大学物理7.13 电介质及其极化机理
电介质的极化课件

电介质分类
总结词
电介质根据其组成和结构可分为离子型、电子型和复合型三 类。
详细描述
离子型电介质由正负离子组成,在电场作用下离子会发生定 向移动形成传导电流。电子型电介质由自由电子组成,其导 电性类似于金属导体。复合型电介质则同时包含离子和电子 两种导电机制。
电介质性质
总结词
电介质的主要性质包括绝缘性、介电常数、介质损耗等。
详细描述
电介质的绝缘性是指其抵抗电流通过的能力,介电常数则反映了电介质在电场 作用下的极化程度,而介质损耗则是指电介质在电场作用下能量损耗的能力。 这些性质在电力系统和电子设备中具有重要的应用价值。
02
电介质极化原理
极化现象
01
02
03
极化现象
电介质在电场的作用下, 正负电荷中心发生相对位 移,从而在电介质中出现 的宏观电荷现象。
压电效应
压电效应是指电介质在受到外力作 用时,会在其内部产生电荷的现象 ,其特点是具有逆压电效应和正压 电效应。
极化机制
电子位移极化
取向极化
电子位移极化是指在外加电场的作用 下,电子受到电场力的作用而发生位 移,从而产生宏观电荷的现象。
取向极化是指在外加电场的作用下, 分子中的正负电荷中心发生相对位移 ,从而产生宏观电荷的现象。
分析不同电介质材料的极化特 性。
实验设备
电极
用于施加电场和测 量电位的电极。
测量仪器
用于测量电介质极 化率的测量仪器。
电介质样品
不同类型和性质的 电介质材料。
电源
用于提供实验所需 电压的电源。
实验装置
包括电容器、绝缘 支架、绝缘棒等组 成的实验装置。
实验步骤
01
电介质的极化

3.影响tgδ的因素
(1)温度的影响
(2)频率的影响
(3)电压的影响
在电场强度不很高时,tgδ不变; 在电场强度较高时, tgδ随电场强度升高而迅 速增大
2.2.1.液体电介质的击穿特性 1、液体击穿机理 (1)电击穿理论 在外电场足够强时,电子在碰撞液体分子可 引起电离,使电子数倍增,形成电子崩。同时正离子 在阴极附近形成空间电荷层增强了阴极附近的电场, 使阴极发射的电子数增多,导致液体介质击穿。 纯净液体介质的击穿理论与气体放电汤逊理 论中的作用有些相似。但液体密度比气体密度大得多 ,电子的平均自由行程很小,必须大大提高场强才开 始碰撞电离。
1.1.1. 电介质的极化
1.定义 电介质中的带电质点在电场作用下沿电场方向 作有限位移
Qo=CoU
C0
0 A
d
A
Q CU C d r Q0 C0U C0 0A 0 d
2. 相对介电系数εr 表征电介质在电场作用下的极化程度
3. 极化的基本形式 (1) 电子式极化
杂质的多少含水量纤维量气量通过标准油杯中变压器油的工频击穿电压来衡量油的品质2温度3电压作用时间加压后短至几个微秒时表现为电击穿击穿电压很高当电压作用时间大于毫秒级时表现为热击穿击穿电压随作用时间增加而降低电场愈均匀杂质对击穿电压的影响愈大分散性也愈大击穿电压也愈高4电场均匀程度3
任务一
电介质的极化、电导及损耗
(2)“小桥”理论
变压器油的击穿主要原因,在于杂质的影响,而杂 质是水分、受潮的纤维和被游离了的气泡等构成, 它们在电场的作用下,在电极间逐渐排列成为小 桥,从而导致击穿。
2. 影响液体电介质击穿电压的因素
(1)自身品质因素:杂质的多少 (含水量、纤维量、气量)
电介质的极化

