大学物理答案第3章
大学物理3章答案-7页精选文档

第3章 能量定理和守恒定律3-5一圆锥摆的摆球在水平面上作匀速圆周运动。
已知摆球质量为m ,圆半径为R ,摆球速率为υ,当摆球在轨道上运动一周时,作用在摆球上重力冲量的大小为多少?解:如3-5题图所示,一周内作用在摆球上重力冲量的大小为 3-6用棒打击质量为0.3Kg 、速率为20m/s 的水平飞来的球,球飞到竖直上方10 m 的高度。
求棒给予球的冲量多大?设球与棒的接触时间为0.02s ,求球受到的平均冲力。
解:设球的初速度为1υ,球与棒碰撞后球获得竖直向上的速度为2υ,球与棒碰撞后球上升的最大高度为h ,如3-6题图所示,因球飞到竖直上方过程中,只有重力作功,由机械能守恒定律得 由冲量的定义可得棒给予球的冲量为 其冲量大小为 球受到的平均冲力为t F I ⋅=__()N tIF 366__==3-7质量为M 的人,手里拿着一个质量为m 的球,此人用与水平线成θ角的速度0υ向前跳去。
当他达到最高点时,将物体以相对人的速度μ水平向后抛出,求由于物体的抛出,跳的距离增加了多少?(假设人可视为质点) 解:如3-7题图所示,把人与物视为一系统,当人跳跃到最高点处,在向后抛物的过程中,满足动量守恒,故有式中υ为人抛物后相对地面的水平速率,υμ-为抛出物对地面的水平速率,得人的水平速率的增量为而人从最高点到地面的运动时间为所以,人由于向后抛出物体,在水平方向上增加的跳跃后距离为 3-8 一质量为m =2kg 的物体按()m t x 2213+=的规律作直线运动,求当物体由m x 21=运动到m x 62=时,外力做的功。
解:由2213+=t x ,可得 232dx t dt υ== 当物体在m x 21=处时,可得其时间、速度分别为()2113002m s υ-=⨯=⋅ (1)当物体在m x 62=处时,可得其时间、速度分别为()2123262m s υ-=⨯=⋅ (2)则由(1)、(2)式得外力做的功 3-9求把水从面积为250m 的地下室中抽到街道上来所需作的功。
大学物理第三章-部分课后习题答案

大学物理第三章 课后习题答案3-1 半径为R 、质量为M 的均匀薄圆盘上,挖去一个直径为R 的圆孔,孔的中心在12R 处,求所剩部分对通过原圆盘中心且与板面垂直的轴的转动惯量。
分析:用补偿法〔负质量法〕求解,由平行轴定理求其挖去部分的转动惯量,用原圆盘转动惯量减去挖去部分的转动惯量即得。
注意对同一轴而言。
解:没挖去前大圆对通过原圆盘中心且与板面垂直的轴的转动惯量为:2112J MR =① 由平行轴定理得被挖去部分对通过原圆盘中心且与板面垂直的轴的转动惯量为:2222213()()2424232c M R M R J J md MR =+=⨯⨯+⨯= ②由①②式得所剩部分对通过原圆盘中心且与板面垂直的轴的转动惯量为:2121332J J J MR =-=3-2 如题图3-2所示,一根均匀细铁丝,质量为M ,长度为L ,在其中点O 处弯成120θ=︒角,放在xOy 平面内,求铁丝对Ox 轴、Oy 轴、Oz 轴的转动惯量。
分析:取微元,由转动惯量的定义求积分可得 解:〔1〕对x 轴的转动惯量为:2022201(sin 60)32Lx M J r dm l dl ML L ===⎰⎰ 〔2〕对y 轴的转动惯量为:20222015()(sin 30)32296Ly M L M J l dl ML L =⨯⨯+=⎰〔3〕对Z 轴的转动惯量为:22112()32212z M L J ML =⨯⨯⨯=3-3 电风扇开启电源后经过5s 到达额定转速,此时角速度为每秒5转,关闭电源后经过16s 风扇停止转动,已知风扇转动惯量为20.5kg m ⋅,且摩擦力矩f M 和电磁力矩M 均为常量,求电机的电磁力矩M 。
分析:f M ,M 为常量,开启电源5s 内是匀加速转动,关闭电源16s 内是匀减速转动,可得相应加速度,由转动定律求得电磁力矩M 。
