大学物理习题及答案

大学物理习题及答案
(1) 线段和 线段各表示什么运动?
(2)自行车所经历的路程等于多少?
(3)自行车的位移等于多少?
第2章牛顿运动定律
1.两个质量相等的小球由一轻弹簧相连接,再用一细绳悬挂于天花板上,处于静止状态,如图所示。将绳子剪断的瞬间,球1和球2的加速度分别为
(A) (B)
(C) (D)
2.质量分别为 和 的两滑块A和B通过一轻弹簧水平连接后置于水平桌面上,
6.三个物体A、B、C每个质量都是 ,B、C靠在一起,置于一光滑水平桌面上,两者间连有一段长0.4m的细绳,原先放松着。B的另一端用一跨过桌边的定滑轮的细绳与A相连,如图,滑轮与绳子的质量及轮轴的摩擦不计,绳子不可伸长。问:
(1)A、B起动后,经多长时间C也开始运动?
(2)C开始运动时速度是多大?
7.判断正误
10.一质点沿半径为R的圆周运动。质点所经过的弧长与时间的关系为 其中b、c是大于零的常量,求从t=0开始到达切向加速度与法向加速度大小相等时所经历的时间。
11.如图所示,质点P在水平面内沿一半径
为R=2m的圆轨道转动。转动的角速度 与
时间t的函数关系为 (k为常量)。
已知t=2s时,质点P的速度值为32m.s-1试
11.一个绳子悬挂着的物体在水平面内做匀速圆周运动(称为圆锥摆),有人在重力的方向上求合力,写出 。另有人沿绳子拉力 的方向求合力,写出 。显然两者不能同时成立,指出哪一个式子是错误的,为什么?
12.已知一质量为 的质点在 轴上运动,质点只受到指向原点的引力的作用,引力大小与质点离原点的距离 的平方成反比,即 ,k是比例常数。设质点在 时的速度为零,求 处的速度的大小。
11.我国的第一颗人造地球卫星绕地球作椭圆轨道运动,地球的中心O为该椭圆的一个焦点。已知地球的平均半径 km,卫星距地面最近距离 km,最远距离 km。若卫星在近地点速率 kms-1,求远地点速率 。

大学物理习题册答案

大学物理习题册答案

xO 1A22练习 十三(简谐振动、旋转矢量、简谐振动的合成)一、选择题1. 一弹簧振子,水平放置时,它作简谐振动。

若把它竖直放置或放在光滑斜面上,试判断下列情况正确的是 (C )(A )竖直放置作简谐振动,在光滑斜面上不作简谐振动; (B )竖直放置不作简谐振动,在光滑斜面上作简谐振动; (C )两种情况都作简谐振动; (D )两种情况都不作简谐振动。

解:(C) 竖直弹簧振子:kx mg l x k dt x d m )(22(mg kl ),0222 x dt xd弹簧置于光滑斜面上:kx mg l x k dt x d m sin )(22 (mg kl ),0222 x dtxd2. 两个简谐振动的振动曲线如图所示,则有 (A ) (A )A 超前2π; (B )A 落后2π;(C )A 超前π; (D )A 落后π。

解:(A)t A x A cos ,)2/cos( t A x B3. 一个质点作简谐振动,周期为T ,当质点由平衡位置向x 轴正方向运动时,由平衡位置到二分之一最大位移这段路程所需要的最短时间为: (B ) (A )4T ; (B )12T ; (C )6T ; (D )8T 。

解:(B)振幅矢量转过的角度6/ ,所需时间12/26/T T t , 4. 分振动表式分别为)π25.0π50cos(31 t x 和)π75.0π50cos(42 t x (SI 制)则它们的合振动表达式为: (C )(A ))π25.0π50cos(2 t x ; (B ))π50cos(5t x ;(C )π15cos(50πarctan )27x t; (D )7 x 。

解:(C)作旋转矢量图或根据下面公式计算)cos(21020212221A A A A A 5)25.075.0cos(4324322712)75.0cos(4)25.0cos(3)75.0sin(4)25.0sin(3cos cos sin sin 1120210120210110 tg tg A A A A tg5. 两个质量相同的物体分别挂在两个不同的弹簧下端,弹簧的伸长分别为1l 和2l ,且212l l ,则两弹簧振子的周期之比21:T T 为 (B )(A )2; (B )2; (C )2/1; (D )2/1。

