修改版-电介质极化与介电常数_图文.ppt

合集下载

1.03 电介质极化及介电系数

1.03  电介质极化及介电系数
Pcos Pn
结论:束缚电荷面密度大小等于极化强度在ΔS面法线方向
上的分量,二者单位都是C/m2
例:求均匀极化的电介质球表面上极化电荷的分布,
已知电极化强度为P。
解: Pcos
00 P
900 0 1800 P
总结
基本性质:
电感应强度D 与自由电荷分布有关且为矢量,其方向起始 于正自由电荷,终于负自由电荷;D 在数值上等于该点自由 电荷面密度;各极板上自由电荷为q,极板附近D=q/s
电介质物理基础
第一章 电介质的极化
第二节 电介质的极化和介电系数
曾敏
问题的提出?
为什么要研究介质的极化??
平板电容器中是真空时…
Q0
C
电量Q0,电压V,面密度δ 0, 板面积A,间距d。
V
图1平板电容器中的电荷与 电场分布(a)真空
……
平板电容器中以介质代替真空时
εr
问题的提出?
介质产生哪些 变化??
εr是相对介电常数,与真空的比值; 介质绝对介电常数ε=ε0εr
εr是无量纲,且εr≥1
2.极化强度P(Polarization Rector)
1) P的定义:单位体积电介质的电偶极矩矢量总和.
P i
V

lim P
i
V 0 V
性质: 宏观物理量,很多粒子μi的平均值;
P与E方向有关;
单位为Cm/m3=C/m2;
极化强度P 只与极化电荷有关,P 是矢量,起始于于负极
化电荷,终于正极化电荷
电场强度E 与实际存在的所有电荷(包括自由电荷和极化 电荷)有关,E 是描述电场的基本矢量,D 和P 均可用E 来表

克劳休斯方程

电介质的极化与介电常数

电介质的极化与介电常数

电介质的极化与介电常数电介质,是指材料中的电荷在外加电场作用下发生的极化现象。

在电介质中,原子和分子中的电子和正离子会受到外加电场的作用,从而产生电偶极矩,导致材料整体上出现正负电荷的分离,这种现象也称为电介质的极化。

电介质的极化可以通过介电常数来描述。

介电常数是一个用来衡量材料中电介质极化程度的物理量。

它代表了电介质相对于真空或空气的极化能力,通常用符号ε来表示。

介电常数可以分为静电介电常数和动态介电常数。

静电介电常数是在恒定电场下材料发生极化的能力,而动态介电常数则是在变化的电场下电介质对电磁波的响应程度。

电介质的极化可以分为电子极化和离子极化两种情况。

电子极化是指电介质中的电子沿着外加电场的方向产生位移,使得电介质内部出现正负电荷的分离。

这种极化主要发生在共价键结构的材料中,例如氧化物、氢氧化物和塑料等。

离子极化则是指电介质中的化学键断裂,正负离子沿着外加电场方向运动,形成分离的电荷。

这种极化主要发生在离子晶体中,例如盐类和石英等。

对于理想的电介质而言,其极化过程可以用简单的电偶极子模型来描述。

电偶极子由正负等量的电荷构成,它们之间的距离称为电偶极矩。

当外加电场作用下,电偶极子会倾向于与电场方向相同的方向对齐,这就是电介质的极化现象。

然而,在现实材料中,电介质的极化过程往往比较复杂。

除了电子极化和离子极化外,还存在位移极化、界面极化和空间电荷极化等多种极化形式。

位移极化是由于电介质存在自由电荷或固有偶极矩时产生的现象,使得电荷在电场作用下产生位移。

例如金属中的自由电子就会受到外加电场的作用而运动,产生位移极化。

界面极化则是由于电介质与其他物体或界面的相互作用而产生的极化过程。

当电介质与真空或其他材料接触时,其表面产生一个电荷层,从而形成界面极化。

空间电荷极化是由于电荷在电磁场作用下发生运动,形成电场梯度,使得电介质内部产生极化。

这种极化在高频电场下比较明显,对介电常数的影响较大。

通过了解电介质的极化过程及其影响因素,可以更好地理解介电常数的概念。

电介质中的极化现象与介电常数

电介质中的极化现象与介电常数

电介质中的极化现象与介电常数电介质是一种能将电场中的电荷正负离子重新分布的材料,当电介质置于外加电场中时,其内部的正负离子会发生极化现象,使介质中产生一个与外加电场方向相反但大小相同的极化电场。