解:由定轴转动定律得:1f M M J β-=,即11252520.50.5 4.12516f M J M J J N m ππβββ⨯⨯=+=+=⨯+⨯=⋅ 3-4 飞轮的质量为60kg ,直径为0.5m ,转速为1000/min r ,现要求在5s 内使其制动,求制动力F ,假定闸瓦与飞轮之间的摩擦系数0.4μ=,飞轮的质量全部分布在轮的外周上,尺寸如题图3-4所示。
大学物理第三章课后习题答案

r3
, k 为常量。试求两粒子相距为 r 时的势能,设力为零的
r = a cos ωt i + b sin ωt j , r 式中 a , b , ω 是正值常数,且 a ≻ b 。
(1)说明这质点沿一椭圆运动,方程为
�
x2 y 2 + = 1; a2 b2
(2)求质点在 A 点 (a ,0) 时和 B 点 (0, b ) 时的动能; (3)当质点从 A 点到 B 点,求力 F 所做的功,并求 F 的分力 Fx i 和 Fy j 所做的 功; (4) F 力是不是保守力? 12 . 如果物体从髙为 h 处静止下落,试求(1)时间为自变量; 12. (2)高度为自变量, 画出它的动能和势能图线,并证明两曲线中动能和势能之和相等。 . 一质量为 m 的地球卫星,沿半径为 3R e 的轨道运动, R e 为地球的半径,已知 13 13. 地球的质量为 M e ,求(1)卫星的动能; (2)卫星的引力势能; (3)卫星的机械 能。 . 如图所示, 14 14. 小球在外力作用下, 由静止开始从 A 点出发做匀加速运动,到达 B 点时撤消外力,小球 无摩擦的冲上竖直的半径为 R 的半圆环, 到达最高 点 C 时,恰能维持在圆环上做圆周运动,并以此速 度抛出而刚好落回到原来的出发点 A 处, 如图试求 小球在 AB 段运动的加速度为多大? . 如图所示,有一自动卸货矿车,满载时的质量 15 15. 为 M ,从与水平倾角 α = 30° 斜面上的点 A 由静 止下滑。设斜面对车的阻力为车重的 0.25 倍, 矿 车下滑距离 l 时,矿车与缓冲弹簧一道沿斜面运 动。当矿车使弹簧产生最大压缩形变时,矿车自 动卸货, 然后矿车借助弹簧的弹性力作用, 使之返回原位置 A 在装货。试问要完成这 一过程,空载时车的质量与满载时车的质 量之比应为多大? . 半径为 R 的光滑半球状圆塔的顶点 A 16 16. 上,有一木块 m ,今使木块获得水平速度
大学物理学课后3第三章答案

题 3.8(a)图 (1) m1 , m2 和柱体的运动方程如下:
题 3.8(b)图
T2 m2 g m2a2
①
m1g T1 m1a1
②
T1R T2r J
③
式中 T1 T1,T2 T2 , a2 r , a1 R
而 由上式求得
J 1 MR 2 1 mr 2
∵
Fr N
N N
∴ 又∵
∴ ①
Fr
N
l1
l2 l1
F
J 1 mR 2 , 2
Fr R 2(l1 l2 ) F
J
mRl1
以 F 100 N 等代入上式,得
2 0.40 (0.50 0.75) 100 40 rad s2
0.20m, r =0.10m, m =4 kg, M =10 kg, m1 = m2 =2 kg,且开始时 m1 , m2 离地均为 h =2m.求: (1)柱体转动时的角加速度; (2)两侧细绳的张力.
解: 设 a1 , a2 和β分别为 m1 , m2 和柱体的加速度及角加速度,方向如图(如图 b).
习题 3
3.1 选择题
(1) 有两个力作用在一个有固定转轴的刚体上:
① 这两个力都平行于轴作用时,它们对轴的合力矩一定是零;
② 这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;
③ 当这两个力的合力为零时,它们对轴的合力矩也一定是零;
④ 当这两个力对轴的合力矩为零时,它们的合力也一定是零.