大学物理习题(下)答案解析

大学物理习题(下)答案解析

一、 选择题1. 对一个作简谐振动的物体,下面哪种说法是正确的? [ C ](A) 物体处在运动正方向的端点时,速度和加速度都达到最大值; (B) 物体位于平衡位置且向负方向运动时,速度和加速度都为零; (C) 物体位于平衡位置且向正方向运动时,速度最大,加速度为零;(D) 物体处在负方向的端点时,速度最大,加速度为零。

2. 一沿X 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,振动方程用余弦函数表示,如果该振子的初相为43π,则t=0时,质点的位置在: [ D ](A) 过1x A 2=处,向负方向运动; (B) 过1x A 2=处,向正方向运动;(C) 过1x A 2=-处,向负方向运动;(D) 过1x A 2=-处,向正方向运动。

3. 一质点作简谐振动,振幅为A ,在起始时刻质点的位移为/2A ,且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为 [ B ]4. 图(a)、(b)、(c)为三个不同的谐振动系统,组成各系统的各弹簧的倔强系数及重物质量如图所示,(a)、(b)、(c)三个振动系统的ω (ω为固有圆频率)值之比为: [ B ](A) 2:1:1; (B) 1:2:4; (C) 4:2:1; (D) 1:1:25. 一弹簧振子,当把它水平放置时,它可以作简谐振动,若把它竖直放置或放在固定的光滑斜面上如图,试判断下面哪种情况是正确的: [ C ](A) 竖直放置可作简谐振动,放在光滑斜面上不能作简谐振动; (B) 竖直放置不能作简谐振动,放在光滑斜面上可作简谐振动; (C) 两种情况都可作简谐振动; (D) 两种情况都不能作简谐振动。

6. 一谐振子作振幅为A 的谐振动,它的动能与势能相等时,它的相位和坐标分别为: [ C ](4)题(5)题2153(A),or ;A;(B),;A;332663223(C),or ;A;(D),;A4433ππ±±π±±±π±ππ±±π±±±π±7. 一质点沿x 轴作简谐振动,振动方程为 10.04cos(2)3x t ππ=+(SI ),从t = 0时刻起,到质点位置在x = -0.02 m 处,且向x 轴正方向运动的最短时间间隔为 [ D ](A)s 81; (B) s 61; (C) s 41; (D) s 218. 图中所画的是两个简谐振动的振动曲线,这两个简谐振动叠加后合成的余弦振动的初相为[ C ](A) π23; (B) π; (C) π21 ; (D) 0二、 填空题9. 一简谐振动用余弦函数表示,振动曲线如图所示,则此简谐振动的三个特征量为: A=10cm , /6rad /s =ωπ,/3=φπ10. 用40N 的力拉一轻弹簧,可使其伸长20 cm 。

(完整版)大学物理课后习题答案详解

(完整版)大学物理课后习题答案详解

第一章质点运动学1、(习题1.1):一质点在xOy 平面内运动,运动函数为2x =2t,y =4t 8-。

(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。

解:(1)由x=2t 得,y=4t 2-8 可得: y=x 2-8 即轨道曲线 (2)质点的位置 : 22(48)r ti t j =+- 由d /d v r t =则速度: 28v i tj =+ 由d /d a v t =则加速度: 8a j =则当t=1s 时,有 24,28,8r i j v i j a j =-=+= 当t=2s 时,有 48,216,8ri j v i j a j =+=+=2、(习题1.2): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时速度为0v ,求运动方程)(t x x =.解:kv dt dv-= ⎰⎰-=t vv kdt dv v 001 tk e v v -=0t k e v dtdx-=0 dt ev dx tk tx-⎰⎰=000)1(0t k e kv x --=3、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速度v 0 = 0.试求其位置和时间的关系式. 解: =a d v /d t 4=t d v 4=t d t ⎰⎰=vv 0d 4d tt t v 2=t 2v d =x /d t 2=t 2t t x txx d 2d 020⎰⎰= x 2= t 3 /3+10 (SI)4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求:(1)小球的运动方程;(2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的d d r t ,d d v t ,tv d d . 解:(1) t v x 0= 式(1)2gt 21h y -= 式(2) 201()(h -)2r t v t i gt j =+(2)联立式(1)、式(2)得 22v 2gx h y -=(3)0d -gt d rv i j t = 而落地所用时间 gh2t = 所以 0d -2gh d r v i j t =d d v g j t=- 2202y 2x )gt (v v v v -+=+= 2120212202)2(2])([gh v gh g gt v t g dt dv +=+=5、 已知质点位矢随时间变化的函数形式为22r t i tj =+,式中r 的单位为m ,t 的单位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。

