(完整版)第三章《概率的进一步认识》单元测试卷及答案

合集下载

北师大版九年级上册数学《概率的进一步认识》单元测试卷(有答案)

北师大版九年级上册数学《概率的进一步认识》单元测试卷(有答案)

北师大版九年级上册数学《第3章概率的进一步认识》单元测试卷一.选择题(共10小题)1.转动如图的转盘两次,两次所指数字之积为奇数,则A胜,偶数则B胜,则A胜的概率为()A.B.C.D.2.有下列说法:①同一个人在相同的条件下做同一个实验,第一天做了1000次,第二天做了1000次,对这一实验中的同一事件来说,这两天出现的频率相等;②投掷骰子,偶数朝上的概率是;③如果一个袋里装有2个红球,1个白球,从中任取1个,因为取出的球不是红球,就是白球,所以取出红球的概率是.其中正确的有()A.0个B.1个C.2个D.3个3.从一批电视机中随机抽取10台进行质检,其中一台是次品,下列说法正确的是()A.次品率小于10%B.次品率大于10%C.次品率接近10%D.次品率等于10%4.下列说法不正确的()A.抛掷一枚硬币,正面向上或者反面向上是无法预测的B.抛掷一枚硬币,正面向上和反面向上的机会一样C.抛掷一枚硬币,六次中必有3次正面向上D.抛掷一枚硬币,随着试验次数的大量增加,正面向上的频率逐渐趋于稳定5.下列说法不正确的是()A.增加几次试验,事件发生的频率与这一事件发生的概率的差距可能扩大B.增加几次试验,事件发生的频率与这一事件发生的概率的差距可能缩小C.试验次数很大时,事件发生的频率稳定在这一事件发生的概率附近D.试验次数增大时,事件发生的频率越来越接近这一事件发生的概率6.如图,随机闭合开关S1、S2、S3、S4中的两个,则灯泡发光的概率是()A.B.C.D.17.两道单选题都含有A、B、C、D四个选项,瞎猜这两道题,至少猜对一道题的概率是()A.B.C.D.8.抛掷两枚普通的骰子,则出现数字之积为奇数的机会是()A.B.C.D.不能确定9.掷两枚普通正六面体骰子,所得点数之和为10的概率为()A.B.C.D.10.在一个不透明的袋子里装有2个红球1个黄球,这3个小球除颜色不同外,其他都相同.贝贝同学摸出一个球后放回口袋摇匀再摸一个;莹莹同学一次摸2个球,设贝贝摸到1红1黄的概率记为P1,贝贝摸到2红的概率记为P2,莹莹摸到1红1黄的概率记为P3,莹莹摸到2红的概率记为P4,正确的是()A.P1=P3B.P1>P3C.P2=P4D.P2>P4二.填空题(共10小题)11.有两组卡片,第一组三张卡片上都写着A、B、B,第二组五张卡片上都写着A、B、B、D、E,则从每组卡片中各抽取一张,两张都是B的概率是.12.袋中装有4个完全相同的球,分别标有1,2,3,4,从中随机取出一个球,以该球上的数字作为十位数,再从袋中剩余3个球中随机取出一个球,以该球上的数字作为个位数,所得的两位数大于20的概率为.13.随机掷三枚硬币,出现三个正面朝上的概率是.14.袋中有一个红球和两个白球,它们除了颜色外都相同.任意摸出一个球,记下球的颜色,放回袋中;搅匀后再任意摸出一个球,记下球的颜色.为了研究两次摸球出现某种情况的概率,画出如下树状图.(1)请把树状图填写完整.(2)根据树状图可知,摸到一红一白两球的概率是.15.在一个不透明的布袋中装有50个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.3左右,则布袋中黄球可能有个.16.某口袋中有红色、黄色、蓝色玻璃球共160个,小颖通过多次摸球实验后,发现摸到红球、黄球、蓝球的频率依次是0.35、0.25、0.4,试估计口袋中三种玻璃球的数目分别是、、.17.小明把80个除了颜色以外其余都相同的黄、蓝、红三种球放进一个袋内,经多次摸球后,得到它们的概率分别为、和,试估计黄、蓝、红三种球的个数分别是.18.利用计算器产生1~6个随机数,连续两次随机相同的概率是.19.一个盒子中装有白色的乒乓球、为估计这袋里有多少个乒乓球,小李将形状,大小都相同的红色乒乓球100个混入其中,摇匀后任意取出100粒,发现红色乒乓球有4个,则可估计出白色乒乓球有个数为个.20.标有1,1,2,3,3,5六个数字的立方体的表面展开图如图所示,掷这个立方体一次,记朝上一面的数为x,朝下一面的数为y,得到平面直角坐标系中的一个点(x,y).已知小华前二次掷得的两个点所确定的直线经过点P(0,﹣1),则他第三次掷得的点也在这条直线上的概率为.三.解答题(共7小题)21.一个口袋中有除颜色外其余均相同的12个白球和若干个黑球,在不允许将球倒出来数的情况下,小亮为估计口袋中黑球的个数,采用了如下的方法:每次先从口袋中摸出10个球,求出其中白球数与10的比值,再把球放回口袋中摇匀.不断重复上述过程5次,得到的白球数与10的比值分别为:0.4,0.1,0.2,0.1,0.2.根据上述数据,求口袋中黑球的个数.22.某工厂生产的一批零件,出现次品的概率为5%,若生产这种零件10000个,大约出现次品多少个?23.经过某路口的行人,可能直行,也可能左拐或右拐.假设三种可能性相同.现有两个人经过该路口,请用画树状图列出所有可能出现的结果,并求下列事件的概率:(1)两人都左拐;(2)恰有一人直行,另一人左拐;(3)至少有一人直行.24.小颖有两件上衣,分别是红色和白色,有三条裤子,分别是一条黑色和两条白色,她随机拿出一件上衣和一条裤子穿上,恰好是白色上衣和白色裤子的概率是多少?请用列表的方法列出所有可能出现的结果.25.某小鱼塘放养鱼苗500尾,成活率为80%,成熟后,平均质量1.5斤以上的鱼为优质鱼,若在一天中随机捞出一条鱼,称出其质量,再放回去,不断重复上面的实验,共捞了50次,有32条鱼的平均质量在1.5斤以上,若优质鱼的利润为2元/斤,则这个小鱼塘在优质鱼上可获利多少元?26.用图中两个可自由转动的转盘做“配紫色”游戏:分别旋转两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色,那么可配成紫色的概率是多少?27.某学习小组做摸球实验,在一个不透明的口袋里装有颜色不同的红、白两种颜色的球共5只,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复,表是活动进行中的一组统计数据:摸球的次数n1001502005008001000摸到白球的次数m5896116295484601摸到白球的频率0.580.640.580.590.6050.601(1)请估计:当n很大时,摸到白球的频率将会接近;(精确到0.1)(2)你能估算出学习小组做摸球实验的口袋中白球个数吗?(3)若摸球实验是从口袋里先摸出一球,不放回,再摸出一球;请用树状图或列表分析计算,这两只球颜色相同的概率是多少?参考答案与试题解析一.选择题(共10小题)1.解:列表得:123456 11×1=12×1=23×1=34×1=45×1=56×1=621×2=22×2=43×2=64×2=85×2=106×2=1231×3=32×3=63×3=94×3=125×3=156×3=1841×4=42×4=83×4=124×4=165×4=206×4=2451×5=52×5=103×5=154×5=205×5=256×5=3061×6=62×6=123×6=184×6=245×6=306×6=36∵共有36种等可能的结果,两次所指数字之积为奇数的有9种情况,∴A胜的概率为:=.故选:C.2.解:①同一个人在相同的条件下做同一个实验,第一天做了1000次,第二天做了1000次,对这一实验中的同一事件来说,这两天出现的频率相等;由于是模拟实验,事件发生的可能性不是唯一确定不变的,故此选项错误;②投掷骰子,偶数朝上的概率是,因为奇数与偶数个数相等,故此选项正确;③如果一个袋里装有2个红球,1个白球,从中任取1个,因为取出的球不是红球,就是白球,但是由于小球个数不同,所以取出红球的概率是.故此选项错误.故选:B.3.解:由题意知,抽取10台,出现1台是次品,只能说次品率接近10%,故选C.4.解:A、正确,是随机事件,故无法预测;B、正确,因为一枚硬币只有正反两面,故正面向上和反面向上的机会一样;C、错误,是随机事件,故无法预测;D、正确,因为随着试验次数的大量增加,正面向上的频率逐渐接近概率,故逐渐趋于稳定.故选:C.5.解:A、随着实验次数的增加,事件发生的频率与概率的差距越来越小,逐渐稳定在概率附近,故A选项说法错误,符合题意.故B,C,D中的说法正确.故选:A.6.解:画树状图得:∵共有12种等可能的结果,操作一次就能使灯泡⊗发光的有6种情况,∴操作一次就能使灯泡⊗发光的概率是:=.故选:B.7.解:画树状图得:∵共有16种等可能的结果,假设两个题的答案为:A,A,则至少猜对一道题的有7种情况,∴至少猜对一道题的概率是:.8.解:列表得:(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)共有36种情况,数字之积为奇数的有9种情况,所以概率为,故选A.9.解:所得点数之和的所有可能如下表所示:123456123456723456783456789456789105678910116789101112由表可知,共有36种等可能结果,其中所得点数之和为10的有3种结果,∴所得点数之和为10的概率为=.故选:C.10.解:贝贝同学摸出的球的所有情况如下:由树状图知,共有9种等可能结果,其中摸到1个红球1个黄球有4种结果、摸到2个红球有4种结果,所以摸到1个红球1个黄球的概率P1=,摸到2个红球的概率P2=;莹莹同学摸出的球的所有情况如下:由以上树状图知共有6种等可能的结果,其中摸到1个红球1个黄球的有4种结果、两次都摸到红球的有2种情况,∴所以摸到1个红球1个黄球的概率P3=,摸到2个红球的概率P4=,∴P(贝贝摸到2红)>P莹莹摸到2红,∴P3>P1=P2>P4,故选:D.二.填空题(共10小题)11.解:列表如下:A B B D EA(A,A)(B,A)(B,A)(D,A)(E,A)B(A,B)(B,B)(B,B)(D,B)(E,B)B(A,B)(B,B)(B,B)(D,B)(E,B)所有等可能的情况有15种,其中从每组卡片中各抽取一张,两张都是B的情况有4种,则P=.故答案为:.12.解:画树状图得:∵共有12种等可能的结果,所得的两位数大于20的有9种情况,∴所得的两位数大于20的概率为=,故答案为:.13.解:画树状图得:∵共有8种等可能的结果,三枚硬币的投掷结果都是正面朝上的只有1种情况,∴3次抛掷的结果都是正面朝上的概率是,故答案为:.14.解:(1)补图如下:(2)可得所有等可能的情况有9种,其中一红一白两球的情况有4种,则P(一红一白)=.故答案为:.15.解:设袋子中黄球有x个,根据题意,得:=0.3,解得:x=15,即布袋中黄球可能有15个,故答案为:15.16.解:∵多次摸球实验后,摸到红球、黄球、蓝球的频率依次是0.35、0.25、0.4,∴红球的概率为0.35,黄球的概率为0.25,蓝球的概率为0.4,∴口袋中红色玻璃球有0.35×160=56(个),黄色玻璃球有0.25×160=40(个),蓝色玻璃球有0.40×160=64(个).故答案为:56,40,64.17.解:∵小明把80个除了颜色以外其余都相同的黄、蓝、红三种球放进一个袋内,经多次摸球后,得到它们的概率分别为、和,∴黄、蓝、红三种球的个数分别是:80×=20(个),80×=28(个),80×=32(个).故答案为:20、28、32.18.解:∵第一个数随机产生,第二个数与第一个数相同的情况有一种,而第二个数可能出现的情况有6种∴连续两次随机相同的概率是.故答案为:.19.解:设白球个数有x个则由题意知解得x=2400.故估计白色乒乓球有个数为2400个.20.解:每掷一次可能得到6个点的坐标分别是(其中有两个点是重合的):(1,1),(1,1),(2,3),(3,2),(3,5),(5,3),通过描点和计算可以发现,经过(1,1),(2,3),(3,5),三点中的任意两点所确定的直线都经过点P(0,﹣1),所以小华第三次掷得的点也在直线l上的概率是故答案为:.三.解答题(共7小题)21.解:∵(0.4+0.1+0.2+0.1+0.2)÷5=0.2,∴口袋中球的总数为:12÷0.2=60,∴口袋中共有黑球:60﹣12=48个.故口袋中黑球一共48个.22.解:∵出现次品的概率为5%,生产这种零件10000个,∴大约出现次品:10000×5%=500(个),答:大约出现次品500个.23.解:(1)根据题意画树状图如下:共有9种等可能的结果数,其中“两人都左拐”的结果数为1,则两人都左拐”的概率是;(2)恰好有一人直行,另一人左拐的结果数为2,所以恰好有一人直行,另一人左拐的概率是;(3)至少有一人直行的结果数为5,所以“至少有一人直行”的概率为.24.解:根据题意列表如下:黑白白红黑红白红白红白黑白白白白白∵共有6种等可能的结果,恰好是白色上衣和白色裤子的有2种情况,∴恰好是白色上衣和白色裤子的概率是=.25.解:∵共捞了50次,有32条鱼的平均重量在1.5斤以上,∴池塘中有1.5斤以上鱼的概率为:=,故×500×80%×2×1.5=768(元),答:优质鱼上至少可获利768元.26.解:画树状图为:共有6种等可能的结果数,其中一个为红色,另一个转出蓝色的占3种,所以可配成紫色的概率==.27.解:(1)当n很大时,摸到白球的频率将会接近0.6;故答案为:0.6;(2)由(1)摸到白球的概率为0.6,所以可估计口袋中白种颜色的球的个数是:5×0.6=3(只);(3)根据题意画树状图如下:共有20种等可能的结果数,其中两只球颜色相同占8种,所以两只球颜色相同的概率==.。