在
上
述
说
(5) 一圆盘正绕垂直于盘面的水平光滑固定轴 O 转动,如图射来两个质量相同,
大学物理教程第3章习题答案

⼤学物理教程第3章习题答案思考题3.1 什么是连续性⽅程?答:若以闭合表⾯内既⽆源,⼜⽆负源,则根据质量守恒,进⼊该闭合表⾯的净流量等于闭合表⾯内物质的增加率,应⽤在稳定流动的流管中,我们得到连续性⽅程:ρ1A1v1=ρ2A2v2。
其中,ρ为密度,假设它在截⾯积A处是均匀的;v为经过截⾯积A 处的平均速度(v与A垂直)。
若流体⼜是不可压缩的,连续性⽅程简化为A1v1=A2v2。
3.2 什么是伯努利⽅程?答:流体是稳定的,⾮黏性的,不可压缩的,伯努利⽅程给出同⼀流线任两点处的压强p,流速v,⾼度y满⾜p1+12ρv12+ρgy1= p2+12ρv22+ρgy2注意伯努利⽅程中每⼀项都是取的单位⾯积的内的量值。
⽅程指出:压⼒沿流线所作的功等于动能和势能的改变(都指单位⾯积)。
3.3 在定常流动中,流体是否可能加速运动?答:定常流动是指宏观上流体在空间某位置的流速保持不变,对某个流体质点⽽⾔,它在空间各点速度可能不同,也就是说,它可能是加速运动。
3.4 从⽔龙头徐徐流出的⽔流,下落时逐渐变细,为什么?答:据连续性原理知,,流速⼤处截⾯积⼩,所以下落时⽔的流速逐渐增⼤,⾯积逐渐减少变细。
3.5 两船平⾏前进时,若靠的较近,极易碰撞,为什么?答:两船平⾏前进时,两条流线⽅向相同,,如果靠的较近,两船之间的流速将⼤于两船外侧的流速,这样两船都将受到⼀个指向对⽅的⼀个压⼒的作⽤,极易造成两船碰撞,稍有晃动,流线重合,船体就会相撞。
3.6 两条流线不能相交,为什么?答:如果两条流线相交,那么焦点处就会出现两个速度,这个结论是错误的,所以两条流线不能相交。
3.7 层流和湍流各有什么特点?引⼊雷诺数有哪些意义?答:流线是相互平⾏的流动称层流。
流体微团作复杂的⽆规则的运动称为湍流。
⽆量纲的量雷诺数是层流向湍流过渡的⼀种标志。
以临界雷诺数为准,⼩于它为层流,⼤于它为湍流。
习题3.1若被测容器A 内⽔的压强⽐⼤⽓压⼤很多时,可⽤图中的⽔银压强计。
(完整版)大学物理学(课后答案)第3章

第3章动量守恒定律和能量守恒定律习题一选择题3-1 以下说法正确的是[ ](A)大力的冲量一定比小力的冲量大(B)小力的冲量有可能比大力的冲量大(C)速度大的物体动量一定大(D)质量大的物体动量一定大解析:物体的质量与速度的乘积为动量,描述力的时间累积作用的物理量是冲量,因此答案A、C、D均不正确,选B。
3-2 质量为m的铁锤铅直向下打在桩上而静止,设打击时间为t∆,打击前锤的速率为v,则打击时铁捶受到的合力大小应为[ ](A)mvmgt+∆(B)mg(C)mvmgt-∆(D)mvt∆解析:由动量定理可知,F t p mv∆=∆=,所以mvFt=∆,选D。
3-3 作匀速圆周运动的物体运动一周后回到原处,这一周期内物体[ ] (A)动量守恒,合外力为零(B)动量守恒,合外力不为零(C)动量变化为零,合外力不为零, 合外力的冲量为零(D)动量变化为零,合外力为零解析:作匀速圆周运动的物体运动一周过程中,速度的方向始终在改变,因此动量并不守恒,只是在这一过程的始末动量变化为零,合外力的冲量为零。
由于作匀速圆周运动,因此合外力不为零。
答案选C。
3-4 如图3-4所示,14圆弧轨道(质量为M)与水平面光滑接触,一物体(质量为m)自轨道顶端滑下,M与m间有摩擦,则[ ](A )M 与m 组成系统的总动量及水平方向动量都守恒,M 、m 与地组成的系统机械能守恒(B )M 与m 组成的系统动量不守恒, 水平方向动量守恒,M 、m 与地组成的系统机械能不守恒(C )M 与m 组成的系统动量不守恒, 水平方向动量不守恒,M 、m 与地组成的系统机械能守恒(D )M 与m 组成系统的总动量及水平方向动量都守恒,M 、m 与地组成的系统机械能不守恒解析:M 与m 组成的系统在水平方向上不受外力,在竖直方向上有外力作用,因此系统水平方向动量守恒,总动量不守恒,。