2024年度-大学物理习题练习及答案

2024年度-大学物理习题练习及答案
磁滞现象与磁滞回线
理解磁滞现象和磁滞回线的概念,掌握其特 点和影响因素。
磁化现象与磁化曲线
理解磁化现象和磁化曲线的概念,掌握其特 点和应用。
磁屏蔽与磁路计算
了解磁屏蔽的原理和应用,掌握磁路计算的 基本方法。
17
04
光学部分
18
几何光学基础
习题1
解释什么是光的直线传 播定律,并举例说明其
应用。
习题2
气体动理论的应用
能够运用气体动理论解释宏观现象,如扩散、热传导、黏滞性等。同时,了解气体动理论在科学技术中的应 用,如真空技术、气体激光器等。
12
03
电磁学部分
13
静电场
01
电荷守恒定律
理解电荷守恒定律,掌握其应用。
电场强度
理解电场强度的概念,掌握其计算 方法和方向判断。
03
02
库仑定律
理解库仑定律,掌握点电荷之间的 力的大小和方向计算。
讨论白光通过三棱镜后的色散现象和光谱分布。
21
激光与光纤通信
习题1
解释什么是激光,并说明激光器的原理和构 造。
习题3
分析光纤通信的原理和优点,并说明光纤的 结构和传输模式。
习题2
阐述激光的特点和应用,如激光测距、激光 雷达、激光加工等。
习题4
讨论光纤通信系统中的关键技术和设备,如 光源、光检测器、光纤放大器等。
31
THANKS
感谢观看
32
公式使用不当
在解题过程中使用错误的公式或误用公式,导致计算结果 错误。纠正措施包括熟练掌握常用物理公式及其适用条件 ,注意公式中各个物理量的含义和单位。
计算错误
由于计算过程中的失误或粗心大意导致的错误。纠正措施 包括提高计算准确性,注意运算顺序和符号的处理,以及 及时检查和纠正计算错误。

大学物理习题答案

大学物理习题答案

P习题1212-3.如习题12-3图所示,真空中一长为L 的均匀带电细直杆,总电量为q ,试求在直杆延长线上到杆的一端距离为d 的点P 的电场强度。

[解] 建立如图所示坐标系ox ,在带电直导线上距O 点为x 处取电荷元x Lqq d d =,它在P 点产生的电电场强度度为()x x d L Lq x d L qE d 41d 41d 2020-+=-+=πεπε则整个带电直导线在P 点产生的电电场强度度为()d L d qx x d L Lq E L+=-+=⎰002041d 41πεπε 故()i E d L d q+=04πε12-4.用绝缘细线弯成的半圆环,半径为R ,其上均匀地带有正电荷Q ,试求圆心处点O的场强。

[解] 将半圆环分成无穷多小段,取一小段dl ,带电量q d dq 在O 点的电场强度20204d 4d d RlR Q R qE πεππε== 从对称性分析,y 方向的电场强度相互抵消,只存在l RQE E d sin 4sin d d 302x ⋅=⋅=θεπθ θd d R l = θεπθd 4sin d 202x R Q E =2020202x x 2d 4sin d RQR Q E E E επθεπθπ====⎰⎰ 方向沿x 轴正方向 12-5. 如习题12-5图所示,一半径为R 的无限长半圆柱面形薄筒,均匀带电,沿轴向单位长度上的带电量为λ,试求圆柱面轴线上一点的电场强度E 。

[解] θd 对应的无限长直线单位长带的电量为θπλd d =q 它在轴线O 产生的电场强度的大小为RRq E 0202d 2d d επθλπε==因对称性y d E 成对抵消RE E 02x 2d cos cos d d επθθλθ=⋅=d θRR E E 02202x 2d cos 2d επλεπθθλπ===⎰⎰ 12-6.一半径为R 的半球面,均匀地带有电荷,电荷面密度为σ,求球心点O 处的场强。

大学物理习题大题答案

1.1质点延Ox轴做直线运动加速度a=-kx,k为正的常量,质点在X0处的速度是V0,求质点速度的大小V与坐标X的函数能量守恒:(m*V0^2 / 2)=(m*V^2 / 2)+(m*K*X^2 )F= ma=-mkx 。