电介质(dielectric)也就是绝缘体,它们本身是不导电的,即它们不含有自由电子。
因此,与导体相比,电介质对外场的响应是不同的。
对于导体而言,其对外电场的响应就是自由电子定向移动,产生感应电荷,最终达到静电平衡。
而对于电介质而言,其对外电场的响应是束缚电荷的受限移动(移动范围不能超出原子),从而产生宏观的极化电荷。
这种对外电场的响应称为电介质的极化。
极化的微观过程是束缚电荷在外电场中的运动。
任何物质的分子都是由电子和原子核构成的,整个分子是电中性的。
正(原子核)、负电荷(各个电子)在空间中都具有一定的分布。
利用等效理论(原理),对正、负电荷分开处理,可以得到这个分子的等效正电荷的大小、位置以及等效负电荷的大小、位置。
这样,就可以得到分子的等效固有电偶极矩。
根据对称性,可以将分子分为无极分子和有极分子。
顾名思义,无极分子就是分子等效电极距为0的分子,即分子的正、负等效电荷的位置重合,这要求分子的结构具有某些对称性,如氢分子,四氯化碳分子等。
有极分子就是分子等效电极距不为0的分子,这种情况更为多见。
自然地,这两种分子的极化机制不同。
对于无极分子而言,一旦加上了外电场,原本重合的正、负等效电荷点会分开,产生感生电极距,也称为位移极化。
而对于有极分子而言,不仅仅有位移极化,本身的固有电极距会在外场作用下从原本的杂乱无章到逐渐有序,这种极化称为取向极化。
那么如何定量描述极化的强度呢?极化强度是宏观量,而极化微观机制是微观图像。
将宏观量和微观图像联系起来的有效工具便是微元法,即取一小块体积元,将体积元内所有电极距叠加起来,除以体积元的大小,定义为极化强度矢量。
那么极化电荷的分布情况如何呢?对于均匀的电介质而言,可以想象,电介质体内是不会出现宏观的极化电荷的,因为它们都抵消掉了(想象一下极化的微观过程可知)。
但在表面情况就不同了。
这个表面并不是电介质的理想表面,而是指距离理想表面的距离小于L的地方。
其中L为分子感生电极距中等效正电荷点与等效负电荷点的距离。
电介质的极化

电介质:是几乎指不导电的物质,即绝缘材料。
电介质(绝缘材料)种类: ①气体绝缘材料,常用的有空气、氮、氢、二氧 化碳和六氟化硫等;②液体绝缘材料,常用的有 从石油原油中提炼出来的绝缘矿物油,十二烷基 苯、聚丁二烯、硅油和三氯联苯等合成油以及蓖 麻油;③固体绝缘材料,常用的有树脂绝缘漆, 纸、纸板等绝缘纤维制品,漆布、漆管和绑扎带 等绝缘浸渍纤维制品,绝缘云母制品,电工用薄 膜、复合制品和粘带,电工用层压制品,电工用 塑料和橡胶、玻璃、陶瓷等
高压绝缘基本理论
气体εr接近于1,液体和固体大多在2~6之 间。
❖ 用于电容器的绝缘材料,显然希望选用εr 大的电介质,因为这样可使单位电容的体积 减小和重量减轻。
❖ 其他电气设备中往往希望选用εr较小的电 介质,这是因为较大的εr往往和较大的电导率 相联系,因而介质损耗也较大。
❖ 采用εr较小的绝缘材料还可减小电缆的充 电电流、提高套管的沿面放电电压等。
高压绝缘基本理论
夹层极化的特点:过程缓慢并有损耗
测量时电流随时间变化规律
单一介质时,电流很快衰减,
多层介质时,因夹层极化, 电流衰减慢
高压绝缘基本理论 ④夹层式极化
❖ 凡是由多种电介质组成的绝缘结 构,在加上外电场后,各层电压将从 开始时按介电常数分布逐渐过渡到稳 态时按电导率分布。在电压重新分配 的过程中,夹层界面上会积聚起一些 电荷,并重新分布,这种极化称为夹 层介质界面极化,简称夹层极化。
❖ 随着加压时间t的增加,UB下降而 UA增高,总的电压U保持不变。这就 意味着CB要通过GB放掉一部分电荷, 而CA要通过GB从电源再吸收一部分 电荷。
有外电场时,偶极子顺电场排列
偶极子式极化特点:时间较长并有损电荷不
电介质及其极化(完整)