由于M 与m 间有摩擦,m 自轨道顶端滑下过程中摩擦力做功,机械能转化成其它形式的能量,系统机械能不守恒。
大学物理第三章部分答案知识讲解

大学物理第三章部分答案知识讲解大学物理第三章部分答案大学物理部分课后题参考答案第三章动量守恒定律和能量守恒定律选择题:3.15—3.19 A A D D C计算题:3.24 A 、B 两船在平静的湖面上平行逆向航行,当两船擦肩相遇时,两船各自向对方平稳地传递50kg 的重物,结果是A 船停了下来,而B 船以3.4m/s 的速度继续向前驶去。
A 、B 两船原有质量分别为0.5?103kg 和1.0?103kg ,求在传递重物前两船的速度。
(忽略水对船的阻力)解:(1)对于A 船及抛出的重物和B 船抛来的重物组成的系统,因无外力(水对船的阻力已忽略),系统动量守恒设A 船抛出重物前的速度大小为v A 、B 船抛出重物前的速度大小为v B ,两船抛出的重物的质量均为m .则动量守恒式为,0B A A A =+-mv mv v m (1)(2)对于B 船及抛出的重物和A 船抛来的重物组成的系统,因无外力(水对船的阻力已忽略),系统动量守恒设B 船抛出重物后的速度大小为V B ,则动量守恒式为,B B A B B B V m mv mv v m =+- (2)联立(1)、(2)式并代入kg 105.03A ?=m 、kg 100.13B ?=m 、kg 50=m 、m /s 4.3B =V 可得 m/s 4.0))((2B A B B A -=----=m m m m m mV m v3.38用铁锤把钉子敲入墙面木板。
设木板对钉子的阻力与钉子进入木板的深度成正比。
若第一次敲击,能把钉子钉入木板m1000.12-?,第二次敲击时,保持第一次敲击钉子的速度,那么第二次能把钉子钉入多深?解:因阻力与深度成正比,则有F = kx (k 为阻力系数)。
现令x 0 = 1.00?10-2 m ,第二次钉入的深度为x ?,由于钉子两次所作功相等,可得+=x x x x x kx x kx 000d d 0m 1041.02-?=?x。
大学物理学3章习题解答

3章79页]3-4 质量为m 的小球与桌面相碰撞,碰撞前、后小球的速率都是v ,入射方向和出射方向与桌面法线的夹角都是α,如图3-3所示。
若小球与桌面作用的时间为δt ,求小球对桌面的平均冲力。
解 设桌面对小球的平均冲力为f ,并建立如图所示的坐标系,根据动量定理,对于小球可列出,.由第一个方程式可以求得,由第二个方程式可以求得.根据牛顿第三定律,小球对桌面的平均冲力为,负号表示小球对桌面的平均冲力沿y 轴的负方向。
.3-7 求一个半径为r 的半圆形均匀薄板的质心。
解 将坐标原点取在半圆形薄板的圆心上,并建立如图3-5所示的坐标系。
在这种情况下,质心c 必定处于y 轴上,即,.质量元是取在y 处的长条,如图所示。
长条的宽度为d y ,长度为2x 。
根据圆方程,故有.如果薄板的质量密度为σ,则有图3-3 图3-5.令, 则,对上式作变量变换,并积分,得...3-10 如图3-9所示,一个质量为1.240 kg 的木块与一个处于平衡位置的轻弹簧的一端相接触,它们静止地处于光滑的水平桌面上。
一个质量为10.0 g 的子弹沿水平方向飞行并射进木块,受到子弹撞击的木块将弹簧压缩了2.0 cm 。
如果轻弹簧的劲度系数为2000 n ⋅m -1 ,求子弹撞击木块的速率。
解 设木块的质量为m ;子弹的质量为m ,速度为v ;碰撞后的共同速度为v 。
此类问题一般分两步处理:第一步是子弹与木块作完全非弹性碰撞,第二步是子弹在木块内以共同的速度压缩弹簧。