上式解得:V=±根号(V0^2-2K*X^2)1.2飞轮半径为0.4m,自静止启动,其角加速度为0.2转每秒,求t=2s时边缘上,各点的速度、法向加速度、切向加速度、合加速度ω=ω0+a'tω0=0,t=2s,a'=0.2 × 2pi弧度/s^2=1.257弧度/s^2ω=a't=1.257弧度/s^2×2s=2.514弧度/s切向速度:v=ωr=0.4mx1.257弧度/s=1m/s法向加速度:a。

=ω^2r=(2.514弧度/s)^2 × 0.4m=2.528m/s^2切向加速度:a''=dv/dt=rdω/dt=ra'=0.4m × 1.257弧度/s^2=0.5m/s^2合加速度:a=√(a''^2+a。

^2)=2.58m/s^2合加速度与法向夹角:Q=arctan(a''/a。

)=11.2°2.2质量为m的子弹以速度v0水平射入沙土中,设子弹所受的阻力与速度成正比,系数为k,1.求子弹射入沙土后速度随时间变化的函数关系式,a = -kv/m = dv/dt dv/v = - k/m dt 两边同时定积分,得到lnv-lnv0 = kt/m v=v0*exp(-k/m * t)2.求子弹射入沙土的最大深度dv/dt=a=f/m=-kv/m v=ds/dt=ds/dv * dv/dt = -ds/dv * kv/m 整理得:kds=-mdv 同时对等号两边积分,得:ks=mv0 =》 s=mv0/k.3.1一颗子弹在枪筒离前进时所受的合力刚好为F=400-4*10的五次方/3*t,子弹从枪口射出时的速率为300m/s。

大学物理教材习题答案

⼤学物理教材习题答案第⼀章质点运动习题解答⼀、分析题1.⼀辆车沿直线⾏驶,习题图1-1给出了汽车车程随时间的变化,请问在图中标出的哪个阶段汽车具有的加速度最⼤。

答: E 。

位移-速度曲线斜率为速率,E 阶段斜率最⼤,速度最⼤。

2.有⼒P 与Q 同时作⽤于⼀个物体,由于摩擦⼒F 的存在⽽使物体处于平衡状态,请分析习题图1-2中哪个可以正确表⽰这三个⼒之间的关系。

答: C 。

三个⼒合⼒为零时,物体才可能处于平衡状态,只有(C )满⾜条件。

3.习题图1-3(a )为⼀个物体运动的速度与时间的关系,请问习题图1-3(b )中哪个图可以正确反映物体的位移与时间的关系。

答:C 。

由v-t 图可知,速度先增加,然后保持不变,再减少,但速度始终为正,位移⼀直在增加,且三段变化中位移增加快慢不同,根据v-t 图推知s-t 图为C 。

三、综合题:1.质量为的kg 50.0的物体在⽔平桌⾯上做直线运动,其速率随时间的变化如习题图1-4所⽰。

问:(1)设s 0=t 时,物体在cm 0.2=x 处,那么s 9=t 时物体在x ⽅向的位移是多少?(2)在某⼀时刻,物体刚好运动到桌⼦边缘,试分析物体之后的运动情况。

解:(1)由v-t 可知,0~9秒内物体作匀减速直线运动,且加速度为:220.8cm/s 0.2cm/s 4a == 由图可得:0 2.0cm s =,00.8cm/s v =, 1.0cm/s t v =-,则由匀减速直线运动的位移与速度关系可得:22002() t a s s v v -=- 2200()/2t s v v a s =-+ 22[0.8( 1.0)]/20.2 2.0cm =--?+1.1c m =(2)当物体运动到桌⼦边缘后,物体将以⼀定的初速度作平抛运动。

2.设计师正在设计⼀种新型的过⼭车,习题图1- 5为过⼭车的模型,车的质量为0.50kg ,它将沿着图⽰轨迹运动,忽略过⼭车与轨道之间的摩擦⼒。

大学物理习题答案

B 班级 学号 姓名第1章 质点运动学1-2 已知质点的运动方程为r i 3j 6k e e tt-=++。

(1)求:自t =0至t =1质点的位移。

(2)求质点的轨迹方程。

解:(1) ()k j i r 630++= ()k j i r 6e 3e 1-1++= 质点的位移为()j i r ⎪⎭⎫⎝⎛-+-=3e 31e ∆(2) 由运动方程有t x e =,t y -=e 3, 6=z 消t 得 轨迹方程为 1=xy 且6=z1-3运动质点在某瞬时位于矢径()y x,r 的端点处,其速度的大小为( D ) (A)dt dr (B)dt d r(C)dt d r (D)22⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛dt dy dt dx1-5某质点的运动方程为k j i r 251510t t ++-=,求:t =0,1时质点的速度和加速度。