+
无极分子:分子的正电荷中心与负电荷中心 重合。
无极分子的等效电偶极矩: 无极分子电介质整体也是呈 中性的。
p0
二、电介质的极化
++ + + + ++
靠近球的外部空间,上下 区域,合场强减弱;左右 区域,合场强增强。
++ ++ + + + + ++ + + + + + ++ + + + + + ++ + --L
θ
总电场 外电场
极化电荷所 激发电场
一、平行板电容器均匀电介质
极板间电介质中的合 场强E的大小为
0
+
'
E0
0
'
E E0 E
'
+ + + +
E
' E
-
0 0 0
'
电介质中的电极化强度为 而
'
p e 0 E
p 代入上式得
E E0
在球心处的场95空间任一点的合场强e应该是外电场总电场极化电荷所激发电场极板间电介质中的合场强e的大小为上式表明在均匀电介质充满整个电场的情况下电介质内部的场强e为场强设极板的面积为s则极板上总的电荷量为极板间充满均匀电介质后的电容电介质内部场强减弱为外场的这一结论并不普遍成立但是电介质内部的场强减弱却是比较普遍的
电介质的极化

电介质的极化
§3.3 电介质的极化:
一、极化:在外电场的作用下,电介质所发生的变化称之。
二、位移极化:无极化分子的极化。
在外电场的力矩作用下,正负电荷的“重心”发生反向位移而分开的变化。
图
由0P = 变为0P ≠ 。
三、取向极化:有极分子的极化。
在外电场的力矩作用下,分子偶极矩发生转向(趋于和外电场方向一致)的变化。
由0i P =∑
变为0i P ≠∑。
实际上,从机理上分析,有极分子的极化,不是单纯的取向极化,由于电场力的作用,同时还有位移极化,只不过是谁大谁小的问题。
四、极化强度矢量P
1、P :定量描述电介质极化程度的宏观物理量。
2、极化的实质:
不论是哪种介质,极化前0i P =∑
,而极化后,则0i P ≠∑ 。
即极化是分子极矩和由
零到非零的变化。
3、P 的定义:1m i
i P P τ==?∑
τ?为物理无限小体积。
因而: P
是宏观矢量点函数。
4、P 与E 的关系:
实验表明:在各向同性电介质中
0P E εχ=
χ:称为极化率,取决于电介质的性质。
当χ处处相同时,亦称为均匀介质。
各向同性:指P 与E 的关系式与方向无关。
各向异性中,用极化率张量描述。
电介质的极化课件

详细描述
根据物质的状态和性质,电介质可以分为气体、液体和固体三类。不同状态的 电介质有不同的应用场景,如气体电介质常用于高压绝缘,液体电介质常用于 电缆绝缘,固体电介质常用于电子器件和绝缘材料。
电介质性质
总结词
电介质具有高绝缘性、介电性、热稳定性等性质。
详细描述
频率特性
频率对电介质极化的影响
随着频率的增加,电介质的极化率通常会减小,这主要是因为频率增加会导致电场变化速度增加,使得电介质分 子来不及响应电场的变化。
频率对介电常数的影响
随着频率的增加,介电常数通常会减小,这主要是因为频率增加会导致电场变化速度增加,使得电介质对电场的 响应能力降低。
压力特性
03
极化性
温度特性
温度对电介质极化的影响
随着温度的升高,电介质的极化率通常会减小,这主要是因 为温度升高会导致电介质内部的分子热运动增强,从而降低 分子间的相互作用力。
温度对介电常数的影响
介电常数随着温度的升高而减小,这主要是因为温度升高会 导致电介质内部的正负电荷的热运动速度增加,从而降低电 介质对电场的响应能力。
电介质具有高绝缘性,能够承受强电场作用,具有良好的介电性能,能够存储电 荷并隔绝电流。此外,电介质还具有热稳定性,能够在高温下保持稳定的性能。 这些性质使得电介质在电力、电子、通信等领域有着广泛的应用。
02
极化理
极化现象
01
02
03
极化现象
电介质在电场作用下,其 内部偶极子定向排列的现 象。
极化程度
分析数据
根据实验数据,分析电介质极 化的规律和特点,探究与材料 性能之间的关系。
06
极化
大学物理电磁学部分07电介质的极化和介质中的高斯定理-PPT文档资料

