习题解答大学物理第7章习题
大学物理第7章静电场中的导体和电介质课后习题及答案

1第7章 静电场中的导体和电介质 习题及答案1. 半径分别为R 和r 的两个导体球,相距甚远。
用细导线连接两球并使它带电,电荷面密度分别为1s 和2s 。
忽略两个导体球的静电相互作用和细导线上电荷对导体球上电荷分布的影响。
试证明:Rr =21s s。
证明:因为两球相距甚远,半径为R 的导体球在半径为r 的导体球上产生的电势忽略不计,半径为r 的导体球在半径为R 的导体球上产生的电势忽略不计,所以的导体球上产生的电势忽略不计,所以半径为R 的导体球的电势为的导体球的电势为R R V 0211π4e p s =014e s R =半径为r 的导体球的电势为的导体球的电势为r r V 0222π4e p s =024e s r = 用细导线连接两球,有21V V =,所以,所以Rr=21s s 2. 证明:对于两个无限大的平行平面带电导体板来说,证明:对于两个无限大的平行平面带电导体板来说,(1)(1)(1)相向的两面上,电荷的面密度总是相向的两面上,电荷的面密度总是大小相等而符号相反;大小相等而符号相反;(2)(2)(2)相背的两面上,电荷的面密度总是大小相等而符号相同。
相背的两面上,电荷的面密度总是大小相等而符号相同。
相背的两面上,电荷的面密度总是大小相等而符号相同。
证明: 如图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1s ,2s ,3s ,4s (1)取与平面垂直且底面分别在A 、B 内部的闭合圆柱面为高斯面,由高斯定理得内部的闭合圆柱面为高斯面,由高斯定理得S S d E SD +==×ò)(10320s s e故+2s 03=s上式说明相向两面上电荷面密度大小相等、符号相反。
上式说明相向两面上电荷面密度大小相等、符号相反。
(2)在A 内部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即电平面产生的场强叠加而成的,即0222204030201=---e s e s e s e s又+2s 03=s 故 1s 4s =3. 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量。
第7章习题解答

习 题7-1为什么一般矩形波导测量线的槽开在波导宽壁的中线上?答:因为矩形波导一般工作于10TE 模,由10TE 模的管壁电流知,在矩形波导宽壁中线处只有纵向电流,因此沿波导宽壁的中线开槽不会切断高频电流的通路,不会破坏波导内的场结构,也不会引起波导内的电磁波向外辐射能量。
7-2 推导矩形波导中mn TE 波的场量表达式。
7-3 已知空气填充的矩形波导截面尺寸为21023mm b a ⨯=⨯,求工作波长mm 20=λ时,波导中能传输哪些模式?mm 30=λ时呢? 解:矩形波导的截止波长22c 2⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=b n a m πππλ当0,1==n m 时,mm a C 462==λ,1,0==n m 时,mm b C 202==λ, 0,2==n m 时,mm a C 23==λ, 1,1==n m 时,mm b a 34.181********222c =⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=πππλ满足电磁波在波导中传播条件c λλ<的模式有10TE 、01TE ;当mm 30=λ时,只能传输10TE 模。