^解:由速度和加速度的定义得k j r v t dt d 1015+==, k va 10==dtd 所以 t =0,1时质点的速度和加速度为 015==t j v 11015=+=t kj v1010,ka ==t1-8 一质点在平面上运动,已知质点的运动方程为j i r 2235t t +=,则该质点所作运动为[ B ](A) 匀速直线运动 (B) 匀变速直线运动 (C) 抛体运动 (D) 一般的曲线运动*1-6一质点沿Ox 轴运动,坐标与时间之间的关系为t t x 233-=(SI)。

则质点在4s 末的瞬时速度为 142m·s -1 ,瞬时加速度为 72m·s -2 ;1s 末到4s 末的位移为 183m ,平均速度为 61m·s -1 ,平均加速度为 45m·s -2。

解题提示:瞬时速度计算dt dxv =,瞬时加速度计算22dtx d a =;位移为()()14x x x -=∆,平均速度为()()1414--=x x v ,平均加速度为 ()()1414--=v v a】~1-11 已知质点沿Ox 轴作直线运动,其瞬时加速度的变化规律为t a x 3=2s m -⋅。

大学物理之力学复习题及答案

力学复习题一、选择题1.以下运动方程中表示质点的运动轨迹为直线的是()(A)jt i t r)12(3-+=(B)jt i t r)12(32-+=(C)jt i e r t)12(32-+=(D)jt i t r)12(63-+=2.下面选项中表示运动轨迹为椭圆的运动方程是()(A)jt i t r)12(3-+=(B)jt i t r2sin 42cos 3+=(C)jt i e r t)12(32-+=(D)jt i t r)12(63-+=3.下面运动方程中,表示为匀速直线运动的是[](A)t x 2=(B)22t x =(C)te x 2=(D)t x 2cos 3=4.关于速度和加速度的说法中正确的是()(A)质点运动速度大,则加速度也大(B)质点具有恒定的速率,则质点的加速度一定保持不变(C)质点速度方向恒定,则加速度的方向也一定保持不变(D)质点作曲线运动时,有可能在某时刻法向加速度为零5.质点以速度)/(4s m v =沿Ox 轴做匀速直线运动,并已知s t 3=时,质点位于m x 9=处,则该质点的运动学方程为(A )tx 2=(B )3-4t x =(C )123143-+=t t x (D )123143++=t t x 6.质点作曲线运动,r表示位置矢量,v 表示速度,a表示加速度,S 表示路程,a t 表示切向加速度,下列表达式中,(1)d /d t a =v ,(2)d /d r t =v ,(3)d /d S t =v ,(4)d /d t t a =v .(A )只有(1)、(4)是对的.(B )只有(2)、(4)是对的.(C )只有(2)是对的.(D )只有(3)是对的.7.若一质点做直线运动其速度为)(t v v =,则以下选项中表示质点在0到1t 时间内的路程的是()(A )⎰1)(t dtt v (C )dtdv(D )1vt8.质点沿O x 轴做直线运动,并已知某时刻的瞬时速度为s m v /2=时,且位置坐标为m x 2=则一秒钟后该质点的的位置坐标为=x (A )4m (B )0(C )3m (D )不能确定9.对于沿曲线运动的物体,以下几种说法中哪一种时正确的?(A )切向加速度必不为零.(B )法向加速度有可能为零.(C )法向加速度必为零.(D )若物体的加速度为恒矢量,它一定作匀变速率运动.10.某质点作直线运动的运动学方程为6533+-=t t x (SI),则该质点作(A)匀加速直线运动,加速度沿x 轴正方向.(B)匀加速直线运动,加速度沿x 轴负方向.(C)变加速直线运动,加速度沿x 轴正方向.(D)变加速直线运动,加速度沿x 轴负方向.11.质点沿半径为R的圆周作匀速率运动,每T 秒转一圈.在2T 时间间隔中,其平均速度大小与平均速率大小分别为(A)T R /2π,T R /2π.(B)0,T R /2π(C)0,0.(D)T R /2π,0.12.一质点沿x 轴运动,它的速度v 和时间t 的关系如下图所示,在1t -0时间内,质点沿x 轴()向作()运动,在21t -t 时间内,质点沿x 轴()向作()运动(A )负,匀减速直线,正,匀减速直线(B )负,匀加速直线,正,匀减速直线(C )负,匀加速直线,负,匀减速直线(D )负,匀减速直线,负,匀加速直线13.下列说法中正确的是()(A )加速度恒定不变时,物体运动方向也不变.(B )平均速率等于平均速度的大小.(C )无论加速度如何,平均速率表达式总可以写为(V 1+V 2)/2.(D )运动物体速率不变时,速度可以变化.14.一质点作直线运动,某时刻的瞬时速度为2m/s ,瞬时加速度a=—2m/s 2,则1s 后质点的速度()(A )0m/s .(B )2m/s .(C )3m/s .(D )不能确定.15.某质点作直线运动的运动方程为)(6533SI t t x +-=,则质点作(A)匀加速直线运动,加速度沿x 轴正方向.(B)匀加速直线运动,加速度沿x 轴负方向.(C)变加速直线运动,加速度沿x 轴正方向.(D)变加速直线运动,加速度沿x 轴负方向.16.一物体做直线运动,运动方程为3226t t x -=,其中x 的单位为m ,t 的单位为s.则该物体在t=0时的速度为(A)mv .(B)-2m/s(C)6m/s .(D)0.17.如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动.设该人以匀速率0v 收绳,绳不伸长、湖水静止,则小船的运动是()(A )匀加速运动.(B )匀速运动.(C )变加速运动.(D )减速运动.18.三个质量相等的物体A 、B 、C 紧靠在一起,置于光滑水平面上,如图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单元一 简谐振动一、 选择、填空题1. 对一个作简谐振动的物体,下面哪种说法是正确的? 【 C 】(A) 物体处在运动正方向的端点时,速度和加速度都达到最大值;(B) 物体位于平衡位置且向负方向运动时,速度和加速度都为零; (C) 物体位于平衡位置且向正方向运动时,速度最大,加速度为零;(D) 物体处在负方向的端点时,速度最大,加速度为零。