北师大版九上数学第三章《概率的进一步认识》单元检测卷(含答案)-

北师大版九上数学第三章《概率的进一步认识》单元检测卷(含答案)-

第三章《概率的进一步认识》单元检测卷(全卷满分100分限时90分钟)一、选择题(每小题3分36分)1.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是()A.B.C.D.2.木盒里有1个红球和1个黑球,这两个球除颜色外其他都相同,从盒子里先摸出一个球,放回去摇匀后,再摸出一个球,两次都摸到红球的概率是A.12B.13C.14D.233.某火车站的显示屏每间隔4分钟显示一次火车班次的信息,显示时间持续1分钟,某人到达该车站时,显示屏正好显示火车班次信息的概率是()A.16B.15C.14D.134.下列事件中的必然事件是()A.天气阴了之后下雨B.小明上学路上看到两车相撞C.抛掷一枚骰子,朝上的一面点数恰好是5D.同时抛掷两枚骰子,朝上的两面点数之和小于135.一个不透明的袋子中有2个白球,1个黄球和1个红球,这些球除颜色不同外其他完全相同,若从袋子中随机摸出1个球后,放回摇匀,再取出1个球,则两次取出都是白球的概率为()A.B.C.D.6.从1、2、3、4中任取两个不同的数,其乘积大于4的概率是()A.B.C.D.7.放假了,小明与小颖两家准备从红荷湿地、台儿庄古城、莲青山中选择一景点游玩,小明与小颖通过抽签方式确定景点,则两家抽到同一景点的概率是()A.13B.16C.19D.148.有5张形状、大小、质地均相同的卡片,背面完全相同,正面分别印有等边三角形、平行四边形、菱形、等腰梯形和圆五种不同的图案.将这5张卡片洗匀后正面朝下放在桌面上,从中随机抽出一张,抽出的卡片正面图案..是中心对称图形的概率为( )A .15 B .25 C .35 D .459.如果小磊将镖随意投中如图所示的正方形木板(假设投中每个小正方形是等可能的),那么镖落在阴影部分的概率为( )A 、61 B .21 C 、31 D 、41 10.如图,图中的两个转盘分别被均匀地分成2个和3个扇形,每个扇形上都标有数字,同时自由转动两个转盘,转盘停止后,指针都落在奇数上的概率是( )A .21 B .31 C .41 D .51 11.下列事件是不确定事件的是( )A .水中捞月B .守株待兔C .风吹草动D .瓮中捉鳖12.王大爷为了测出自家鱼塘中的鱼的条数,第一次捞出100条全部做了记号后放入水中,当它们全部混合于鱼群后,又捞出200条,发现有记号的鱼有10条,则王大爷家的鱼塘中鱼的条数为( )A .1000B .1500C .2000D .2500 二、填空题:(每小题3分共12分)13.在一个不透明的口袋中装有若干个只有颜色不同的球,如果已知袋中只有4个红球,且摸出红球的概率为,那么袋中的球共有个.14.在四边形ABCD中对角线AC、BD交于点O,则在①AO=CO;②BO=DO;③AB=CD;④AB∥CD;从中任选两个结论作条件,恰好能组成一个平行四边形的概率是________.15.某校准备组织师生观看北京奥运会球类比赛,在不同时间段里有3场比赛,其中2场是乒乓球赛,1场是羽毛球赛,从中任意选看2场,则选看的2场恰好都是乒乓球比赛的概率是.16.从0,,1,2,3,4,5这七个数中随机抽取一个数,记作a,则使得二次函数y=(a ﹣2)x2﹣2ax的顶点不落在y轴上,且分式方程=1有整数解的概率为.三、解答题:(共52分)17.(6分)在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4.(1)随机摸出一个小球,标号为偶数的概率是多少?(2)随机地摸出一个小球然后放回,再随机地摸出一个小球,则两次摸出的小球的标号之和为4的概率是多少?18.(6分)小明、小军两同学做游戏,游戏规则是:一个不透明的文具袋中,装有型号完全相同的3支红笔和2支黑笔,两人先后从袋中取出一支笔(不放回),若两人所取笔的颜色相同,则小明胜,否则,小军胜.(1)请用树形图或列表法列出摸笔游戏所有可能的结果;(2)请计算小明获胜的概率,并指出本游戏规则是否公平,若不公平,你认为对谁有利.19.(8分)国务院办公厅在2015年3月16日发布了《中国足球发展改革总体方案》,这是中国足球史上的重大改革,为进一步普及足球知识,传播足球文化,我市某区在中小学举行了“足球在身边”知识竞赛,各类获奖学生人数的比例情况如图所示,其中获得三等奖的学生共50名,请结合图中信息,解答下列问题:(1)获得一等奖的学生人数;(2)在本次知识竞赛活动中,A,B,C,D四所学校表现突出,现决定从这四所学校中随机选取两所学校举行一场足球友谊赛,请用画树状图或列表的方法求恰好选到A,B两所学校的概率.20.(6分)小明和小芳做配紫色游戏,如图是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形,并涂上图中所示的颜色.同时转动两个转盘,如果转盘A转出了红色,转盘B转出了蓝色,或者转盘A转出了蓝色,转盘B转出了红色,则红色和蓝色在一起配成紫色,(1)利用列表或树状图的方法表示此游戏所有可能出现的结果;(2)若出现紫色,则小明胜.此游戏的规则对小明、小芳公平吗?试说明理由.21.(8分)有四张背面相同的纸牌A,B,C,D,其正面分别画有四个不同的几何图形(如图).小华将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸出一张.(1)用树状图(或列表法)表示两次模牌所有可能出现的结果(纸牌可用A、B、C、D表示);(2)求摸出两张牌面图形都是中心对称图形的纸牌的概率.22.(9分)某县从全县九年级学生中随机抽取了部分学生进行了一次中考体育科目测试(把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格),并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是;(2)图1中∠α的度数是,并把图2条形统计图补充完整;(3)该县九年级有学生3500名,如果全部参加这次中考体育科目测试,请估计不及格的人数为.(4)测试老师想从4位同学(分别记为E、F、G、H,其中E为小明)中随机选择两位同学了解训练情况,请用列表或画树形图的方法求出选中小明概率.23.(9分)经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,如果这三种情况是等可能的,当三辆汽车经过这个十字路口时:(1)求三辆车全部同向而行的概率;(2)求至少有两辆车向左转的概率;(3)由于十字路口右拐弯处是通往新建经济开发区的,因此交管部门在汽车行驶高峰时段对车流量作了统计,发现汽车在此十字路口向右转的频率为,向左转和直行的频率均为.目前在此路口,汽车左转、右转、直行的绿灯亮的时间分别为30秒,在绿灯亮总时间不变的条件下,为了缓解交通拥挤,请你用统计的知识对此路口三个方向的绿灯亮的时间做出合理的调整.答案与解析一、选择题(每小题3分36分)1.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是()A.B.C.D.【答案】C【解析】试题分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次都摸到白球的情况,再利用概率公式即可求得答案.解:画树状图得:∵共有12种等可能的结果,两次都摸到白球的有2种情况,∴两次都摸到白球的概率是:=.故答案为:C.2.木盒里有1个红球和1个黑球,这两个球除颜色外其他都相同,从盒子里先摸出一个球,放回去摇匀后,再摸出一个球,两次都摸到红球的概率是A.12B.13C.14D.23【答案】C.【解析】试题分析:由题意知P(两次都摸到红球)=12×12=14.故选C.3.某火车站的显示屏每间隔4分钟显示一次火车班次的信息,显示时间持续1分钟,某人到达该车站时,显示屏正好显示火车班次信息的概率是()A.16B.15C.14D.13【答案】B.【解析】试题分析:由于显示屏每间隔4分钟显示一次火车班次的信息,显示时间持续1分钟,所以显示屏上每隔5分钟就有一分钟的显示时间,某人到达该车站时正好显示火车班次信息的概率是P(显示火车班次信息)=15.故选B.4.下列事件中的必然事件是()A.天气阴了之后下雨B.小明上学路上看到两车相撞C.抛掷一枚骰子,朝上的一面点数恰好是5D.同时抛掷两枚骰子,朝上的两面点数之和小于13【答案】D.【解析】试题分析:A.天气阴了之后下雨,是随机事件,故此选项错误;B.小明上学路上看到两车相撞,是随机事件,故此选项错误;C.抛掷一枚骰子,朝上的一面点数恰好是5,是随机事件,故此选项错误;D.同时抛掷两枚骰子,朝上的两面点数之和小于13,是必然事件,故此选项正确.故选D.5.一个不透明的袋子中有2个白球,1个黄球和1个红球,这些球除颜色不同外其他完全相同,若从袋子中随机摸出1个球后,放回摇匀,再取出1个球,则两次取出都是白球的概率为()A.B.C.D.【答案】B【解析】试题分析:列举出所有情况,看两次都摸到白球的情况数占总情况数的多少即可.解:画树形图得:共有16种等可能的结果数,其中两个都是白球的占4种,所以两次都摸到白球的概率==.故选B.6.从1、2、3、4中任取两个不同的数,其乘积大于4的概率是()A.B.C.D.【答案】C【解析】试题分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与其乘积大于4的情况,再利用概率公式即可求得答案.解:画树状图得:∵共有12种等可能的结果,任取两个不同的数,其乘积大于4的有6种情况,∴从1、2、3、4中任取两个不同的数,其乘积大于4的概率是:=.故选:C.7.放假了,小明与小颖两家准备从红荷湿地、台儿庄古城、莲青山中选择一景点游玩,小明与小颖通过抽签方式确定景点,则两家抽到同一景点的概率是()A.13B.16C.19D.14【答案】A【解析】试题解析:用A,B,C分别表示红荷湿地、台儿庄古城、莲青山,画树状图得:∵共有9种等可能的结果,两家抽到同一景点的有3种情况,∴两家抽到同一景点的概率是:31 93 .故选A.8.有5张形状、大小、质地均相同的卡片,背面完全相同,正面分别印有等边三角形、平行四边形、菱形、等腰梯形和圆五种不同的图案.将这5张卡片洗匀后正面朝下放在桌面上,从中随机抽出一张,抽出的卡片正面图案..是中心对称图形的概率为()A.15B.25C.35D.45【答案】C.【解析】试题解析:∵根据中心对称图形的性质,旋转180°后,能够与原图形完全重合的图形是中心对称图形,∴只有平行四边形、菱形、圆是中心对称图形,∵共有5张不同卡片,∴抽出的卡片正面图案是中心对称图形的概率为:35,故选C.9.如果小磊将镖随意投中如图所示的正方形木板(假设投中每个小正方形是等可能的),那么镖落在阴影部分的概率为()A 、61 B .21 C 、31 D 、41 【答案】A . 【解析】试题分析:观察图形可得,正方形木板的面积为36,阴影部分的面积为2+4=6,所以镖落在阴影部分的概率为366,即为61.故答案选A . 10.如图,图中的两个转盘分别被均匀地分成2个和3个扇形,每个扇形上都标有数字,同时自由转动两个转盘,转盘停止后,指针都落在奇数上的概率是( )A .21 B .31 C .41 D .51 【答案】B . 【解析】试题分析:画树状图得:∵共有6种等可能的结果,两数之和为偶数的有2种情况; ∴甲获胜的概率为:2163、 故选B .考点:列表法与树状图法.11.下列事件是不确定事件的是( )A .水中捞月B .守株待兔C .风吹草动D .瓮中捉鳖 【答案】B 【解析】试题分析:根据必然事件、不可能事件、随机事件的概念分别对每一项进行分析即可. 解;A .水中捞月是不可能事件, B .守株待兔是不确定事件,C.风吹草动是必然事件,D.瓮中捉鳖是必然事件,故选:B.12.王大爷为了测出自家鱼塘中的鱼的条数,第一次捞出100条全部做了记号后放入水中,当它们全部混合于鱼群后,又捞出200条,发现有记号的鱼有10条,则王大爷家的鱼塘中鱼的条数为()A.1000 B.1500 C.2000 D.2500【答案】C【解析】试题分析:根据捞出200条发现有记号的鱼有10条,求出有记号的鱼所占的百分比,再根据100条全部做了记号,即可得出王大爷家的鱼塘中鱼的条数.解:∵捞出200条发现有记号的鱼有10条,∴有记号的占=,∵100条全部做了记号,∴王大爷家的鱼塘中鱼的条数是100÷=200条;故选C.二、填空题:(每小题3分共12分)13.在一个不透明的口袋中装有若干个只有颜色不同的球,如果已知袋中只有4个红球,且摸出红球的概率为,那么袋中的球共有个.【答案】12.【解析】试题分析:根据红球的概率公式列出方程求解即可.解:设袋中的球共有m个,其中有4个红球,则摸出红球的概率为,根据题意有=,解得:m=12.故本题答案为:12.14.在四边形ABCD中对角线AC、BD交于点O,则在①AO=CO;②BO=DO;③AB=CD;④AB∥CD;从中任选两个结论作条件,恰好能组成一个平行四边形的概率是________.【答案】32【解析】试题分析:因为在①AO=CO;②BO=DO;③AB=CD;④AB∥CD中任选两个结论作条件共有①②,①③,①④,②③,②④,③④,6种情况,而能组成一个平行四边形的是①②,①④,②④,③④,4种情况,所以恰好能组成一个平行四边形的概率是42 63 .15.某校准备组织师生观看北京奥运会球类比赛,在不同时间段里有3场比赛,其中2场是乒乓球赛,1场是羽毛球赛,从中任意选看2场,则选看的2场恰好都是乒乓球比赛的概率是.【答案】1 3【解析】试题分析:由树状图可知共有3×2=6种可能,选看的2场恰好都是乒乓球比赛的有2种,所以概率是26=13.16.从0,,1,2,3,4,5这七个数中随机抽取一个数,记作a,则使得二次函数y=(a ﹣2)x2﹣2ax的顶点不落在y轴上,且分式方程=1有整数解的概率为.【答案】.【解析】试题分析:先根据二次函数y=(a﹣2)x2﹣2ax的顶点不落在y轴上得出a≠0,a≠2,再由分式方程=1有整数解可得出a的值,根据概率公式可得出结论.解:∵二次函数y=(a﹣2)x2﹣2ax的顶点不落在y轴上,∴﹣≠0,即a≠0,a≠2.解分式方程=1得,x=,∵分式方程有整数解,∴a=3或5.∵共有7个数,只有两个数符合题意,∴符合题意的a的概率=.故答案为:.三、解答题:(共52分)17.(6分)在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4.(1)随机摸出一个小球,标号为偶数的概率是多少?(2)随机地摸出一个小球然后放回,再随机地摸出一个小球,则两次摸出的小球的标号之和为4的概率是多少?【答案】(1);(2).【解析】试题分析:(1)由在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的小球的标号之和为4的情况,再利用概率公式即可求得答案.解:(1)∵在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,∴随机摸出一个小球,标号为偶数的概率是:=;(2)画树状图得:∵共有16种等可能的结果,两次摸出的小球的标号之和为4的有3种情况,∴两次摸出的小球的标号之和为4的概率是:.18.(6分)小明、小军两同学做游戏,游戏规则是:一个不透明的文具袋中,装有型号完全相同的3支红笔和2支黑笔,两人先后从袋中取出一支笔(不放回),若两人所取笔的颜色相同,则小明胜,否则,小军胜.(1)请用树形图或列表法列出摸笔游戏所有可能的结果;(2)请计算小明获胜的概率,并指出本游戏规则是否公平,若不公平,你认为对谁有利.【答案】(1)见解析;(2)不公平,对小军有利.【解析】试题分析:(1)列表将所有等可能的结果一一列举出来即可;(2)根据列表里有概率公式求得小明获胜的概率即可判断是否公平.解:(1)列表得:(2)共20种等可能的情况,其中颜色相同的有8种,则小明获胜的概率为=,小军获胜的概率为1﹣=,∵<,∴不公平,对小军有利.19.(8分)国务院办公厅在2015年3月16日发布了《中国足球发展改革总体方案》,这是中国足球史上的重大改革,为进一步普及足球知识,传播足球文化,我市某区在中小学举行了“足球在身边”知识竞赛,各类获奖学生人数的比例情况如图所示,其中获得三等奖的学生共50名,请结合图中信息,解答下列问题:(1)获得一等奖的学生人数;(2)在本次知识竞赛活动中,A,B,C,D四所学校表现突出,现决定从这四所学校中随机选取两所学校举行一场足球友谊赛,请用画树状图或列表的方法求恰好选到A,B两所学校的概率.【答案】(1)30人;(2).【解析】试题分析:(1)根据三等奖所在扇形的圆心角的度数求得总人数,然后乘以一等奖所占的百分比即可求得一等奖的学生数;(2)列表将所有等可能的结果列举出来,利用概率公式求解即可.解:(1)∵三等奖所在扇形的圆心角为90°,∴三等奖所占的百分比为25%,∵三等奖为50人,∴总人数为50÷25%=200人,∴一等奖的学生人数为200×(1﹣20%﹣25%﹣40%)=30人;(2)列表:∵共有12种等可能的结果,恰好选中A、B的有2种,∴P(选中A、B)==.20.(6分)小明和小芳做配紫色游戏,如图是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形,并涂上图中所示的颜色.同时转动两个转盘,如果转盘A转出了红色,转盘B转出了蓝色,或者转盘A转出了蓝色,转盘B转出了红色,则红色和蓝色在一起配成紫色,(1)利用列表或树状图的方法表示此游戏所有可能出现的结果;(2)若出现紫色,则小明胜.此游戏的规则对小明、小芳公平吗?试说明理由.【答案】(1)出现结果见解析;(2)不公平的.理由见解析、【解析】试题分析:(1)根据题意,用列表法将所有可能出现的结果,即可得答案;(2)由(1)的表格,分析可能得到紫色的概率,得到结论.试题解析:(1)用列表法将所有可能出现的结果表示如下:所有可能出现的结果共有12种.(2)上面等可能出现的12种结果中,有3种情况可能得到紫色,故配成紫色的概率是31124,即小明获胜的概率是14;故小芳获胜的概率是34.而14<34,故小芳获胜的可能性大,这个“配色”游戏对双方是不公平的.21.(8分)有四张背面相同的纸牌A,B,C,D,其正面分别画有四个不同的几何图形(如图).小华将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸出一张.(1)用树状图(或列表法)表示两次模牌所有可能出现的结果(纸牌可用A、B、C、D表示);(2)求摸出两张牌面图形都是中心对称图形的纸牌的概率.【答案】见解析【解析】试题分析:(1)画树状图或列表法解答即可,注意不要漏掉任何情况.(2)此题可以采用树状图求解.此题为有放回实验,共有16种情况,摸出两张牌面图形都是中心对称图形的纸牌的有4种,所以摸出两张牌面图形都是中心对称图形的纸牌的概率是.试题解析:(1)树状图如下:列表如下:(2)摸出两张牌面图形都是中心对称图形的纸牌有4种情况,即:(B,B),(B,C),(C,B),(C,C),故所求概率是、22.(9分)某县从全县九年级学生中随机抽取了部分学生进行了一次中考体育科目测试(把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格),并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是;(2)图1中∠α的度数是,并把图2条形统计图补充完整;(3)该县九年级有学生3500名,如果全部参加这次中考体育科目测试,请估计不及格的人数为.(4)测试老师想从4位同学(分别记为E、F、G、H,其中E为小明)中随机选择两位同学了解训练情况,请用列表或画树形图的方法求出选中小明概率.【答案】40 54°700【解析】试题分析:(1)用B级的人数除以所占的百分比求出总人数;(2)用360°乘以A级所占的百分比求出∠α的度数,再用总人数减去A、B、D级的人数,求出C级的人数,从而补全统计图;(3)用九年级所有得学生数乘以不及格的人数所占的百分比,求出不及格的人数;(4)根据题意画出树状图,再根据概率公式进行计算即可.试题解析:(1)本次抽样测试的学生人数是:=40(人),(2)根据题意得:360°×=54°,C级的人数是:40﹣6﹣12﹣8=14(人),(3)根据题意得:3500×=700(人),(4)根据题意画树形图如下:共有12种情况,选中小明的有6种,则P(选中小明)==.23.(9分)经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,如果这三种情况是等可能的,当三辆汽车经过这个十字路口时:(1)求三辆车全部同向而行的概率;(2)求至少有两辆车向左转的概率;(3)由于十字路口右拐弯处是通往新建经济开发区的,因此交管部门在汽车行驶高峰时段对车流量作了统计,发现汽车在此十字路口向右转的频率为,向左转和直行的频率均为.目前在此路口,汽车左转、右转、直行的绿灯亮的时间分别为30秒,在绿灯亮总时间不变的条件下,为了缓解交通拥挤,请你用统计的知识对此路口三个方向的绿灯亮的时间做出合理的调整.【答案】(1);(2);(3)见解析【解析】试题分析:(1)首先根据题意画出树状图,由树状图即可求得所有等可能的结果与三辆车全部同向而行的情况,然后利用概率公式求解即可求得答案;(2)由(1)中的树状图即可求得至少有两辆车向左转的情况,然后利用概率公式求解即可求得答案;(3)由汽车向右转、向左转、直行的概率分别为,即可求得答案.解:(1)分别用A,B,C表示向左转、直行,向右转;根据题意,画出树形图:∵共有27种等可能的结果,三辆车全部同向而行的有3种情况,∴P(三车全部同向而行)=;(2)∵至少有两辆车向左转的有7种情况,∴P(至少两辆车向左转)=;(3)∵汽车向右转、向左转、直行的概率分别为,∴在不改变各方向绿灯亮的总时间的条件下,可调整绿灯亮的时间如下:左转绿灯亮时间为90×=27(秒),直行绿灯亮时间为90×=27(秒),右转绿灯亮的时间为90×=36(秒).www、czsx、com、cn。