7-4 已知空气填充的矩形波导截面尺寸为248cm b a ⨯=⨯,当工作频率GHz 5=f 时,求波导中能传输哪些模式?若波导中填充介质,传输模式有无变化?为什么?解: cm f C 6105103910=⨯⨯==λ,矩形波导的截止波长22c 2⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=b n a m πππλ,当0,1==n m 时,cm a C 162==λ,1,0==n m 时,cm b C 82==λ, 0,2==n m 时,cm a C 8==λ, 2,0==n m 时,cm b C 4==λ 1,1==n m 时,mm b a 15.74181222222c =⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=πππλ满足电磁波在波导中传播条件c λλ<的模式有10TE 、01TE 、20TE 、11TE 、11TM ; 若波导中填充介质,工作波长变短,所以传输模式增多。
习题解答---大学物理第7章习题--2

专业班级_____ ________学号________第七章静电场中的导体和电介质一、选择题:1,在带电体A旁有一不带电的导体壳B,C为导体壳空腔的一点,如下图所示。
则由静电屏蔽可知:[ B ](A)带电体A在C点产生的电场强度为零;(B)带电体A与导体壳B的外表面的感应电荷在C点所产生的合电场强度为零;(C)带电体A与导体壳B的表面的感应电荷在C点所产生的合电场强度为零;(D)导体壳B的、外表面的感应电荷在C点产生的合电场强度为零。
解答单一就带电体A来说,它在C点产生的电场强度是不为零的。
对于不带电的导体壳B,由于它在带电体A这次,所以有感应电荷且只分布在外表面上(因其部没有带电体)此感应电荷也是要在C点产生电场强度的。
由导体的静电屏蔽现象,导体壳空腔C点的合电场强度为零,故选(B)。
2,在一孤立导体球壳,如果在偏离球心处放一点电荷+q,则在球壳、外表面上将出现感应电荷,其分布情况为 [ B ](A)球壳表面分布均匀,外表面也均匀;(B)球壳表面分布不均匀,外表面均匀;(C)球壳表面分布均匀,外表面不均匀;(D)球壳的、外表面分布都不均匀。
解答 由于静电感应,球壳表面感应-q ,而外表面感应+q ,由于静电屏蔽,球壳部的点电荷+q 和表面的感应电荷不影响球壳外的电场,外表面的是球面,因此外表面的感应电荷均匀分布,如图11-7所示。
故选(B )。
3. 当一个带电导体达到静电平衡时:[ D ](A) 表面上电荷密度较大处电势较高 (B) 表面曲率较大处电势较高。
(C)导体部的电势比导体表面的电势高。
(D)导体任一点与其表面上任一点的电势差等于零。
4. 如图示为一均匀带电球体,总电量为+Q ,其外部同心地罩一、外半径分别为r 1、r 2的金属球壳、设无穷远处为电势零点,则在球壳半径为r 的P 点处的场强和电势为: [ D ](A )E=r Q U r Q 0204,4πεπε=(B )E=0,104r Q U πε= (C )E=0,rQ U 04πε=(D )E=0,204r Q U πε=5. 关于高斯定理,下列说法中哪一个是正确的? [ C ](A )高斯面不包围自由电荷,则面上各点电位移矢量D为零。
(完整版)大学物理学(课后答案)第7章

第七章课后习题解答一、选择题7-1 处于平衡状态的一瓶氦气和一瓶氮气的分子数密度相同,分子的平均平动动能也相同,则它们[ ](A) 温度,压强均不相同 (B) 温度相同,但氦气压强大于氮气的压强 (C) 温度,压强都相同 (D) 温度相同,但氦气压强小于氮气的压强分析:理想气体分子的平均平动动能32k kT ε=,仅与温度有关,因此当氦气和氮气的平均平动动能相同时,温度也相同。
又由理想气体的压强公式p nkT =,当两者分子数密度相同时,它们压强也相同。
故选(C )。
7-2 理想气体处于平衡状态,设温度为T ,气体分子的自由度为i ,则每个气体分子所具有的[ ](A) 动能为2i kT (B) 动能为2iRT(C) 平均动能为2i kT (D) 平均平动动能为2iRT分析:由理想气体分子的的平均平动动能32k kT ε=和理想气体分子的的平均动能2ikT ε=,故选择(C )。