2. 一沿X 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,振动方程用余弦函数表示,如果该振子的初相为π34,则t=0时,质点的位置在: 【 D 】(A) 过A 21x =处,向负方向运动; (B) 过A 21x =处,向正方向运动; (C) 过A 21x -=处,向负方向运动;(D) 过A 21x -=处,向正方向运动。

3. 将单摆从平衡位置拉开,使摆线与竖直方向成一微小角度θ,然后由静止释放任其振动,从放手开始计时,若用余弦函数表示运动方程,则该单摆的初相为: 【 B 】(A) θ; (B) 0; (C)π/2; (D) -θ4. 图(a)、(b)、(c)为三个不同的谐振动系统,组成各系统的各弹簧的倔强系数及重物质量如图所示,(a)、(b)、(c)三个振动系统的ω (ω为固有圆频率)值之比为:【 B 】(A) 2:1:1; (B) 1:2:4; (C) 4:2:1; (D) 1:1:25. 一弹簧振子,当把它水平放置时,它可以作简谐振动,若把它竖直放置或放在固定的光滑斜面上如图,试判断下面哪种情况是正确的: 【 C 】(A) 竖直放置可作简谐振动,放在光滑斜面上不能作简谐振动;(B) 竖直放置不能作简谐振动,放在光滑斜面上可作简谐振动; (C) 两种情况都可作简谐振动;)4(填空选择)5(填空选择(D) 两种情况都不能作简谐振动。

6. 一谐振子作振幅为A 的谐振动,它的动能与势能相等时,它的相位和坐标分别为: 【 C 】A2332,3)D (;A 22,43or ,4)C (;A 23,65,6)B (;A 21,32or ,3)A (±±±±±±±±±±±±,ππππππππ7. 如果外力按简谐振动的规律变化,但不等于振子的固有频率。

那么,关于受迫振动,下列说法正确的是: 【 B 】(A) 在稳定状态下,受迫振动的频率等于固有频率;(B) 在稳定状态下,受迫振动的频率等于外力的频率; (C) 在稳定状态下,受迫振动的振幅与固有频率无关;(D) 在稳定状态下,外力所作的功大于阻尼损耗的功。