2020年第三章 概率的进一步认识 2018年秋单元测试题(含答案)

2020年第三章 概率的进一步认识 2018年秋单元测试题(含答案)

(2) 投掷次数较多时,平均每 6 次就有 5 次不出现“1”
三、解答题 15、 解: 因为每次抛出前,出现的结果是不确定事件,故不能预测每次抛出后的结果.假 如已经抛掷了 1 000 次,也不能预测第 1 001 次抛掷的结果. 16、解:买 1 张可能中奖,买 100 张也有可能不中奖,因为中奖是一个随机事件,每次试验 都可能发生,也可能不发生.
17. 小颖和小红两位同学在学习“概率”时,做投掷骰子(质地均匀的正方体)试验,她们共 做了 60 次试验,试验的结果如下:
朝上的点数 1 2 3 4 5 6 出现的次数 7 9 6 8 20 10 (1)计算“3 点朝上”的频率和“5 点朝上”的频率. (2)小颖说:“根据试验,一次试验中出现 5 点朝上的概率最大”;小红说:“如果投掷 600 次,那么出现 6 点朝上的次数正好是 100 次.”小颖和小红的说法正确吗?为什么? (3)小颖和小红各投掷一枚骰子,用列表或画树形图的方法求出两枚骰子朝上的点数之和 为 3 的倍数的概率.
时间范围
1 年内
2Hale Waihona Puke 年内3 年内4 年内
新生婴儿数 5544
9013
13520
17191
男婴数
2716
男婴出生频率
4899
6812
8590
填写表中的男婴出生频率; 这一地区男婴出生的概率约是_______. 13. 某射手在同一条件下进行射击,结果如下表所示:
射击次数 n 击中靶心数 m 击中靶心频率
B.13
C.14
D.15
7. 下列说法正确的是( )
A.随机事件概率值不可能为 1 B.随机事件概率值可能为 1
C.随机事件概率一定是 0

(必考题)初中数学九年级数学上册第三单元《概率的进一步认识》检测题(有答案解析)

(必考题)初中数学九年级数学上册第三单元《概率的进一步认识》检测题(有答案解析)