7-3 三个容器A 、B 、C 中装有同种理想气体,其分子数密度n 相同,而方均根速率之比为()()()1/21/21/222::2A B Cv v v =1:2:4,则其压强之比为A B C p :p :p[ ](A) 1:2:4 (B) 1:4:8 (C) 1:4:16 (D) 4:2:1=,又由物态方程p nkT =,所以当三容器中得分子数密度相同时,得123123::::1:4:16p p p T T T ==。
故选择(C )。
7-4 图7-4中两条曲线分别表示在相同温度下氧气和氢气分子的速率分布曲线。
如果()2p O v 和()2p H v 分别表示氧气和氢气的最概然速率,则[ ](A) 图中a 表示氧气分子的速率分布曲线且()()22p p O H /4v v =(B) 图中a 表示氧气分子的速率分布曲线且()()22p p O H /1/4v v =(C) 图中b 表示氧气分子的速率分布曲线且()()22p p O H /1/4v v =(D) 图中b 表示氧气分子的速率分布曲线且()()22p p O H /4v v =分析:在温度相同的情况下,由最概然速率公式p ν=质量22H O M M <,可知氢气的最概然速率大于氧气的最概然速率,故曲线a 对应于氧分子的速率分布曲线。
大学物理学第版 修订版北京邮电大学出版社上册第七章习题答案

习 题 77.1选择题(1) 容器中贮有一定量的理想气体,气体分子的质量为m ,当温度为T 时,根据理想气体的分子模型和统计假设,分子速度在x 方向的分量平方的平均值是:(A) 2x υ=. (B) 2x υ= [ ](C) 23x kT m υ=. (D) 2x kTmυ= . [答案:D 。
2222x y z υυυυ=++, 222213xy z υυυυ===,23kTmυ=。
] (2) 一瓶氦气和一瓶氮气的密度相同,分子平均平动动能相同,而且都处于平衡状态,则它们 [ ] (A) 温度相同、压强相同. (B) 温度、压强都不相同. (C) 温度相同,但氦气的压强大于氮气的压强. (D) 温度相同,但氦气的压强小于氮气的压强.[答案:C 。
由32w kT =,w w =氦氮,得T 氦=T 氮 ; 由molpM RTρ=,ρρ=氦氮,T 氦=T 氮 ,而M M <mol 氦mol 氮,故p p >氦氮。
](3) 在标准状态下,氧气和氦气体积比为V 1 /V 2=1/2,都视为刚性分子理想气体,则其内能之比E 1 / E 2为: [ ] (A) 3 / 10. (B) 1 / 2. (C) 5 / 6. (D) 5 / 3.[答案:C 。
由2mol M i E RT M =2ipV =,得111112222256E i pV i V E i pV i V ==⋅=。
](4) 一定质量的理想气体的内能E 随体积V 的变化关系为一直线,其延长线过E ~V 图的原点,题7.1图所示,则此直线表示的过程为: [ ] (A) 等温过程. (B) 等压过程. (C) 等体过程. (D) 绝热过程.[答案:B 。
由图得E =kV , 而2i E pV =,i 不变,2ik p =为一常数。
] (5) 在恒定不变的压强下,气体分子的平均碰撞频率Z 与气体的热力学温度T 的关系为 [ ](A) Z 与T 无关. (B).Z 与T 成正比 .(C) Z 与T 成反比. (D) Z 与T 成正比.[答案:C。
第7章 稳恒磁场习题解答

第7章 稳恒磁场7-1 如图,一个处在真空中的弓形平面载流线圈acba ,acb 为半径cm 2=R 的圆弧,ab 为圆弧对应的弦,圆心角090aob ∠=,A 40=I ,试求圆心O 点的磁感应强度的大小和方向。
解 由例7-1 线段ba 的磁感应强度 o o 40140(cos45-cos135) =410T4π0.02cos45B μ-=⨯⨯︒方向垂直纸面向外。
由例7-2 圆弧acb 的磁感应强度4002π1402 3.1410T 2π2420.02I μB R μ-==⨯=⨯方向垂直纸面向内。
4120.8610TB B B -=-=⨯方向垂直纸面向外。