8. 关于共振,下列说法正确的是: 【 A 】(A) 当振子为无阻尼自由振子时,共振的速度振幅为无限大;(B) 当振子为无阻尼自由振子时,共振的速度振幅很大,但不会无限大; (C) 当振子为有阻尼振动时,位移振幅的极大值在固有频率处;(D) 共振不是受迫振动。

9. 下列几个方程,表示质点振动为“拍”现象的是: 【 B 】t2cos A y ,t cos A x )D ();t sin(A y ,t cos A x )C ();t 201cos(B )t 200cos(A y )B ();t cos(B )t cos(A y )A (2211221121ωωωωωω==+==++=+++=ϕϕϕϕ10. 一质点作简谐振动,周期为T ,质点由平衡位置到二分之一最大位移处所需要的时间为T 121;由最大位移到二分之一最大位移处所需要的时间为T 61。

11. 两个同频率简谐交流电i 1(t)和i 2(t)的振动曲线如图所示,则位相差212πφφ-=-。

12. 一简谐振动用余弦函数表示,振动曲线如图所示,则此简谐振动的三个特征量为:A=10 cm ,)11(填空选择)12(填空选择s /rad 6πω=, 3πφ=13. 一质量为m 的质点在力x F 2π-=的作用下沿x 轴运动(如图所示),其运动周期为m 2。

14. 试在图中画出谐振子的动能,振动势能和机械能随时间而变的三条曲线。

(设t=0时物体经过平衡位置)15. 当重力加速度g 改变dg 时,单摆周期T 的变化dg glg dT π-=,一只摆钟,在g=9.80 m/s 2处走时准确,移到另一地点后每天快10s ,该地点的重力加速度为2s /m 8023.9。

16. 有两个弹簧,质量忽略不计,原长都是10cm ,第一个弹簧上端固定,下挂一个质量为m 的物体后,长11cm ,两第二个弹簧上端固定,下挂一质量为m 的物体后,长13cm ,现将两弹簧串联,上端固定,下面仍挂一质量为m 的物体,则两弹簧的总长为m 24.0。

17. 两个同方向同频率的简谐振动,振动表达式分别为:)SI ()t 5sin(102x )SI ()21t 5(cos 106x 2221-⨯=-⨯=--ππ,它们的合振动的振幅为m 1082-⨯,初位相为π21-。

18. 一质点同时参与了三个简谐振动,它们的振动方程分别为:)t cos(A x )35t cos(A x )3t cos(A x 321πωπωπω+=+=+= 其合成运动的运动方程为0x =。

二、 计算题)14(填空选择)13(填空选择)2(计算题1. 一物体沿x 轴作简谐振动,振幅为10.0cm ,周期为2.0 s 。

在t=0时坐标为5.0cm ,且向x 轴负方向运动,求在x=-6.0cm 处,向x 轴负方向运动时,物体的速度和加速度。

物体的振动方程:)t cos(A x θω+=,根据已知的初始条件得到: )3t cos(10x ππ+=物体的速度:)3t sin(10v πππ+-=物体的加速度:)3t cos(10a 2πππ+-=当:cm 0.6x -=,)3t cos(106πω+=-,53)3t cos(-=+πω,54)3t sin(±=+πω根据物体向X 轴的负方向运动的条件,54)3t sin(=+πω所以:s /m 108v 2-⨯-=π,222s /m 106a -⨯=π2. 一质点按如下规律沿X 轴作简谐振动:)3/2t 8(cos 1.0x ππ+=(SI )(1) 求此振动的周期、振幅、初相、速度最大值和加速度最大值;(2) 分别画出这振动的x-t 图。

周期:s 412T ==ωπ;振幅:m 1.0A =; 初相位:32πϕ=; 速度最大值:ωA xmax = ,s /m 8.0x max π= 加速度最大值:2max A x ω=,22max s /m 4.6x π=3. 定滑轮半径为R ,转动惯量为J ,轻绳绕过滑轮,一端与固定的轻弹簧连接,弹簧的倔强系数为K ;另一端挂一质量为m 的物体,如图。

现将m 从平衡位置向下拉一微小距离后放手,试证物体作简谐振动,并求其振动周期。

(设绳与滑轮间无滑动,轴的摩擦及空气阻力忽略不计)。

以物体的平衡位置为原点建立如图所示的坐标。

物体的运动方程:x m T mg 1=- 滑轮的转动方程:RxJR )T T (21 =- 对于弹簧:)x x (k T 02+=,mg kx 0=由以上四个方程得到:x )m RJ(k x 2=++令)m RJ(k 22+=ω物体的运动微分方程:0x x 2=+ω物体作简谐振动。