q 0 真空中的高斯定理 E S 0d
S
在介质中,高斯定理改写为:
总场强 自由电荷
0
注意:决定介质极化的不是原来的场 E 0 而是介质内实 际的场 E 。 E '又总是起着减弱总场 E的作用,即起着减弱极化
的作用,故称为退极化场。
10
任一点的总场强为: E E E ' 0
作用下,电介质发生极化;极化强 总结: 在外电场 E 0 度矢量 P 和电介质的形状决定了极化电荷的面密度 , 而 又激发附加电场 E , 又影响电介质内部的总电 E 场 E ,而总电场又决定着极化强度矢量 P 。 各物理量的关 E p Pn 0
F
E 0
E0
这种由分子极矩的转向而引起的极化现象称为取向极化
6
外场越大,电矩趋于外场方向一致性越好,电矩 的矢量和也越大。 说明:电子位移极化效应在任何电介质中都存在,而 分子转向极化只是由有极分子构成的电介质所特有的, 只不过在有极分子构成的电介持中,转向极化效应比 位移极化强得多,因而是主要的。
系如下:
E E E ' 0
E'
在电介质中,电位移矢量、极化电荷、附加电场 和总场强这此量是彼此依赖、互相制约的。 为了计算它们当中的任何一个量,都需要和其它量 一起综合加以考虑。 这种连环套的关系太复杂,在实际计算中比较繁 琐。物理学追求“和谐、对称、简洁!
11
四、介质中的高斯定理 电位移矢量
P P cos 极化强度矢量在表面外法线方向上的分量 n
'为电介质表面极化电荷的面密度,
n
n
为极化强度矢量与外法线方向的夹角
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
无极分子——位移极化
2015/2/5
有极分子 ——取向极化
DUT 常葆荣
2
在外电场的作用下,电介质表面上出现束缚 电荷的现象叫做电介质的极化。
有介质时的电场强度
总电场
E E0 E
自由电荷 的场强
束缚电荷 的场强
2015/2/5
DUT 常葆荣
3
电介质的极化与导体r 静电感应的比较 E
+q ++
有极分子
1
无外电场时
热运动
-+
整体对外不显电性
无极分子
有外电场时
有极分子
E0
E0
束 -+ - + - + 束 束 -+ -+
束
缚 电 荷
-+ -+
-+ -+
-+ -+
缚 电 荷
缚 电 荷
Hale Waihona Puke -+缚 电 荷
_
++++
介质上的极化电荷 内部一小体积无净电荷。
导体上的感应电荷 电荷只分布在表面。
分离后撤去电场,呈电中性。 分离后撤去电场,一般 都带电。
2015/2/5
DUT 常葆荣
4
二、极化强度与电场及极化电荷的关系
极化强度
r P
r pi
P np (C /m2 )
对各向同性电介质
n
V
7.4 静电场中的电介质
一、电介质分子的结构及极化的微观机制
电介质分子是中性的,可用一对正负等效电荷代替
根据正负 极性分子(有极分子ql) ——固有电偶极矩不为零 电荷是否 重合分为 非极性分子(无极分子) ——固有电偶极矩为零
-+
无极分子
2015/2/5
DUT 常葆荣
P 0eE
E为总电场 χe 电极化率
dS θ
P
dq qndV qnl d S cos
ql p,np P
dS
n
θ
P
l
P d S cos P d S
d q P cos P n
dS
Pn
2015/2/5
DUT 常葆荣
5