7-2 将载流长直导线弯成如图所示的形状,求圆心O 点处磁感应强度。
解 如图,将导线分成1(左侧导线)、2(半圆导线)、3(右侧导线)三部分,设各部分在O 点处产生的磁感应强度分别为1B 、2B 、3B 。
根据叠加原理可知,O 点处磁感应强度321B B B B++=。
01=B024I B Rμ=,方向垂直于纸面向里034πI B Rμ=,方向垂直于纸面向里O 点处磁感应强度大小为习题7-1图0O 23(1π)4πIB B B Rμ=+=+ ,方向垂直于纸面向里。
7-3 一圆形载流导线圆心处的磁感应强度为1B ,若保持导线中的电流强度不变,而将导线变成正方形,此时回路中心处的磁感应强度为2B ,试求21:B B解 设导线长度为l ,为圆环时, 2πl R = 001π2I I B R l μμ==为正方形时,边长为4l,由例7-100024(cos 45cos135)4π8IB lμ=⨯-=⨯212 :πB B =7-4 如图所示,一宽为a 的薄长金属板,均匀地分布电流I ,试求在薄板所在平面、距板的一边为a 的点P 处的磁感应强度。
解 取解用图示电流元,其宽度为d r ,距板下边缘距离为r ,其在P 点处激发的磁感应强度大小为00d d d 2π22π(2)II r B (a r)a r aμμ==--,方向垂直于纸面向外。
《大学物理》第二版课后习题答案第七章

习题精解7-1一条无限长直导线在一处弯折成半径为R 的圆弧,如图所示,若已知导线中电流强度为I,试利用比奥—萨伐尔定律求:(1)当圆弧为半圆周时,圆心O 处的磁感应强度;(2)当圆弧为1/4圆周时,圆心O 处的磁感应强度。
解(1)如图所示,圆心O 处的磁感应强度可看作由3段载流导线的磁场叠加而成。
因为圆心O 位于直线电流AB 和DE 的延长线上,直线电流上的任一电流元在O 点产生的磁感应强度均为零,所以直线电流AB 和DE 段在O 点不产生磁场。
根据比奥—萨伐尔定律,半圆弧上任一电流元在O 点产生的磁感应强度为 024IdldB R μπ=方向垂直纸面向内。
半圆弧在O 点产生的磁感应强度为 00022444RIIdl I B R R R Rπμμμπππ===⎰方向垂直纸面向里。
(2)如图(b )所示,同理,圆心O 处的磁感应强度可看作由3段载流导线的磁场叠加而成。
因为圆心O 位于电流AB 和DE 的延长线上,直线电流上的任一电流元在O 点产生的磁感应强度均为零,所以直线电流AB 和DE 段在O 点不产生磁场。
根据毕奥—萨伐尔定理,1/4圆弧上任一电流元在O 点产生的磁感应强度为 024Idl dB R μπ=方向垂直纸面向内,1/4圆弧电流在O 点产生的磁感应强度为0002224428RIIdl I R B R R Rπμμμπππ===⎰方向垂直纸面向里。
如图所示,有一被折成直角的无限长直导线有20A 电流,P 点在折线的延长线上,设a 为,试求P 点磁感应强度。
解 P 点的磁感应强度可看作由两段载流直导线AB 和BC 所产生的磁场叠加而成。
AB 段在P 点所产生的磁感应强度为零,BC 段在P 点所产生的磁感应强度为0120(cos cos )4IB r μθθπ=- 式中120,,2r a πθθπ=== 。
所以500(cos cos ) 4.010()42I B T a μπππ=-=⨯ 方向垂直纸面向里。
(完整版)大学物理学(课后答案)第7章

第七章课后习题解答一、选择题7-1处于平衡状态的一瓶氦气和一瓶氮气的分子数密度相同,分子的平均平动动能也相同,则它们[ ](A) 温度,压强均不相同 (B) 温度相同,但氦气压强大于氮气的压强(C) 温度,压强都相同 (D) 温度相同,但氦气压强小于氮气的压强分析:理想气体分子的平均平动动能,仅与温度有关,因此当氦气和32k kTε=氮气的平均平动动能相同时,温度也相同。
又由理想气体的压强公式,p nkT =当两者分子数密度相同时,它们压强也相同。
故选(C )。