一、选择题1.小明在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图所示,则最可能符合这一结果的实验是()A.掷一枚骰子,出现3点的概率B.抛一枚硬币,出现反面的概率C.任意写一个整数,它能被3整除的概率D.从一副扑克中任取一张,取到“大王”的概率2.从﹣4,﹣3,﹣2,﹣1,0,1,3,4,5这九个数中,随机抽取一个数,记为a,则数a使关于x的不等式组()1242122123x axx⎧--≤⎪⎪⎨-⎪<+⎪⎩至少有四个整数解,且关于x的分式方程233a xx x++--=1有非负整数解的概率是()A.29B.13C.49D.593.如图,4×2的正方形的网格中,在A,B,C,D四个点中任选三个点,能够组成等腰三角形的概率为()A.1 B.12C.13D.144.在一个不透明的布袋中,红色、黑色、白色的小球共有50个,除颜色外其他完全相同.乐乐通过多次摸球试验后发现,摸到红色球、黑色球的频率分别稳定在27%和43%,则口袋中白色球的个数很可能是()A.20 B.15 C.10 D.55.从1,2,3--三个数中,随机抽取两个数相乘,积是正数的概率是()A.13B.23C.16D.16.同时掷两个质地均匀的骰子,观察向上一面的点数,两个骰子的点数相同的概率为()A.13B.14C.16D.1367.下列说法正确的是()A.“清明时节雨纷纷”是必然事件B.要了解路边行人边步行边低头看手机的情况,可采取对在路边行走的学生随机发放问卷的方式进行调查C.做重复试验:抛掷同一枚瓶盖1000次,经过统计得“凸面向上”的频数为550次,则可以由此估计抛掷这枚瓶盖出现“凸面向上”的概率为0.55D.射击运动员甲、乙分别射击10次且击中环数的方差分别是0.5和1.2,则运动员甲的成绩较好8.小冬和小松正在玩“掷骰子,走方格”的游戏.游戏规则如下:(1)掷一枚质地均匀的正方体骰子(骰子六个面的数字分别是1至6),落地后骰子向上一面的数字是几,就先向前走几格,然后暂停.(2)再看暂停的格子上相应的文字要求,按要求去做后,若还有新的文字要求,则继续按新要求去做,直至无新要求为止,此次走方格结束.下图是该游戏的部分方格:大本营1对自己说“加油!”2后退一格3前进三格4原地不动5对你的小伙伴说“你好!”6背一首古诗例如:小冬现在的位置在大本营,掷骰子,骰子向上一面的数字是2,则小冬先向前走两格到达方格2,然后执行方格2的文字要求“后退一格”,则退回到方格1,再执行方格1的文字要求:对自己说“加油!”.小冬此次“掷骰子,走方格”结束,最终停在了方格1.如果小松现在的位置也在大本营,那么他掷一次骰子最终停在方格6的概率是()A.16B.13C.12D.239.为了解历下区九年级男生的身高情况,随机抽取了100名九年级男生,他们的身高()x cm统计如下,根据以上结果,抽查一名九年级男生,估计他的身高不低于180cm的概率是()A.0.85 B.0.57 C.0.42 D.0.1510.在一个口袋中有4个完全相同的小球,它们的标号分别为1,2,3,4,从中随机摸出两个小球,则摸出的两个小球标号之和大于4的概率是()A.38B.12C.58D.2311.在一个不透明的袋子里装有红球、黄球共40个,这些球除颜色外都相同,小明通过多次试验发现,摸出红球的频率稳定在0.25左右,则袋子中黄球的个数最有可能是()A.10 B.15 C.20 D.3012.先后随机抛掷一枚质地均匀的正方体骰子两次,第一次掷出的点数记为a,第二次掷出的点数记为c,则使关于x的一元二次方程260ax x c++=有实数解的概率为()A.49B.1736C.12D.1936二、填空题13.四张背面相同的卡片,分别为12,1,2,3,洗匀后背面朝上,先从中抽取一张,把抽到的点数记为a,再在剩余的卡片中抽取一张点数记为b,则点(a,b)恰好落在一次函数y=-2x+4与坐标轴所围成的三角形区域内(含边界)的概率为______________;14.如图,一段长管中放置着三根同样的绳子,小明从左边随机选一根,张华从右边随机选一根,两人恰好选中同一根绳子的概率是__________.15.某次考试中,每道单项选择题有4个选项,某同学有两道题不会做,于是他以“抓阄”的方式选定其中一个答案,则该同学的这两道题全部做对的概率是_______.16.一个质地均匀的小正方体,六个面分别标有数字1,1,2,4,5,5,随机掷一次小正方体,朝上一面的数字是奇数的概率是__________.17.一个不透明的盒子中装有3个黄球,6个红球,这些球除了颜色外无其他差别.从中随机摸出一个球,恰好是黄球的概率为__________.18.在一个不透明的布袋中,有红球、白球共30个,除颜色外其它完全相同,小明通过多次摸球试验后发现,其中摸到红球的频率稳定在40%,则随机从口袋中摸出一个是红球的概率是_____.19.如图,一飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色区域的概率是_____.20.为了解早高峰期间A,B两邻近地铁站乘客的乘车等待时间(指乘客从进站到乘上车的时间),某部门在同一上班高峰时段对A、B两地铁站各随机抽取了500名乘客,收集了其乘车等待时间(单位:分钟)的数据,统计如表:等待时的频数间乘车等待时间地铁站5≤t≤1010<t≤1515<t≤2020<t≤2525<t≤30合计A5050152148100500B452151674330500据此估计,早高峰期间,在A地铁站“乘车等待时间不超过15分钟”的概率为_____;夏老师家正好位于A,B两地铁站之间,她希望每天上班的乘车等待时间不超过20分钟,则她应尽量选择从_____地铁站上车.(填“A”或“B”)三、解答题21.小辉和小聪两人在玩转盘游戏时,把一个可以自由转动的转盘A分成3等份的扇形区域,把转盘B分成2等份的扇形区域,并在每一小区域内标上数字(如图所示),游戏规则:同时转动两个转盘,当两转盘停止后,若指针所指两个区域的数字之和为2的倍数,则小辉获胜:若指针所指两个区域的数字之和为3的倍数,则小聪获胜,如果指针落在分割线上,则需要重新转动转盘.(1)请用画树状图或列表法的方法表示出所有可能的结果.(2)在这个游戏中,小辉、小聪两人获胜的概率分别是多少?该游戏规则对双方公平吗?22.某中学开设的体育选修课有篮球、足球、排球、羽毛球、乒乓球,学生可以根据自己的爱好选修其中一门.某班班主任对全班同学的选修情况进行了调查统计,制成了两幅不完整的统计图(图①和图②):(1)请你求出该班的总人数,并补全条形图;(2)在该班团支部4人中,有1人选修排球,2人选修羽毛球,1人选修乒乓球.如果该班班主任要从他们4人中任选2人作为学生会候选人,那么选出的两人中恰好有1人选修排球、1人选修羽毛球的概率是多少?23.某中学为了解九年级学生对足球、篮球、排球这三种球类运动的喜爱情况,从九年级学生中随机抽取部分学生进行问卷调查,并根据调查结果绘制了如下两幅尚不完整的统计图.请根据两幅统计图中的信息解答下列问题:(1)求此次调查的学生总人数,并补全条形统计图.(2)若该中学九年级共有500名学生,请你估计该中学九年级学生中喜爱篮球运动的学生有多少人?(3)若从喜爱足球运动的2名男生和2名女生中随机抽取两名学生,确定为该校足球运动员的重点培养对象,请用列表或画树状图的方法求抽取的两名学生恰好为1名男生和1名女生的概率.24.某网站对全国大学生旅游方式进行了随机抽样调查,并绘制了如图所示的条形统计图和扇形统计图.请结合图中信息解答下列问题:(1)请将两幅统计图补充完整;(2)已知全国在校大学生约为2000万人,请估计全国大学生中自由行的人数;(3)某高校有甲,乙,丙三人获得某旅行社的免费旅游资格,他们每人将从上海,北京,南京三个城市中抽取一个作为旅游目的地,三人抽中同一城市的概率是多少?25.一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外完全相同,其中红球2个,若从中随机摸出一个球,这个球是白球的概率为13.(1)求袋子中白球的个数;(2)随机摸出一个球后,放回并搅匀,再随机摸出一个球,请用画树状图或列表的方法,求两次都摸到红球的概率.26.对垃圾进行分类投放,能提高垃圾处理和再利用的效率,减少污染,保护环境.为了检查垃圾分类的落实情况,某居委会成立了甲、乙两个检查组,采取随机抽查的方式分别对辖区内的A ,B ,C ,D 四个小区进行检查,并且每个小区不重复检查. (1)甲组抽到A 小区的概率是 ;(2)请用列表或画树状图的方法求甲组抽到A 小区,同时乙组抽到C 小区的概率.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据统计图可知试验结果的频率在30%—40%之间,然后分别计算出四个选项的概率,概率在30%—40%之间即符合题意. 【详解】A 、掷一枚骰子,出现4点的概率为16,不符合题意; B 、抛一枚硬币,出现反面的概率为12,不符合题意; C 、任意写出一个整数,能被3整除的概率为13,符合题意; D 、从一副扑克中任取一张,取到“大王”的概率为154. 故答案为C . 【点睛】本题主要考查了利用频率估计概率以及运用概率公式求概率,掌握利用频率估计概率的方法成为解答本题的关键.2.C解析:C 【分析】先解出不等式组,找出满足条件的a 的值,然后解分式方程,找出满足非负整数解的a 的值,然后利用同时满足不等式和分式方程的a 的个数除以总数即可求出概率. 【详解】解不等式组得:7x ax ≤⎧⎨>-⎩, 由不等式组至少有四个整数解,得到a≥﹣3, ∴a 的值可能为:﹣3,﹣2,﹣1,0,1,3,4,5, 分式方程去分母得:﹣a ﹣x+2=x ﹣3,解得:x=52a-,∵分式方程有非负整数解,∴a=5、3、1、﹣3,则这9个数中所有满足条件的a的值有4个,∴P=49故选:C.【点睛】本题主要考查解一元一次不等式组,分式方程的非负整数解,随机事件的概率,掌握概率公式是解题的关键.3.B解析:B【分析】根据题意,先列举所有的可能结果,然后选取能组成等腰三角形的结果,根据概率公式即可求出答案.【详解】解:根据题意,在A,B,C,D四个点中任选三个点,有:△ABC、△ABD、△ACD、△BCD,共4个三角形;其中是等腰三角形的有:△ACD、△BCD,共2个;∴能够组成等腰三角形的概率为:2142P==;故选:B.【点睛】本题考查了列举法求概率,等腰三角形的性质,勾股定理与网格问题,解题的关键是熟练掌握列举法求概率,以及正确得到等腰三角形的个数.4.B解析:B【分析】由频率得到红色球和黑色球的概率,用总数乘以白色球的概率即可得到个数.【详解】白色球的个数是50(127%43%)15个,故选:B.【点睛】此题考查概率的计算公式,频率与概率的关系,正确理解频率即为概率是解题的关键. 5.A解析:A【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与积是正数的情况,再利用概率公式即可求得答案.【详解】解:画树状图如下:共有6种情况,积是正数的有2种情况,所以,P(积是正数)=21 63 ,故选:A.【点睛】考查了列表法与树状图法,本题用到的知识点为:概率=所求情况数与总情况数之比.6.C解析:C【分析】首先列表,然后根据表格求得所有等可能的结果与两个骰子的点数相同的情况,再根据概率公式求解即可.【详解】列表得:(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)∴两个骰子的点数相同的概率为:61=366故选:C【点睛】此题考查了树状图法与列表法求概率.注意树状图法与列表法可以不重不漏的表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比7.C【分析】根据随机事件的概念、抽样调查的特点、方差的意义及概率公式分别判断可得.