第一步遵从动量守恒,故有. (1)第二步是动能与弹力势能之间的转换,遵从机械能守恒,于是有. (2)有式(2)解得.将v 值代入式(1),就可求得子弹撞击木块的速率,为.3-11 质量为5.0 g 的子弹以500 m ⋅s -1 的速率沿水平方向射入静止放置在水平桌面上的质量为1245 g 的木块内。
木块受冲击后沿桌面滑动了510 cm 。
求木块与桌面之间的摩擦系数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 刚体力学3-1 一通风机的转动部分以初角速度ω0绕其轴转动,空气的阻力矩与角速度成正比,比例系数C 为一常量。
若转动部分对其轴的转动惯量为J ,问:(1)经过多少时间后其转动角速度减少为初角速度的一半?(2)在此时间内共转过多少转? 解:(1)由题可知:阻力矩ωC M -=,又因为转动定理 dtd JJ M ωβ== dtd JC ωω=-∴ dt JC d t ⎰⎰-=∴00ωωωω t JC-=0lnωω t JCe-=0ωω当021ωω=时,2ln CJt =。
(2)角位移⎰=tdt 0ωθ⎰-=2ln 00C Jt JC dt eωCJ 021ω=,所以,此时间内转过的圈数为CJ n πωπθ420==。
3-2 质量为M ,半径为R 的均匀圆柱体放在粗糙的斜面上,斜面倾角为α ,圆柱体的外面绕有轻绳,绳子跨过一个很轻的滑轮,且圆柱体和滑轮间的绳子与斜面平行,如本题图所示,求被悬挂物体的加速度及绳中张力解:由牛顿第二定律和转动定律得ma T mg =-ααJ R Mg TR =-.sin 2由平行轴定理 223MR J =联立解得 g m M M m a 83sin 48+-=αmg mM MT 83)sin 43(++=α3-3 一平板质量M 1,受水平力F 的作用,沿水平面运动,如本题图所示,板与平面间的摩擦系数为μ,在板上放一质量为M 2的实心圆柱体,此圆柱体在板上只滚动而不滑动,求板的加速度。
解:设平板的加速度为a 。
该平板水平方向受到拉力F 、平面施加的摩擦力1f 和圆柱体施加的摩擦力2f ,根据牛顿定律有,a M f f F 121=--。
m g设圆柱体的质心加速度为C a ,则C a M f 22=遵守转动定理,ββ22221R M J R f ==又因为圆柱体无滑滚动 βR a a C += 且 g M M f )(211+=μ解以上各方程得 212131)(M M gM M F a ++-=μ3-4 质量面密度为σ的均匀矩形板,试证其对与板面垂直的,通过几何中心的轴线的转动惯量为)(1222b a ab J +σ=。
其中a ,b 为矩形板的长,宽。
证明一:如图,在板上取一质元dxdy dm σ=,对与板面垂直的、通过几何中心的轴线的转动惯量为 dm r dJ ⎰=2dxdy y x a a b b σ⎰⎰--+=222222)()(1222b a ab +=σ证明二:如图,在板上取一细棒bdx dm σ=,对通过细棒中心与棒垂直的转动轴的转动惯量为2121b dm ⋅,根据平行轴定理,对与板面垂直的、通过几何中心的轴线的转动惯量为22)2(121x adm b dm dJ -+⋅=dx xab dx b 23)2(121-+=σσ 33121121ba a b dJ J σσ+==∴⎰)(1222b a ab +=σ3-5 质量为m 1和m 2的两物体A 、B 分别悬挂在如本题图所示的组合轮两端。
设两轮的半径分别为R 和r ,两轮的转动惯量分别为J 1和J 2,轮与轴承间的摩擦力略去不计,绳的质量也略去不计。
试求两物体的加速度和绳中的张力。
解:分别对两物体做如图的受力分析。