7-2 理想气体处于平衡状态,设温度为T ,气体分子的自由度为i ,则每个气体分子所具有的[ ](A) 动能为(B) 动能为2ikT 2iRT(C) 平均动能为(D) 平均平动动能为2ikT 2iRT分析:由理想气体分子的的平均平动动能和理想气体分子的的平均动32k kT ε=能,故选择(C )。
2ikT ε=7-3 三个容器A 、B 、C 中装有同种理想气体,其分子数密度n 相同,而方均根速率之比为,则其压强之比为 [ ]()()()1/21/21/222::2A B Cvv v =1:2:4A B C p :p :p (A)(B)(C)(D) 1:2:41:4:81:4:164:2:1,又由物态方程,所以当三=p nkT =容器中得分子数密度相同时,得。
故选择(C )。
123123::::1:4:16p p p T T T ==7-4 图7-4中两条曲线分别表示在相同温度下氧气和氢气分子的速率分布曲线。
如果和分别表示氧气和氢气的最概然速率,则[ ]()2p O v ()2p H vh(A) 图中a 表示氧气分子的速率分布曲线且()()22p p O H /4v v =(B) 图中a 表示氧气分子的速率分布曲线且()()22p p O H /1/4v v =(C) 图中b 表示氧气分子的速率分布曲线且()()22p p O H /1/4v v =(D) 图中b 表示氧气分子的速率分布曲线且()()22p p O H /4v v =分析:在温度相同的情况下,由最概然速率公式p ν=尔质量,可知氢气的最概然速率大于氧气的最概然速率,故曲线对22H O M M <a 应于氧分子的速率分布曲线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专业班级_____ 姓名________学号________ 第七章静电场中的导体和电介质一、选择题:1,在带电体A旁有一不带电的导体壳B,C为导体壳空腔内的一点,如下图所示。
则由静电屏蔽可知:[ B ](A)带电体A在C点产生的电场强度为零;(B)带电体A与导体壳B的外表面的感应电荷在C点所产生的合电场强度为零;(C)带电体A与导体壳B的内表面的感应电荷在C点所产生的合电场强度为零;(D)导体壳B的内、外表面的感应电荷在C点产生的合电场强度为零。
解答单一就带电体A来说,它在C点产生的电场强度是不为零的。
对于不带电的导体壳B,由于它在带电体A这次,所以有感应电荷且只分布在外表面上(因其内部没有带电体)此感应电荷也是要在C点产生电场强度的。
由导体的静电屏蔽现象,导体壳空腔内C点的合电场强度为零,故选(B)。
2,在一孤立导体球壳内,如果在偏离球心处放一点电荷+q,则在球壳内、外表面上将出现感应电荷,其分布情况为 [ B ](A)球壳内表面分布均匀,外表面也均匀;(B)球壳内表面分布不均匀,外表面均匀;(C)球壳内表面分布均匀,外表面不均匀;(D)球壳的内、外表面分布都不均匀。
解答由于静电感应,球壳内表面感应-q,而外表面感应+q,由于静电屏蔽,球壳内部的点电荷+q和内表面的感应电荷不影响球壳外的电场,外表面的是球面,因此外表面的感应电荷均匀分布,如图11-7所示。
故选(B )。
3. 当一个带电导体达到静电平衡时:[ D ](A) 表面上电荷密度较大处电势较高(B) 表面曲率较大处电势较高。
(C)导体内部的电势比导体表面的电势高。
(D)导体内任一点与其表面上任一点的电势差等于零。
4. 如图示为一均匀带电球体,总电量为+Q ,其外部同心地罩一内、外半径分别为r 1、r 2的金属球壳、设无穷远处为电势零点,则在球壳内半径为r 的P 点处的场强和电势为: [ D ] (A )E=r Q U r Q 0204,4πεπε= (B )E=0,104r Q U πε= (C )E=0,r QU 04πε= (D )E=0,204r QU πε=5. 关于高斯定理,下列说法中哪一个是正确的? [ C ](A )高斯面内不包围自由电荷,则面上各点电位移矢量D 为零。
(B )高斯面上处处D 为零,则面内必不存在自由电荷。