【详解】解:A、“清明时节雨纷纷”是随机事件,此选项错误;B、要了解路边行人边步行边低头看手机的情况,采取对在路边行走的学生随机发放问卷的方式进行调查不具代表性,此选项错误;C、做重复试验:抛掷同一枚瓶盖1000次,经过统计得“凸面向上”的频数为550次,则可以由此估计抛掷这枚瓶盖出现“凸面向上”的概率为0.55,正确;D、射击运动员甲、乙分别射击10次且击中环数的方差分别是0.5和1.2,则运动员甲的成绩较稳定,此选项错误;8.B解析:B【分析】根据掷一次骰子最终停在方格6的出现的情况利用概率公式解答即可.【详解】掷一次骰子最终停在方格6的情况有①直接掷6;②掷3后前进三格到6;所以掷一次骰子最终停在方格6的概率是21 63 ,故选B.【点睛】此题考查几何概率,关键是根据掷一次骰子最终停在方格6的出现的情况利用概率公式解答.9.D解析:D【分析】先计算出样本中身高不低于180cm的频率,然后根据利用频率估计概率求解.【详解】样本中身高不低于180cm的频率=15100=0.15,所以估计他的身高不低于180cm的概率是0.15.故选D.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.10.D解析:D首先根据题意列出表格,然后由表格中求得所有等可能的结果与两次摸出的小球的标号之和大于4的情况,再利用概率公式即可求得答案; 【详解】两次摸出小球标号的组合如下:共12组∴其概率为:=123, 故选:D . 【点睛】本题考查了用列表法或树状图法求概率,注意列表法或树状图法要不重复不遗漏的列出所有等可能的情况,所用到的知识点为:概率 =所求情况数与总情况数之比.11.D解析:D 【分析】设袋子中红球有x 个,根据摸出红球的频率稳定在0.25左右列出关于x 的方程,求出x 的值,从而得出答案. 【详解】解:设袋子中红球有x 个,根据题意,得:40x=0.25, 解得x=10,∴袋子中红球的个数最有可能是10个,黄球有40-10=30(个) 故选:D . 【点睛】本题主要考查利用频率估计概率,大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.12.B解析:B 【分析】列表展示所有36种等可能的结果数,再根据判别式的意义得到△≥0,从而得到使得一元二次方程ax2-6x+c=0有相等实数解的结果数,然后根据概率公式求解.【详解】解:列表得:∵b=6,当b2-4ac≥0时,有实根,即36-4ac≥0有实根,∴ac≤9,∴方程有实数根的有17种情况,∴方程有实数根的概率=1736,故选:B.【点睛】本题考查列表法与树状图法求概率,一元二次方程实根的情况,是一个综合题,解题的关键是对于一元二次方程的解的情况的分析,解题时有一定难度.二、填空题13.【分析】首先画树状图列出所有可能的点(ab)并求得在y=-2x+4与坐标轴所围成的三角形区域内(含边界)上的点最后利用概率公式即可求得【详解】解:画树状图如下:总共有12种等可能结果其中点(ab)恰解析:5 12【分析】首先画树状图列出所有可能的点(a,b),并求得在y=-2x+4与坐标轴所围成的三角形区域内(含边界)上的点,最后利用概率公式即可求得.【详解】解:画树状图如下:总共有12种等可能结果,其中点(a,b)恰好落在一次函数y=-2x+4与坐标轴所围成的三角形区域内(含边界)的可能性有1,12⎛⎫⎪⎝⎭,1,22⎛⎫⎪⎝⎭,1,32⎛⎫⎪⎝⎭,11,2⎛⎫⎪⎝⎭,()1,2,共5种,其概率为5 12,故答案为:5 12.【点睛】本题考查的是用列表法或树状图法求概率,一次函数上点的坐标特征.注意本题为不放回实验.14.【分析】根据题意把所有可能出现的结果用表格表示出来即可求解【详解】解:所有可能出现的结果用表格表示为:共有9种等可能的结果其中两人恰好选中同一根绳子的结果共有3种∴两人恰好选中同一根绳子的概率为:故解析:1 3【分析】根据题意,把所有可能出现的结果用表格表示出来,即可求解.【详解】解:所有可能出现的结果用表格表示为:共有9种等可能的结果,其中两人恰好选中同一根绳子的结果共有3种,∴两人恰好选中同一根绳子的概率为:3193,故答案为:13.【点睛】本题考查用列表法或画树状图法求概率,解题的关键是根据题意列出所有可能出现的结果.15.【分析】根据题意列出树状图解答即可【详解】设每道题的四个选项分别为:ABCD且这两道题都只有A选项是正确的列树状图如下:共有16种等可能的情况其中这两道题全部做对的有1种∴该同学的这两道题全部做对的解析:1 16【分析】根据题意,列出树状图解答即可.【详解】设每道题的四个选项分别为:A、B、C、D,且这两道题都只有A选项是正确的,列树状图如下:共有16种等可能的情况,其中这两道题全部做对的有1种,∴该同学的这两道题全部做对的概率是116,故答案为:1 16.【点睛】此题考查用列表法或树状图法求概率,正确理解题意列出树状图是解题的关键.16.【分析】直接利用概率求法进而得出答案【详解】∵一个质地均匀的小正方体六个面分别标有数字112455∴随机掷一次小正方体朝上一面的数字是奇数的概率是:故答案为:【点睛】此题主要考查了概率公式正确掌握概解析:2 3【分析】直接利用概率求法进而得出答案.【详解】∵一个质地均匀的小正方体,六个面分别标有数字1,1,2,4,5,5,∴随机掷一次小正方体,朝上一面的数字是奇数的概率是:42=63.故答案为:23.【点睛】此题主要考查了概率公式,正确掌握概率公式是解题关键.17.【分析】先算出总的球的个数直接利用概率公式求解即可求得答案【详解】解:总的球数为:3+6=9个所以从中随机摸出一个球恰好是黄球的概率为:故答案为:;【点睛】本题主要考查了概率公式:随机事件A的概率P解析:1 3【分析】先算出总的球的个数,直接利用概率公式求解即可求得答案.【详解】解:总的球数为:3+6=9个,所以从中随机摸出一个球,恰好是黄球的概率为:31 93 ,故答案为:13;【点睛】本题主要考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.18.【分析】根据题意得出摸出红球的频率继而根据频数=总数×频率计算即可【详解】∵小明通过多次摸球试验后发现其中摸到红球的频率稳定在40∴口袋中红色球的个数可能是30×40=12个故答案为:12【点睛】本解析:【分析】根据题意得出摸出红球的频率,继而根据频数=总数×频率计算即可.【详解】∵小明通过多次摸球试验后发现其中摸到红球的频率稳定在40%,∴口袋中红色球的个数可能是30×40%=12个.故答案为:12.【点睛】本题比较容易,考查利用频率估计概率.大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.19.【分析】利用黑色区域的面积除以游戏板的面积即可【详解】解:黑色区域的面积=3×3﹣×3×1﹣×2×2﹣×3×1=4∴击中黑色区域的概率==故答案是:【点睛】本题考查了几何概率:求概率时已知和未知与几解析:1 5【分析】利用黑色区域的面积除以游戏板的面积即可.【详解】解:黑色区域的面积=3×3﹣12×3×1﹣12×2×2﹣12×3×1=4,∴击中黑色区域的概率=420=15.故答案是:15.【点睛】本题考查了几何概率:求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.20.B【分析】用用时不超过15分钟的人数除以总人数即可求得概率;先分别求出A线路不超过20分钟的人数和B线路不超过20分钟的人数再进行比较即可得出答案【详解】∵在A地铁站乘车等待时间不超过15分钟有50解析:15B【分析】用“用时不超过15分钟”的人数除以总人数即可求得概率;先分别求出A线路不超过20分钟的人数和B线路不超过20分钟的人数,再进行比较即可得出答案.【详解】∵在A地铁站“乘车等待时间不超过15分钟有50+50=100人,∴在A地铁站“乘车等待时间不超过15分钟”的概率为100500=15,∵A线路不超过20分钟的有50+50+152=252人,B线路不超过20分钟的有45+215+167=427人,∴选择B线路,故答案为:15,B.【点睛】此题考查了用频率估计概率的知识,能够读懂图是解答本题的关键,难度不大;用到的知识点为:概率=所求情况数与总情况数之比.三、解答题21.(1)见解析;(2)小辉获胜的概率为12,小聪获胜的概率为13,该游戏规则对双方不公平.【分析】(1)根据题目中两个转盘的数字及游戏规则,即可画出树状图;(2)根据树状图展示所有等可能的结果数6种,计算出小辉获胜的概率和小聪获胜的概率,然后通过比较概率的大小判断该游戏规则对双方是否公平.【详解】解:(1)画树状图为:(2)根据树状图,共有6种等可能的结果数,其中数字和为2的倍数有3种,数字和为3的倍数有2种,∴小辉获胜的概率=3162=,小聪获胜的概率=21 63 =,∵12>13,∴该游戏规则对双方不公平.【点睛】本题考查了概率的应用,掌握树状图或列表法计算出概率并利用概率进行判断是解答此题的关键.22.(1)50人,图见详解;(2)1 3 .【分析】(1)由篮球人数及其所占百分比可得总人数,再进一步求出足球和羽毛球人数即可补全图形;(2)先画树状图展示所有12种等可能的结果数,找出选出的2人恰好有1人选修排球、1人选修羽毛球所占结果数,然后根据概率公式求解.【详解】(1)该班的总人数为:1734%50÷=(人),足球科目人数为:5014%7⨯=(人)羽毛球科目人数为:501771259----=(人),补全统计图如图所示:(2)设选修排球的记为A,选修羽毛球记为1B和2B,选修乒乓球记为C.画树状图为:共有12种等可能的结果,其中恰好有1人选修排球、1人选修羽毛球的占4种,所以()1141 123P==恰好有人选修排球、人选修羽毛球.【点睛】本题考查了统计与概率,解题的关键是利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.23.(1)60人,画图见解析;(2)225人;(3)2 3【分析】(1)根据喜爱足球的人数和所占的百分比求出总人数,由总人数减去喜爱足球和篮球人数,即可求出喜爱排球的人数,并补全条形图即可;(2)由总人数乘以喜爱篮球运动的学生的百分数即可得解;(3)画树状图展示12种等可能的结果数,再找出抽取的两人恰好是一名男生和一名女生结果数,然后根据概率公式求解.【详解】解:(1)此次调查的学生总人数为1220%60÷=(人).喜爱排球运动的学生人数为60-12-27=21(人),补全条形统计图如下:(2)500(135%20%)225⨯--=(人),估计该中学九年级学生中喜爱篮球运动的学生有225人.(3)画树状图如下:由图可知,所有可能出现的结果共有12种,且这些结果出现的可能性相等,其中抽取的两人恰好是1名男生和1名女生的结果有8种,P∴(抽取的两名学生恰好为1名男生和1名女生)82 123 ==.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了条形统计图和扇形统计图.24.(1)见解析;(2)1400万人;(3)1 9【分析】(1)根据统计图中的数据可以得到本次调查的学生数,从而可以得到旅行社的学生数,根据自由行人数和旅行社人数除以总数得到百分比,进而可以将条形统计图和扇形统计图补充完整;(2)根据扇形图中的数据可以估计全国大学生中自由行的人数有多少名;(3)根据题意可以得到三人抽中同一城市的概率.【详解】解:(1)本次调查的学生数为:120÷10%=1200,调查学生中旅行社的学生数为:1200-840-120-60=180,自由行人数所占百分比为840÷1200=70%,旅行社人数所占百分比为180÷1200=15%,故补全的条形统计图和扇形统计图如下图所示,。