这个极化过程是由于正负离子在电场作用下移动所引起的。

本文将讨论电介质中的极化现象与介电常数。

一、极化现象的机理在电介质中,正负离子之间存在有电相互作用,当外加电场作用于电介质时,电场力会将正负离子向相反方向移动,这种离子移动产生了两种电极化现象:取向极化和电荷极化。

1. 取向极化取向极化主要指的是电介质中的分子在电场作用下,由于自发定向而出现极化现象。

电场力可以使分子的正极和负极重新排序,使得整个电介质的正极和负极方向与外加电场方向相反,从而形成一个与外加电场方向相反但大小相同的极化电场。

2. 电荷极化电荷极化是由电介质中的正负离子在电场作用下发生移动而产生的。

正离子会向电场方向移动,而负离子则向相反的方向移动,导致电介质中产生一个内部电场,与外加电场方向相反。

二、介电常数的概念介电常数是反映电介质中电极化程度的物理量,用ε或ε_r表示。

它定义为电介质中产生的电场强度与外加电场强度之比。

介电常数越大,说明电介质在外加电场下电极化程度越高。

介电常数既可以是常数,也可以是频率相关的量。

对于静态或低频区域,介电常数是常数,而在高频区域,介电常数则会随频率的增加而变化。

三、介电常数的影响因素介电常数的大小受到多个因素的影响,以下是其中几个主要因素:1. 分子结构和极性分子结构和极性对电介质的介电常数有重要影响。

极性分子的电介质通常具有较高的介电常数,因为极性分子能更容易受到电场的影响,形成较强的极化。

2. 温度介电常数通常随着温度的升高而减小。

这是因为温度的升高会增加电介质中分子的热运动,使分子难以保持定向,从而降低电介质的极化程度。

3. 频率介电常数在不同频率下也会有所不同。

在高频区域,极化过程会受到分子间相互作用和电场反向作用的影响,导致介电常数的变化。

第5课-电介质极化与介电常数

第5课-电介质极化与介电常数

产生极化的地方、 特征等 任何物质的原子中 离子组成的物质 极性分子组成的物质 复合介质的交界面
到达平衡 的时间 10-15秒 10-13秒 10-10 ~ 10-2秒 数秒 ~ 数日
发生极化的原因
束缚电荷的位移
自由电子的移动
几种介电质的介电常数
材料类别 气体介质(标准大气条件)
弱极性
名称
空 气 变压器油 硅有机液体 蓖麻油 氯化联苯 丙 酮 酒 精 水 石 蜡 聚苯乙烯 聚四氯乙烯 松 香 沥 青 纤维素 胶 水 聚氯乙烯 沥 青
Cl2
中性共价键
﹒ ﹒﹒ ﹒ ﹒ Cl ﹒ Cl ﹒ ﹒ ﹒ ﹒ ﹒ ﹒ ﹒ ﹒
极性共价键
﹒ ﹒ ﹒ Cl H﹒+ ﹒ ﹒ ﹒ ﹒
=
﹒ ﹒ ﹒ ﹒ Cl H﹒ ﹒ ﹒ ﹒
一、电子的位移极化
特点:
1、电子位移极化存在于一切气体、 液体及固体介质中 2、具有弹性,当外电场去掉后, 依靠正、负电荷间的吸引力, 作用中心又马上会重合,对 外不显电性 3、极化速度快,10--14~10--15秒, 在各种频率的交变电场下均 能产生,与频率无关 4、极化强度与电矩的大小成正比, 且随着外电场的增强而增大 5、与温度无关 6、不引起能量损耗
三、极性分子的转向极化
极化机理:
E=0 E + + +
(a)无外电场
-+-+ -+ - + -+ -+ -+ -+ -+ -+ (b)有外电场
在外电场作用下,原来杂乱分布的极性分子顺电场方向定向排 列,对外显示出极性,称极性分子的转向极化
特点:
1、有弹性,可恢复 2、与频率有关,极化完成时间约为 l0-6-10-2s,甚至更长, 有可能跟不上交变电场的变化,使极化率减小 3、与外加电场有关,外电场越强,极性分子的转向排列就 越整齐,转向极化就越强 4、与温度有关,对于极性气体介质:温度高时,分子热 运动加剧,妨碍极性分子沿电场方向取向,使极化减弱。 对于液体、固体介质:则温度过低时,由于分子间联系 紧(例如粘度很大),分子难以转向.极化较弱。所以极 性液体、固体介质在低温下先随温度的升高极化加强, 以后当热运动变得较强烈时,极化又随温度上升而减小 5、有能量损耗