(C )高斯面的D 通量仅与面内自由电荷有关。
(D )以上说法都不正确。
6, 如图所示,一带电量为q 、半径为A r 的金属球外,同心地套上一层内、外半径分别为Br 和C r ,相对介电常数为r ε的均匀电介质球壳。
球壳外为真空,则介质点()B C P r r r <<处的电场强度的大小为 [ A ]解答 均匀分布在导体球上的自由电荷q 激发的电场具有球对称性,均匀电介质球壳内、外表面上束缚电荷q ′均匀分布,所激发的电场也是球对称性的,故可用高斯定理求解。
通过p 点以r 为半径,在电介质球壳中作一同心高斯球面S ,应用电介质时的高斯定理,D i s dS qi ⋅=∑⎰,高斯面S 上的电位移通量为2()D r π,S 面内包围的自由电荷为iqi q =∑,有由,D E ε=两者方向相同,则电介质中p 点的电场强度不大小为r +Q P故选(A )7. 孤立金属球,带有电量1.2×10-8C,当电场强度的大小为3×106V/m 时,空气将被击穿,若要空气不被击穿,则金属球的半径至少大于 [ D ](A )3.6×10-2m (B )6.0×10-6m(C )3.6×10-5m (D )6.0×10-3m解答 204R qE πε=,代入参数可得答案D 。
8. 将一空气平行板电容器接到电源上充电到一定电压后,断开电源,再将一块与板面积相同的金属板平行地插入两极板之间,则由于金属板的插入及其所放位置的不同,对电容器储能的影响为:[ A ](A )储能减少,但与金属板位置无关。
(B )储能减少,且与金属板位置有关。
(C )储能增加,但与金属板位置无关。
(D )储能增加,且与金属板位置无关。
9. 两个完全相同的电容器C 1和C 2,串联后与电源连接,现将一各向同性均匀电介质板插入C 1中,则[D ](A )电容器组总电容减小。
(B )C 1上的电量大于C 2上的电量。
(C )C 1上的电压高于C 2上的电压。
(D )电容器组贮存的总能量增大。
解答:串联时:增大;不变,则增大,,故C C C C C C 2121111+=且U U U =+21不变。
故总能量增大221CU W e =。
10. 一空气平行板电容器,极板间距为d ,电容为C ,若在两板中间平行插入一块厚度为d/3的金属板,则其电容值变为 [ C ](A )C (B )2C/3(C )3C/2 (D )2C 11.C 1和C 2两个电容器,其上分别标明200pF (电容量)、500V (耐压值)和300pF 、900V ,把它们串连起来在两端加上1000V 电压,则 [ C ](A )C 1被击穿,C 2不被击穿。
(B )C 2被击穿,C 1不被击穿。
(C )两者都被击穿。
(D )两者都不被击穿。
12. 一空气平行板电容器充电后与电源断开,然后在两极板间充满某种各向同性,均匀电介质,则电场强度的大小E 、电容C 、电压U 、电场能量W四个量各自与充入介质前相比较,增大(↑)或减小(↓)的情形为:[ B ](A )E ↑,C ↑,U ↑,W ↑ (B )E ↓,C ↑,U ↓,W ↓(C )E ↓,C ↑,U ↑,W ↓ (D )E ↑,C ↓,U ↓,W ↑13.如果某带电体其电荷分布的体密度ρ增大为原来的2倍,则其电场的能量变为原来的[ C ](A )2倍 (B )1/2倍 (C )4倍 (D )1/4倍二、填空题:1.一带电量Q 的导体球,外面套一不带电的导体球壳(不与球接触),则球壳内表面上有电量Q 1= ,外表面上有电量Q 2= 。
-Q , +Q2.一孤立带电导体球,其表面处场强的方向 ;当把另一带电体放在这个导体球附近时,该导体球表面处场强的方向 。
垂直于导体表面,垂直于导体表面;3.将一负电荷从无穷远处移到一个不带电的导体附近,则导体内的电场强度 ,导体的电势 。
(填增大、不变、减小)不变,减小4.如下图所示,平行板电容器中充有各向同性均匀电介质,图中画出两组带有箭头的线分别表示电力线、电位移线,则其中(1) ,(2)为 。