(常考题)北师大版初中数学九年级数学上册第三单元《概率的进一步认识》测试卷(含答案解析)

(常考题)北师大版初中数学九年级数学上册第三单元《概率的进一步认识》测试卷(含答案解析)

一、选择题1.甲、乙两位同学在一次用频率估计概率的实验中统计了某一结果出现的频率,并绘出了如下统计图,则符合这一结果的实验可能是()A.掷一枚正六面体的骰子,出现5点的概率B.掷一枚硬币,出现正面朝上的概事C.一个不透明的袋子中装着除颜色外都相同的两个红球和一个黄球,从中任意取出一个是黄球的概率D.任意写出一个两位数,能被2整除的概率2.有三张正面分别标有数字-2 ,3, 4 的不透明卡片,它们除数字不同外,其余全部相同,现将它们背面朝上洗匀后,从中任取一张(不放回),再从剩余的卡片中任取一张,则两次抽取的卡片上的数字之积为正偶数的概率是()A.49B.112C.13D.163.从{3,2,1,0,1,2,3}---这七个数中随机抽取一个数记为a,则a的值是不等式组352132xxxx⎧+>⎪⎪⎨⎪<+⎪⎩的解,但不是方程2320x x-+=的实数解的概率为().A.17B.27C.37D.474.若在“正三角形、平行四边形、菱形、正五边形、正六边形”这五种图形中随机抽取一种图形,则抽到的图形属于中心对称图形的概率是()A.15B.25C.35D.455.如图是一个正八边形,向其内部投一枚飞镖,投中阴影部分的概率是()A.13B.12C2D.346.一个不透明的袋子中装有白球4个,黑球若干个,这些球除颜色外其余完全一样.如果随机从袋中摸出一个球是白球的概率为13,那么袋中有多少个黑球( ) A .4个 B .12个 C .8个 D .不确定 7.现有两组相同的牌,每组三张且大小一样,三张牌的牌面数字分别是1、2、3,从每组牌中各摸出一张牌.两张牌的牌面数字之和等于4的概率是( )A .29B .13C .59D .238.某单位进行内部抽奖,共准备了100张抽奖券,设一等奖10个,二等奖20个,三等奖30个.若每张抽奖券获奖的可能性相同,则1张抽奖券中奖的概率是( ) A .0.1 B .0.2 C .0.3 D .0.69.如图,转盘的红、黄、蓝、紫四个扇形区域的圆心角分别记为α,β,γ,θ.自由转动转盘,则下面说法错误的是( )A .若90α>︒,则指针落在红色区域的概率大于0.25B .若αβγθ>++,则指针落在红色区域的概率大于0.5C .若αβγθ-=-,则指针落在红色或黄色区域的概率和为0.5D .若180γθ+=︒,则指针落在红色或黄色区域的概率和为0.510.一个密闭不透明的盒子里有若干个白球,在不许将球倒出来数的情况下,为了估计白球数,小刚向其中放入了8个黑球,搅匀后从中随意摸出一个球记下颜色,再把它放回盒中,不断重复这一过程,共摸球400次,其中80次摸到黑球,你估计盒中大约有白球( )A .32个B .36个C .40个D .42个11.一个不透明的布袋中,装有红、黄、白三种只有颜色不同的小球,其中红色小球有6个,黄、白色小球的数量相同,为估计袋中黄色小球的数量,每次将袋中小球搅匀后摸出一个小球记下颜色放回,再搅匀多次试验发现摸到红色的频率是18,则估计黄色小球的个数是( )A .21B .40C .42D .4812.把同一副扑克牌中的红桃2、红桃3、红桃4三张牌背面朝上放在桌子上,从中随机抽取两张,牌面的数字之和为奇数的概率为( )A .49B .13C .12D .23二、填空题13.一个小球在如图所示的地板上自由滚动,最终停在阴影区域的概率为_______.14.有六张大小形状相同的卡片,分别写有1~6这六个数字,将它们背面朝上洗匀后,任意抽取一张,记卡片上的数字为a,则a的值使得关于x的分式方程26122 axx x--=--有整数解的概率为_____.15.从“武汉加油!中国加油!”这句励志句中任选一个汉字,这个字是“油”的概率是___________.16.在一个布袋中装有四个完全相同的小球,它们分别写有“美”、“丽”、“罗”、“山”的文字.先从袋中摸出1个球后放回,混合均匀后再摸出1个球,求两次摸出的球上是含有“美”“丽”二字的概率为_____.17.技术变革带来产品质量的提升.某企业技术变革后,抽检某一产品2020件,欣喜发现产品合格的频率已达到0.9911,依此我们可以估计该产品合格的概率为_______.(结果要求保留两位小数)18.在一个不透明的袋子里装有4个白球,若干个黄球,每个球除颜色外均相同,将球搅匀,从中任意摸出一个球,摸到黄球的概率为45,则袋子内共有球____个.19.微信给甲、乙、丙三人,若微信的顺序是任意的,则第一个微信给甲的概率为_____.20.如图,一飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色区域的概率是_____.三、解答题21.一个不透明的口袋里装有分别标有汉字“优”、“秀”、“学”、“生”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀.(1)若从中任取一个球,球上的汉字刚好是“优”的的概率是______;(2)从中任取一球,不放回,再从中任取一球,请用树状图或列表的方法,求取出两个球上的汉字能组成“优秀”或“学生”的概率.22.电视台为了开展线上“百人合唱一首歌”的“云演出”活动,需招募青少年歌手.甲、乙、丙、丁报名参加了应聘活动,其中甲、乙为男歌手,丙、丁为女歌手.现对这四名歌手采取随机抽取的方式进行线上面试.(1)若随机抽取一名歌手,求恰好抽到丁的概率;(2)若随机抽取两名歌手,请用列表或画树状图表示所有可能的结果,并求出恰好抽到一男一女的概率.23.在一个不透明的布袋里装有3个大小、质地均相同的乒乓球,球上分别标有数字为1、2、3(1)随机从布袋中一次摸出两个乒乓球,写出两个乒乓球上的数字都是奇数的概率是_________;(2)随机从布袋中摸出一个乒乓球,记下数字后放回布袋里,再随机从布袋中摸出一个乒乓球,请用列表或画树状图的方法求出两个乒乓球上的数字之和不小于4的概率.24.在一次数学兴趣小组活动中,李燕和刘凯两位同学设计了如图所示的两个转盘做游戏(每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字).游戏规则如下:两人分别同时转运甲、乙转盘,转盘停止后,若指针所指区域内两数和小于12,则李燕获胜;若指针所指区域内两数和等于12,则为平局;若指针所指区域内两数和大于12,则刘凯获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).(1)请用列表或画树状图的方法表示出上述游戏中两数和的所有可能的结果;(2)计算平局的概率.(3)刘凯说:“这种规则不公平”,你认同他的说法吗?请说明理由.(4)若你认为不公平,请你帮他们修改规则使游戏公平?25.平定县位于山西中部东侧,是三晋东大门.境内山川秀丽,有著名旅游景区娘子关,有名扬三晋的冠山古书院,建于秦长城一百年之前的周关长城,省级森林公园药林寺等等,这些都是人们周末游的好去处,小明计划某个周末和妹妹一起去旅游,他收集了如图所示四个景点的卡片,卡片分别用N,G,C,Y表示,卡片大小、形状及背面完全相同,通过游戏规则,选择景点,请用列表法或画树状图的方法,求下列随机事件的概率:(1)若选择其中一个景点游戏规则:把这四张图片背面朝上洗匀后,妹妹从中随机抽取一张,作好记录后,将图片放回洗匀,哥哥再抽取一张求两人抽到同一景点的概率;(2)若选择其中两个景点,游戏规则:把这四张图片背面朝上洗匀后,妹妹和哥哥从中各随机抽取一张(不放回).求两人抽到娘子关和固关长城的概率.26.生活在数字时代的我们,很多场合用二维码(如图①)来表示不同的信息,类似地,可通过在网格中,对每一个小方格涂色或不涂色所得的图形来表示不同的信息,例如:网格中只有一个小方格(如图②),通过涂色或不涂色可表示两个不同的信息.(1)用树状图或列表格的方法,求图③可表示不同信息的总个数(图中标号1、2表示两个不同位置的小方格,下同)(2)图④为22⨯的网格图,它可表示不同信息的总个数为________;(3)某校需要给每位师生制作一张“校园出入证”,准备在证件的右下角采用n n⨯的网格图来表示个人身份信息,若该校师生共506人,则n的最小值为________.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.【详解】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,A、掷一枚正六面体的骰子,出现5点的概率为16,故此选项错误;B、掷一枚硬币,出现正面朝上的概率为12,故此选项错误;C、一个不透明的袋子中装着除颜色外都相同的两个红球和一个黄球,从中任意取出一个是黄球的概率为10.333≈,故此选项正确;D、任意写出一个两位数,能被2整除的概率为12,故此选项错误.故选:C.【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.2.C解析:C【详解】画树状图得:∵共有6种等可能的结果,两次抽取的卡片上的数字之积为正偶数的有2种情况, ∴两次抽取的卡片上的数字之积为正偶数的概率是:2163=. 故选C.【点睛】本题考查运用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件. 3.B解析:B【分析】先解不等式,再解一元二次方程,利用概率公式得到概率【详解】352132x x x x ⎧+>⎪⎪⎨⎪<+⎪⎩①② 解①得,2x >-,解②得,34x >-. ∴34x >-. ∵a 的值是不等式组352132x x x x ⎧+>⎪⎪⎨⎪<+⎪⎩的解, ∴0,1,2,3a =.方程23120x x -+=,解得11x =,22x =. ∵a 不是方程232x x -+的解,∴0a =或3.∴满足条件的a 的值为1,2(2个).∴概率为27. 故选B .4.C解析:C【解析】试题 这五种图形中,平行四边形、菱形和正六边形是中心对称图形,所以这五种图形中随机抽取一种图形,则抽到的图形属于中心对称图形的概率=35.故选C .考点:1.概率公式;2.中心对称图形. 5.B解析:B【分析】根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.根据正八边形性质求出阴影部分面积占总面积之比,进而可得到答案【详解】 解:由正八边形性质可知∠EFB=∠FED=135°,故可作出正方形ABCD .则AEF 是等腰直角三角形,设AE x =,则AF x =,2EF x =,正八边形的边长是2x . 则正方形的边长是(22)x +.则正八边形的面积是:(2221(22)44122x x x ⎡⎤-=+⎣⎦, 阴影部分的面积是:2212[(22)2]2(21)2x x x x -⨯=. ()2221241122x x ++=, 故选:B .【点睛】 本题考查了几何概率的求法:一般用阴影区域表示所求事件(A );首先根据题意将代数关系用面积表示出来;然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A )发生的概率.同时也考查了正多边形的计算,根据正八边形性质构造正方形求面积比是关键.6.C解析:C 【分析】首先设黑球的个数为x个,根据题意得:4143=x+,解此分式方程即可求得答案.【详解】设黑球的个数为x个,根据题意得:41 43=x+,解得:x=8,经检验:x=8是原分式方程的解;∴黑球的个数为8.故选:C.【点睛】此题考查概率公式的应用.解题关键在于掌握概率=所求情况数与总情况数之比.7.B解析:B【分析】画树状图列出所有情况,看数字之和等于4的情况数占总情况数的多少即可.【详解】画树状图得:则共有9种等可能的结果,其中两张牌的牌面数字之和等于4的有3种结果,∴两张牌的牌面数字之和等于4的概率为39=13,故选:B.【点睛】本题考查列表法和树状图法,解题的关键是可以不重复不遗漏的列出所有可能的结果.8.D解析:D【分析】直接利用概率公式进行求解,即可得到答案.【详解】解:∵共准备了100张抽奖券,设一等奖10个,二等奖20个,三等奖30个.∴1张抽奖券中奖的概率是:102030100++=0.6, 故选:D .