根据牛顿定律,有1111a m T g m =- a m g m T 222=-习题3-3图又因为组合轮的转动惯量是两轮惯量之和,根据转动定理有α)(2121J J r T R T +=-而且,αR a =1,αr a =2,gR r m R m J J rm R m a 222121211+++-=∴gr r m R m J J rm R m a 222121212+++-=g m r m R m J J Rrm r m J J T 1222121222211++++++=g m rm R m J J Rrm R m J J T 2222121121212++++++= 3-6 如本题图所示装置,定滑轮的半径为r ,绕转轴的转动惯量为J ,滑轮两边分别悬挂质量为m 1和m 2的物体A 、B 。
A 置于倾角为θ的斜面上,它和斜面间的摩擦因数为μ。
若B 向下作加速运动时,求:(1)其下落加速度的大小;(2)滑轮两边绳子的张力。
(设绳的质量及伸长均不计,绳与滑轮间无滑动,滑轮轴光滑) 解:A 、B 物体的受力分析如图。
根据牛顿定律有 1111sin a m f g m T =--θ2222a m T g m =-对滑轮而言,根据转动定律有 αJ r T r T =-12由于绳子不可伸长、绳与轮之间无滑动,则 αr a a ==21 22111221cos sin rJ m m g m g m g m a a ++--==∴θμθ 22121211)cos (sin )cos sin 1(r J m m r J g m g m m T ++++++=θμθθμθ 22122212)cos sin 1(r J m m r J g m g m m T +++++=θμθ 3-7 如本题图所示,质量为M 长为L 的均匀直杆可绕过端点o 的水平轴转动,一质量为m 的质点以水平速度v 与静止杆的下端发生碰撞,如图示,若M =6m ,求质点与杆分别作完全弹性碰撞和完全非弹性碰撞后杆的角速度大小。
gg22a 2解:(1)质点与杆完全弹性碰撞,则能量守恒2122212121mv J mv +=ω 又因为角动量守恒 ωJ L m v L m v +=1且 231ML J =,m M 6=Lv32=∴ω(2) 完全非弹性碰撞,角动量守恒 ωJ L m v L m v +=2 又 L v ω=2 Lv3=∴ω 3-8 一半径为R 、质量为m 的匀质圆盘,以角速度ω绕其中心轴转动,现将它平放在一水平板上,盘与板表面的摩擦因数为μ。
(1)求圆盘所受的摩擦力矩。
(2)问经过多少时间后,圆盘转动才能停止? 解:(1)如图,在圆盘上距盘心r 处取宽度为dr 的圆环为微元,该圆环所受的摩擦力与半径垂直,所以摩擦力矩f d r M d⨯=沿转动轴方向,且rdf dM = g dm r )(μ=g rdr R mr )2(2ππμ=⎰=∴dM M⎰=R dr r Rmg 0222μ mgR μ32=(2)圆盘角动量 221mR J =转动定理 dt d J J M ωβ-=-=t JM -=-∴ω0 gRM J t μωω43==∴ 3-9 一质量为M ,半径为R ,并以角速度ω旋转着的飞轮(可看做均质圆盘),在某一瞬间突然有一质量为m 的碎片从轮的边缘飞出,如本题图所示。
假定碎片脱离飞轮时的瞬时速度方向正好竖直向上,求:(1)碎片所能上升的高度;(2)余下部分的角动量。
习题3-7图解:(1)碎块抛出时的初速度为 R v ω=0竖直上抛能达到的高度 gR g v h 222220ω== (2)圆盘裂开过程中角动量守恒,设裂开前圆盘角动量为0L ,碎块角动量为L ',余下部分角动量为L ,则L L L '-=0。
ωω2021MR J L == ω2mR L ='ω2)21(R m M L -=∴3-10如本题图所示,半径分别为r 1、r 2的两个薄伞形轮I 和Ⅱ,它们各自对通过盘心且垂直盘面转轴的转动惯量为J 1和J 2。