(1)电位移线,(2)电场线5,一平行平板电容器两极板相距为d ,插入一块厚度为d/2的平板,如图所示。
(1)若平板是金属导体,则电容器电容增大为原来的 倍。
(2)若平板为均匀电介质,其相对介电常数为r ε,则电容器的电容增大为原来的 倍。
解答 设两极板带电荷面密度为σ±,先求电势差,再求电容。
(1)带电平面间电场强度大小为0E σε=,插入原为2d 的导体,其内部电场强度为零,则两极板间电势差为未插入导体时电容为0002,C=C Ss C d dεε=0插入后,则有=2C 。
-(2)插入原为2d 的电介质,00+22A B d d V V r σσεεε-=⋅,则021r rC C εε=+。
6.A 、B 为两个电容值都等于C 的电容器,已知A 带电量为Q ,B 带电量为2Q ,现将A 、B并联后,系统电场能量的增量△W= 。
CQ 427.一平行板电容器,充电后与电源保持联接,然后使两极间充满相对介电常数为εr 的各向同性均匀电介质,这时两极板上的电量是原来的 倍,电场强度是原来的 倍;电场能量是原来的 倍。
εr ,1,εr三、计算题:1.1.一空气球形电容器,内外半径为R 1和R 2,设内外球面带电量为分别+Q 和-Q 。
求(1)球形电容器r<R 1 、R 1<r<R 2和r>R 2三个区域的电场强度的大小;(2)求内外球面间的电势差U 12;(3)该球形电容器的电容C ;(4)该电容存储的电场能量;(5)若在两球面之间充满相对介电常数为εr 的各向同性均匀电介质,则电容值变为多少? 解答:(1)设内、外球壳分别带电荷为+Q 和-Q ,则两球壳间的电位移大小为场强大小为)4/(20r Q E r επε=,在空气中,1=r ε(2)内外球面的电势差为(3) 电容 12210124R R R R U Q C -==πε (4)电场能量 1221221021222R R U R R CU W r -==επε (5)在内外球面充满相对介电常数为r ε的电介质中,场强大小为)4/(20r Q E r επε=,内外球面的电势差为电容 12210124'R R R R U Q C r -==επε 或者:122104'R R R R C C r r -==επεε 2. 如图所示,,两块分别带有等量异号电荷的平行金属平板A 和B ,相距为d=5.0mm ,两板面积均为S=150 cm 2。
所带电量均为q=2.66×10-8C, A 板带正电并接地。
求:(1)B 板的电势;(2)A 、B 板间距A 板1.0mm 处的电势。
解答 A 板带电荷+q 且接地,即V A =0V ,B 板带电荷-q 。
按题设,不计边缘效应,两板上的电荷均匀分布,板间为均匀电场,其电场强度E 的方向由A 板指向B 板,而电场强度总是指向电势降落的方向,故V A >V B 。
已知两无限大带电的平行平面间的电场强度为已知/q s σ=,则有根据电场强度与电势为差的关系,有由上述两式,得统一单位,代入数据,得同理,在距A 板1mm 处的p 点电势,有即3.一空气平板电容器,极板面积为S ,板间距为d (d 远小于极板线度),设两极板带电量为分别+Q 和-Q ,忽略边缘效应求(1)两极板间的电场强度的大小;(2)两极板间间的电势差U 12;(3)该平板电容器的电容C ;(4)该电容存储的电场能量;(5)若在两极板之间充满相对介电常数为εr 的各向同性均匀电介质,则电容值变为多少? 解:(1)设极板上分别带电量+Q 和-Q ,距离为d ,忽略边缘效应,极板间产生均匀电场,)/(0S Q E ε=方向为由带+Q 的极板指向带-Q 的极板极板外侧0'=E(2)两极板间的电势差为S Qd Ed U 012ε== (3)由此得dS U Q C 012ε== (4)该电容存储的能量为Sd Q CU W 0221222ε==—Q(5)在两极板间充满相对介电常数为r ε的各向同性均匀电介质,电容变为4,一空气柱形电容器,内外柱面半径为R 1和R 2,柱面高度为L ,设内外柱面带电量为分别+Q 和-Q ,忽略边缘效应。