【点睛】 本题考查了概率公式:随机事件A 的概率P (A )=事件A 可能出现的结果数除以所有可能出现的结果数.9.C解析:C【分析】根据概率公式计算即可得到结论.【详解】解:A 、∵α>90°,900.25360360α∴>=,故A 正确; B 、∵α+β+γ+θ=360°,α>β+γ+θ, 1800.5360360α∴>=,故B 正确; C 、∵α-β=γ-θ,∴α+θ=β+γ,∵α+β+γ+θ=360°,∴α+θ=β+γ=180°, 1800.5360︒︒∴= ∴指针落在红色或紫色区域的概率和为0.5,故C 错误;D 、∵γ+θ=180°,∴α+β=180°,1800.5360∴= ∴指针落在红色或黄色区域的概率和为0.5,故D 正确;故选:C .【点睛】本题考查了概率公式,熟练掌握概率公式是解题的关键.10.A解析:A【分析】可根据“黑球数量÷黑白球总数=黑球所占比例”来列等量关系式,其中“黑白球总数=黑球个数+白球个数“,“黑球所占比例=随机摸到的黑球次数÷总共摸球的次数”【详解】设盒子里有白球x 个,根据=黑球个数摸到黑球次数小球总数摸球总次数得: 8808400x =+ 解得:x=32.经检验得x=32是方程的解.答:盒中大约有白球32个.故选;A .【点睛】此题主要考查了利用频率估计概率,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解,注意分式方程要验根.11.A解析:A【分析】 根据多次试验发现摸到红球的频率是18,则可以得出摸到红球的概率为18,再利用红色小球有6个,黄、白色小球的数目相同进而表示出黄球概率,得出答案即可.【详解】设黄球的数目为x ,则黄球和白球一共有2x 个, ∵多次试验发现摸到红球的频率是18,则得出摸到红球的概率为18, ∴662x +=18, 解得:x =21, 经检验x=21是所列方程的根,则黄色小球的个数是21个.故选:A .【点睛】本题考查了利用频率估计概率,根据题目中给出频率可知道概率,从而可求出黄色小球的数目是解题关键.12.D解析:D【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与从中随机抽取两张,牌面的数字之和为奇数的情况,再利用概率公式求解即可求得答案.【详解】解:根据题意画树状图如下:∵共有6种等可能的结果,从中随机抽取两张,牌面的数字之和为奇数的有4种情况,∴从中随机抽取两张,牌面的数字之和为奇数的概率为:4263=;故选:D.【点睛】本题考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.二、填空题13.【分析】先求出黑色方砖在整个地板中所占的比值再根据其比值即可得出结论【详解】∵由图可知黑色方砖5块共有25块方砖∴黑色方砖在整个地板中所占的比值∴它停在黑色区域的概率是故答案为:【点睛】本题考查了几解析:1 5【分析】先求出黑色方砖在整个地板中所占的比值,再根据其比值即可得出结论.【详解】∵由图可知,黑色方砖5块,共有25块方砖,∴黑色方砖在整个地板中所占的比值51255=,∴它停在黑色区域的概率是15.故答案为:15.【点睛】本题考查了几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.14.【分析】先把分式方程化为整式方程解整式方程得到x=且x≠2利用有理数的整除性得到a=2或3然后根据概率公式求解【详解】把分式方程去分母得ax﹣2﹣(x﹣2)=6∴(a﹣1)x=6∵分式方程有整数解∴解析:13.【分析】先把分式方程化为整式方程,解整式方程得到x =61a -且x ≠2,利用有理数的整除性得到a =2或3,然后根据概率公式求解. 【详解】把分式方程26122ax x x --=--去分母得ax ﹣2﹣(x ﹣2)=6, ∴(a ﹣1)x =6, ∵分式方程有整数解,∴x =61a -且x ≠2, ∴a =2或3,∴a 的值使得关于x 的分式方程26122ax x x --=--有整数解的概率=13.故答案为13. 【点睛】本题考查了分式方程的解:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.分式方程的增根是令分母等于0的未知数的值,不是原分式方程的解.也考查了概率公式.15.【分析】根据概率的求法找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率【详解】解:∵在武汉加油!中国加油!这8个字中油字有2个∴这句话中任选一个汉字这个字是油的概率是故答解析:14【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 【详解】解:∵在“武汉加油!中国加油!”这8个字中,“油”字有2个, ∴这句话中任选一个汉字,这个字是“油”的概率是21=84, 故答案为:14. 【点睛】本题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n. 16.【分析】画树状图展示所有16种等可能的结果数再找出两次摸出的球上是写有美丽二字的结果数然后根据概率公式求解【详解】(1)用1234别表示美丽罗山画树形图如下:由树形图可知所有等可能的情况有16种其中解析:1 8【分析】画树状图展示所有16种等可能的结果数,再找出两次摸出的球上是写有“美丽”二字的结果数,然后根据概率公式求解.【详解】(1)用1、2、3、4别表示美、丽、罗、山,画树形图如下:由树形图可知,所有等可能的情况有16种,其中“1,2”出现的情况有2种,∴P(美丽)21168==.故答案为:18.【点睛】本题考查了用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.17.99【分析】根据产品合格的频率已达到09911保留两位小数所以估计合格件数的概率为099【详解】解:合格频率为:09911保留两位小数为099则根据产品合频率估计该产品合格的概率为099故答案为09解析:99【分析】根据产品合格的频率已达到0.9911,保留两位小数,所以估计合格件数的概率为0.99.【详解】解:合格频率为:0.9911,保留两位小数为0.99,则根据产品合频率,估计该产品合格的概率为0.99.故答案为0.99.【点睛】本题考查了利用频率估计概率.用到的知识点为:概率=所求情况数与总情况数之比及运用样本数据去估计总体数据的基本解题思想.18.20【分析】设袋子内共有球x个利用概率公式得到然后利用比例性质求出x即可【详解】解:设袋子内共有球x个根据题意得解得x=20经检验x=20为原方程的解即袋子内共有球20个故答案为20【点睛】本题考查解析:20设袋子内共有球x个,利用概率公式得到445xx-=,然后利用比例性质求出x即可.【详解】解:设袋子内共有球x个,根据题意得445xx-=,解得x=20,经检验x=20为原方程的解,即袋子内共有球20个.故答案为20.【点睛】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.19.【分析】根据题意微信的顺序是任意的微信给甲乙丙三人的概率都相等均为【详解】∵微信的顺序是任意的∴微信给甲乙丙三人的概率都相等∴第一个微信给甲的概率为故答案为【点睛】此题考查了概率的求法:如果一个事件解析:1 3【分析】根据题意,微信的顺序是任意的,微信给甲、乙、丙三人的概率都相等均为13.【详解】∵微信的顺序是任意的,∴微信给甲、乙、丙三人的概率都相等,∴第一个微信给甲的概率为13.故答案为13.【点睛】此题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.20.【分析】利用黑色区域的面积除以游戏板的面积即可【详解】解:黑色区域的面积=3×3﹣×3×1﹣×2×2﹣×3×1=4∴击中黑色区域的概率==故答案是:【点睛】本题考查了几何概率:求概率时已知和未知与几解析:1 5利用黑色区域的面积除以游戏板的面积即可.【详解】解:黑色区域的面积=3×3﹣12×3×1﹣12×2×2﹣12×3×1=4,∴击中黑色区域的概率=420=15.故答案是:15.【点睛】本题考查了几何概率:求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.三、解答题21.(1)14;(2)13【分析】(1)直接利用概率公式求解即可;(2)列表法列出所有等可能的结果,从中找到符合条件的结果数,再根据概率公式求解即可;【详解】解:(1)∵共有4个数,∴若从中任取一个球,球上的汉字刚好是“优”的概为14;(2)列出下表:∴按要求能组成“优秀”或“学生”的概率为41 123 ==.【点睛】本题考查了列表法和树状图法,以及用概率公式求解概率;正确掌握知识点是解题的关键;22.(1)14;(2)23【分析】(1)共有4种可能出现的结果,抽到丁的只有1种,可求出抽到丁的概率; (2)用列表法表示所有可能出现的结果,进而求出恰好抽到一男一女的概率. 【详解】解:(1)共有4种可能出现的结果,抽到丁的只有1种, 因此()14P =抽到丁, 故答案为:14; ()2根据题意,列表如下:因为、乙为男歌手,丙、丁为女歌手,所以其中恰好一男一女的结果有8种, 则()82123P ==一男一女, 所以,恰好抽到一男一女的概率是23. 【点睛】本题考查列表法或树状图法求随机事件发生的概率,列举出所有可能出现的结果情况是正确解答的前提. 23.(1)13;(2)23【分析】(1)用列举法展示所有可能的结果数,然后根据概率公式求解;(2)画树状图展示所有9种等可能的结果数,再找出两个兵乒球上的数字之和不小于4的结果数,然后根据概率公式求解. 【详解】(1)可能出现的结果有:()12,,()13,,()23,,共3种, 两个数字都是奇数的只有()13,一种,∴两个乒乓球上的数字都是奇数的概率是13,故答案为:13;(1)画树状图如下:一共有9种可能的结果,其中大于或等于4的有6种,∴两个乒乓球上的数字之和不小于4的概率为:6293=.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.24.(1)见解析,12种;(2)14;(3)认同,见解析;(4)见解析.【分析】(1)根据题意画出树状图,得出游戏中两数和的所有可能的结果数;(2)根据(1)得出两数和共有的情况数和其中和等于12的情况数,再根据概率公式即可得出答案;(3)根据(1)得出两数和共有的情况数和其中和小于12的情况、和大于12的情况数,再根据概率公式即可得出答案;(4)应保证双方赢的概率相同.【详解】解:(1)画树状图:可见,两数和共有12种等可能性;(2)两数和共有12种等可能性,其中平局的情况有3种,∴P(出现平局)31124==;(3)由(1)可知,两数和共有12种等可能的情况,其中和小于12的情况有6种,和大于12的情况有3种,P∴(李燕获胜)61 122 ==,P(刘凯获胜)31 124 ==,∵1142<,∴这个游戏规则对双方不公平.(4)游戏规则:(答案不唯一)如:两人分别同时转运甲、乙转盘,转盘停止后,若指针所指区域内两数等于12,则李燕胜;若指针所指区域内两数和大于12,则刘凯获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).或:两人分别同时转运甲、乙转盘,转盘停止后,若指针所指区域内两数小于12,则李燕胜;否则就刘凯获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).【点睛】本题考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.游戏双方获胜的概率相同,游戏就公平,否则游戏不公平.用到的知识点为:概率=所求情况数与总情况数之比.25.(1)14;(2)16【分析】(1)画树状图,共有16种等可能的结果,其中两人抽到同一景点的结果有4个,则由概率公式求解即可;(2)画树状图,共有12种等可能的结果,其中两人抽到娘子关和固关长城的结果有2个,则由概率公式求解即可.【详解】解:(1)画树状图如下:由树状图可以看出,所有可能出现的结果共有16种,而且每种结果出现的可能性相同,其中抽到的两个景点相同的结果共有4种,∴P(抽到同一景点)41164==;(2)画树状图如下:。