高电压技术 电介质极化与介电常数37页PPT

高电压技术 电介质极化与介电常数37页PPT

41、学问是异常珍贵的东西,从任何源泉吸 收都不可耻。——阿卜·日·法拉兹
42、只有在人群中间,才能认识自 己。——德国
43、重复别人所说的话,只需要教育; 而要挑战别人所说的话,则需要头脑。—— 玛丽·佩蒂博恩·普尔
44、Байду номын сангаас越的人一大优点是:在不利与艰 难的遭遇里百折不饶。——贝多芬
高电压技术 电介质极化与介电常数
1、战鼓一响,法律无声。——英国 2、任何法律的根本;不,不成文法本 身就是 讲道理 ……法 律,也 ----即 明示道 理。— —爱·科 克
3、法律是最保险的头盔。——爱·科 克 4、一个国家如果纲纪不正,其国风一 定颓败 。—— 塞内加 5、法律不能使人人平等,但是在法律 面前人 人是平 等的。 ——波 洛克
45、自己的饭量自己知道。——苏联

电介质物理-电介质的极化分析87页PPT

电介质物理-电介质的极化分析87页PPT
电介质物理-电介质的极化分析
51、山气日夕佳,飞鸟相与还。 52、木欣欣以向荣,泉涓涓而始流。
53、富贵非吾愿,帝乡不可期。 54、雄发指危冠,猛气冲长缨。 55、土地平旷,屋舍俨然,有良田美 池桑竹 之属, 阡陌交 通,鸡 犬相闻 。

谢谢!
87
26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭

27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰

28、知之者不如好之者,好之者不如乐之者。——孔子

29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇


30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华

电介质的极化课件

电介质的极化课件
电介质可以分为气体、液体和固体三类。
详细描述
根据物质的状态和性质,电介质可以分为气体、液体和固体三类。不同状态的 电介质有不同的应用场景,如气体电介质常用于高压绝缘,液体电介质常用于 电缆绝缘,固体电介质常用于电子器件和绝缘材料。
电介质性质
总结词
电介质具有高绝缘性、介电性、热稳定性等性质。
详细描述
频率特性
频率对电介质极化的影响
随着频率的增加,电介质的极化率通常会减小,这主要是因为频率增加会导致电场变化速度增加,使得电介质分 子来不及响应电场的变化。
频率对介电常数的影响
随着频率的增加,介电常数通常会减小,这主要是因为频率增加会导致电场变化速度增加,使得电介质对电场的 响应能力降低。
压力特性
03
极化性
温度特性
温度对电介质极化的影响
随着温度的升高,电介质的极化率通常会减小,这主要是因 为温度升高会导致电介质内部的分子热运动增强,从而降低 分子间的相互作用力。
温度对介电常数的影响
介电常数随着温度的升高而减小,这主要是因为温度升高会 导致电介质内部的正负电荷的热运动速度增加,从而降低电 介质对电场的响应能力。
电介质具有高绝缘性,能够承受强电场作用,具有良好的介电性能,能够存储电 荷并隔绝电流。此外,电介质还具有热稳定性,能够在高温下保持稳定的性能。 这些性质使得电介质在电力、电子、通信等领域有着广泛的应用。
02
极化理
极化现象
01
02
03
极化现象
电介质在电场作用下,其 内部偶极子定向排列的现 象。
极化程度
分析数据
根据实验数据,分析电介质极 化的规律和特点,探究与材料 性能之间的关系。
06
极化
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档