开始时轮Ⅰ以角速度ω0转动,问与轮Ⅱ成正交啮合后,两轮的角速度分别为多大?解:设相互作用力为F ,啮合时间为t ∆,根据角动量定理有 )(0111ωω-=∆-J t Fr 222ωJ t Fr =∆啮合后两轮具有相同的线速度,即 2211ωωr r =21222122011r J r J r J +=∴ωω, 21222121012r J r J r r J +=ωω 3-11一质量为20.0kg 的小孩,站在一半径为3.0m 、转动惯量为450kg·m 2的静止水平转台的边缘上,此转台可绕通过转台中心的竖直轴转动,转台与轴间的摩擦不计。
如果此小孩相对转台以1.0m/s 的速率沿转台边缘行走,问转台的角速率有多大? 解:小孩相对转台的角速度 Rv =1ω 小孩相对地面的角速度 10ωωω+=,其中0ω是转台相对地面的角速度。
根据角动量守恒定律有 0100=+ωωJ J ,其中0J 、1J 分别是转台和小孩对转台中心轴的转动惯量,21mR J =习题3-9图习题3-10图1220201052.9--⨯-=+-=∴S Rv mR J mR ω 其中符号表示转台转动方向与小孩对地面的转动方向相反。
3-12一质量为1.12 kg ,长为1.0m 的均匀细棒,支点在棒的上端点,开始时棒自由悬挂。
以100N 的力打击它的下端点,打击时间为0.02s 。
(1)若打击前棒是静止的,求打击时其角动量的变化;(2)棒的最大偏转角。
解:(1)角动量定理 t Fl Mdt L ∆==∆⎰120.2-⋅⋅=s m kg(2)设棒的偏转角度为θ,选取棒的上端点即支点为势能零点。
转动过程中系统机械能守恒,即)cos 1(21212θω-=mgl J 又 ωωωJ J L =-=∆)(0 ,231ml J =8388)31arccos(222'=∆-=∴glm t F θ 3-13如本题图所示,A 与B 两飞轮的轴杆由摩擦啮合器连接,A 轮的转动惯量J 1=10.0kg·m 2,开始时B 轮静止,A 轮以n 1=600r/min 的转速转动,然后使A 与B 连接,因而B 轮得到加速而A 轮减速,直到两轮的转速都等于n=200r/min 为止。
求:(1)B 轮的转动惯量;(2)在啮合过程中损失的机械能。
解:(1)取两飞轮为系统,啮合过程中系统角动量守恒,即22111)(ωωJ J J +=112n πω=222n πω=所以B 轮的转动惯量为 2122120.20m kg J n n n J ⋅=-= (2)啮合过程中系统机械能变化J J J J E 421122211032.121)(21⨯-=-+=∆ωω 3-14一质量为m 、半径为R 的匀质圆柱体,从倾角为θ的斜面上无滑动地滚下,求其质心的加速度。
解:如图建立坐标系并对圆柱体受力分析。
牛顿第二定律 C ma f mg =-θsin 转动定律 ββ221mR J fR == 无滑滚动 βR a C =习题3-13图θsin 32g a C =∴ 3-15一长为l 、质量为m 的均匀细棒,在光滑的平面上绕质心作无滑动的转动,其角速度为ω。
若棒突然改绕其一端转动,求:(1)以端点为转轴的角速度;(2)在此过程中转动动能的改变。
解:(1)质心在变轴转动中受到一瞬间力的作用,设平均力为F ,根据动量定理有C C mv v v m t F =-=∆)(0角动量定理 )(2ωω-'=∆-J t lF又 ω'=2l v C ,2121ml J =ωωω41412=+='∴ml J J(2)转动动能改变 222121ωωJ J E K -''=∆231ml J ='ω2321ml E K -=∆∴3-16一长为2L 的均匀细杆,一端靠墙上,另一端放在的水平地板上,如本题图所示,所有的摩擦均可略去不计,开始时细杆静止并与地板成θ0角,当松开细杆后,细杆开始滑下。