振动周期:kR Jm 2T 2+=π4. 一个轻弹簧在60N 的拉力作用下可伸长30cm 。

现将一物体悬挂在弹簧的下端并在它上面放一小物体,它们的总质量为4kg 。

待静止后再把物体向下拉10cm ,然后释放。

问:(1)此小物体是停在振动物体上面还是离开它?(2)需满足何条件?二者在何位置开始分离?物体的振动方程:)t cos(A x ϕω+=根据题中给定的条件和初始条件得到:0Fk δ=,s /25mk==ω :物体的位移为为正,速度为零。

ma mg N -= 2s /2s /m 8.9g a ==5. 两个同振动方向,同频率的谐振动,它们的方程为x 1=5cos πt (cm)和 x 2=5cos(πt+π/2) (cm),如有另一个同振向同频率的谐振动x 3,使得x 1,x 2和x 3三个谐振动的合振动为零。

求第三个谐振动的振动方程。

已知t cos 5x 1π=,)2t cos(5x 2ππ+=)t cos(A x x 'x 21ϕω+=+=)6(计算题)cos(A A 2A A A 12212221ϕϕ-++=,cm 25A =22112211cos A cos A sin A sin A arctgϕϕϕϕϕ++=,4πϕ=)4t cos(25'x ππ+=,0x 'x x 3=+=,'x x 3-=)45t cos(25x 3ππ+=6.已知两同振向同频率的简谐振动:)SI ()51t 10cos(06.0x ,)53t 10cos(05.0x 21ππ+=+=(1) 求合成振动的振幅和初相位;(2) 另有一个同振动方向的谐振动)SI ()t 10cos(07.0x 33ϕ+=,问3ϕ为何值时31x x +的振幅为最大,3ϕ为何值时32x x +的振幅为最小;(3) 用旋转矢量图示(1)、(2)的结果。

(1) x 1和x 2合振动的振幅:)cos(A A 2A A A 12212221ϕϕ-++=m 09.0A =振动的初相位22112211cos A cos A sin A sin A arctgϕϕϕϕϕ++=068=ϕ(2) 振动1和振动3叠加,当满足πϕϕϕ∆k 213=-=, 即ππϕ53k 23+=时合振动的振幅最大。

3113312321A A )cos(A A 2A A A +=-++=ϕϕm 12.0A =振动2和振动3的叠加,当满足:πϕϕϕ∆)1k 2(23+=-= 即ππϕ51)1k 2(3++=振幅最小。

2332232223A A )cos(A A 2A A A -=-++=ϕϕm 01.0A =单元二 简谐波 波动方程一、选择题1. 频率为100Hz ,传播速度为300m/s 的平面简谐波 ,波线上两点振动的相位差为3π,则此两点相距:【 C 】(A) 2m; (B) 2.19m; (C) 0.5m; (D) 28.6m 2 . 一平面余弦波在0=τ时刻的波形曲线如图所示 ,则O 点的振动初位相ϕ为:【 D 】ππππ21or ,23)D (;)C (;21)B (;0)A (-3. 一平面简谐波 ,其振幅为A ,频率为v ,波沿x 轴正方向传播 ,设t t =0时刻波形如图所示,则x=0处质点振动方程为:【 B 】])t t (v 2cos[A y )D (]2)t t (v 2cos[A y )C (]2)t t (v 2cos[A y )B (]2)t t (v 2cos[A y )A (0000ππππππππ+-=--=+-=++=)6(计算题)6(计算题)2(选择题)3(选择题4. 某平面简谐波在t=0时的波形曲线和原点(x=0处)的振动曲线如图 (a)(b)所示 ,则该简谐波的波动方程(SI)为:【 C 】)2x 2t cos(2y )D ();2x 2t cos(2y )C ()23x 2t cos(2y )B ();2x 2t cos(2y )A (ππππππππππππ-+=+-=+-=++=5. 在简谐波传播过程中 ,沿传播方向相距为2λ,(λ为波长)的两点的振动速度必定: 【 A 】 (A) 大小相同 ,而方向相反 ; (B) 大小和方向均相同 ;(C) 大小不同 ,方向相同; (D) 大小不同 ,而方向相反 。

相关文档
最新文档