概率的进一步认识单元测验及答案

概率的进一步认识单元测验及答案

第3章概率的进一步认识单元测验(时间:45分钟满分:100分)班级: _________________ 姓名:____________一、选择题:(每小题3分,共30分)1.下列事件中,是必然事件的是()A.打开电视机,正在播放新闻B.父亲年龄比儿子年龄大C.通过长期努力学习,你会成为数学家D.下雨天,每个人都打着雨伞2.下列事件中:确定事件是()A.掷一枚六个面分别标有1~6的数字的均匀骰子,骰子停止转动后偶数点朝上B.从一副扑克牌中任意抽出一张牌,花色是红桃C.任意选择电视的某一频道,正在播放动画片D.在同一年出生的367名学生中,至少有两人的生日是同一天.3.10名学生的身高如下(单位:cm)159 169 163 170 166 165 156 172 165 162从中任选一名学生,其身高超过165cm的概率是()A.12B.25C.15D.1104.下列说法正确的是()①试验条件不会影响某事件出现的频率;②在相同的条件下试验次数越多,就越有可能得到较精确的估计值,但各人所得的值不一定相同;③如果一枚骰子的质量分布均匀,那么抛掷后每个点数出现的机会均等;④抛掷两枚质量分布均匀的相同的硬币,出现“两个正面”、“两个反面”、“一正一反”的机会相同.A.①②B.②③C.③④D.①③5.如图1所示为一水平放置的转盘,使劲转动其指针,并让它自由停下,下面叙述正确的是()A.停在B区比停在A区的机会大B.停在三个区的机会一样大C.停在哪个区与转盘半径大小有关D.停在哪个区是可以随心所欲的图16.从标有号码1到100的100张卡片中,随意地抽出一张,其号码是3的倍数的概率是( ) A.33100B.34100C.310D.不确定7.两个射手彼此独立射击一目标,甲射中目标的概率为0.9,乙射中目标的概率为0.8,在一次射击中,甲、乙同时射中目标的概率是( ) A.0.72B.0.85C.0.1D.不确定8.如图2所示的两个圆盘中,指针落在每一个数上 的机会均等,则两个指针同时落在偶数上的概率是( )A.525 B.625C.1025D.19259.有阜阳到合肥的某一次列车,运行途中停靠的车站依次是:阜阳—淮南—水家湖—合肥,那么要为这次列车制作的火车票有( ) A.3种 B.4种 C.6种 D.12种10.中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竟猜游戏,游戏规则如下:在20个商标牌中,有5个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张哭脸,若翻到哭脸,就不得奖,参与这个游戏的观众有三次翻牌的机会(翻过的牌不能再翻).某观众前两次翻牌均获得若干奖金,那么他第三翻牌获奖的概率是 ( ) A.14B.15C.16D.320二、填空题(每小题3分,共15分)11.一个口袋中装有4个白色球,1个红色球,7个黄色球,搅匀后随机从袋中摸出1个球是白色球的概率是 .12.掷两枚硬币,一枚硬币正面朝上,另一枚硬币反面朝上的概率是.13.小红、小芳、小明在一起做游戏时需要确定做游戏的先后顺序,他们约定用“锤子、剪刀、布”的方式确定.请问在一个回合中三个人都出“布”的概率是 .图214.在对某次实验数据整理过程中,某折线图如图3所示,这个图形中折线的变化特点是,试举一个大致符合这个特点的实物实图3验的例子(指出关注的结果) .15.某校九年级(3)班在体育毕业考试中,全班所有学生得分的情况如下表所示:那么该班共有人,随机地抽取1人,恰好是获得30分的学生的概率是,从上表中,你还能获取的信息是(写出一条即可)三、解答题(共55分)16.(6分)有两组卡片,第一组三张卡片上都写着A、B、B,第二组五张卡片上都写着A、B、B、D、E.试用列表法求出从每组卡片中各抽取一张,两张都是B的概率.17.(6分)将分别标有数字1,2,3 的三张卡片洗匀后,背面朝上放在桌上.(1)随机抽取一张,求抽到奇数的概率;(2)随机抽取一张作为十位上的数字(不放回),再抽取一张作为个位上的数字,能组成哪些两位数?恰好是32的概率是多少18.(8分)依据闯关游戏规则,请你探究“闯关游戏”的奥秘: (1)用列表的方法表示所有可能的闯关情况; (2)求出闯关成功的概率.闯关游戏规则:图4所示的面板上,有左右两组开关按钮,每组中的两个按钮均分别控制一个灯泡和一个发音装置,同时按下两组中各一个按钮:当两个灯泡都亮时闯关成功;当按错一个按钮时,发音装置就会发出“闯关失败”的声音.19.(8分)有一个转盘游戏,被平均分成10份(如图5),分别标有1,2,……,10这10个数字,转盘上有固定的指针,转动转盘,当转盘停止转动时,指针指向的数字即为转出的数字.两人进行游戏,一人转动转盘,另一人猜数,如果猜的数与转出的数情况相符,则猜数的人获胜,否则转盘的人获胜.猜数的方法为下列三种中的一种: (1)猜奇数或偶数;(2)猜是3的倍数或不是3的倍数; (3)猜大于4的数或不大于4的数.如果你是猜数的游戏者,为了尽可能取胜,你选哪种猜法?怎样猜?图4图520.(6分)王老汉为了与客户签订购销合同,对自己的鱼塘的鱼的总质量进行估计,第一次捞出100条,称得质量为184千克,并将每条鱼作上记号放入水中;当它们完全混合于鱼群后,又捞出200条,称得质量为416千克,且带有标记的鱼有20条.①请你帮王老汉估计池塘中有多少条鱼?②请你帮王老汉估计池塘中的鱼有多重?21.(6分)(2007·湖州市)在一个布口袋中装有只有颜色不同,其它都相同的白、红、黑三种颜色的小球各1只,甲乙两人进行摸球游戏;甲先从袋中摸出一球看清颜色后放回,再由乙从袋中摸出一球.(1)试用树状图(或列表法)表示摸球游戏所有可能的结果;(2)如果规定:乙摸到与甲相同颜色的球为乙胜,否则为负,试求乙在游戏中能获胜的概率.22.(7分)如图6,有两个可以自由转动的转盘A 、B ,转盘A 被均匀分成4等份,每份标上数字1、2、3、4四个数字;转盘B 被均匀分成6等份,每份标上数字1、2、3、4、5、6六个数字.有人为甲乙两人设计了一个游戏,其规则如下: (1)同时转动转盘A 与B ;(2)转盘停止后,指针各指向一个数字(如果指针恰好指在分割线上,那么重转一次,直到指针指向一个数字为止),用所指的两个数字作乘积,如果所得的积是偶数,那么甲胜;如果所得的积是奇数,那么乙胜.你认为这样的规则是否公平?请你说明理由;如果不公平,请你设计一个公平的规则,并说明理由.23.(8分)(2007·江西省)在一次数学活动中,黑板上画着如图7所示的图形,活动前老师在准备的四张纸片上分别写有如下四个等式中的一个等式: ①AB DC =②ABE DCE ∠=∠ ③AE DE =④A D ∠=∠小明同学闭上眼睛从四张纸片中随机抽取一张,再从剩下的纸片中随机抽取另一张.请结合图形解答下列两个问题:(1)当抽得①和②时,用①,②作为条件能判定BEC △是等腰三角形吗?说说你的理由;(2)请你用树状图或表格表示抽取两张纸片上的等式所有可能出现的结果(用序号表示),并求以已经抽取的两张纸片上的等式为条件,使BEC △不能..构成等腰三角形的概率.参考答案一、1.B ; 2.D ; 3.B; 4.B; 5.A ; 6.A ; 7.A ; 8. B; 9.C ; 10.C. 二、11.13; 12. 12; 13.127; 14. 随着实验次数增加,频率趋于稳定.如:抛掷硬币实验中关注正面出现的频率;15.65,213,答案不惟一,只要合理均可. 三、16.415.17.(1)P (奇数)=23.(2)恰好是32的概率是16. 18.(1)略.(2)1419. 选(2)不是3的倍数 20.(1)1000条;(2)2000千克. 21.(1)树状图如下甲摸到的球 白 红 黑乙摸到的球 白 红 黑 白 红 黑 白 红 黑 (2)乙摸到与甲相同颜色的球有三种情况 ∴乙能取胜的概率为3193=. 22. 不公平.∵P (奇)=1/4; P (偶)=3/4 ∴P (偶)>P (奇) ∴不公平. 新规则:⑴同时自用转动转盘A 和B ;⑵转盘停止后, 指针各指向一个数字,用所指的两个数字作和,如果得到的和是偶数,则甲胜;如果得到的和是奇数,则乙胜. 理由:∵P (奇)=1/2; P (偶)=1/2 ∴P (偶)=P (奇) ∴公平 23.(1)能. 理由:由AB DC =,ABE DCE =∠∠,AEB DEC =∠∠, 得ABE DCE △≌△.BE CE ∴=,BEC ∴△是等腰三角形.(2)树状图: 先抽取的纸片序号所有可能出现的结果(①②)(①③)(①④)(②①)(②③)(②④)(③①)(③②)(③④)(④①)(④②)(④③)由表格(或树状图)可以看出,抽取的两张纸片上的等式可能出现的结果有12种,它们出现的可能性相等,不能构成等腰三角形的结果有4种,所以使BEC △不能构成等腰三角①②③ ④②①③ ④③① ② ④④①② ③开始后抽取的纸片序号1 3.形的概率为。

第3章 概率的进一步认识单元测试(A卷基础篇)(北师版)(广东专用)(原卷版)

第3章 概率的进一步认识单元测试(A卷基础篇)(北师版)(广东专用)(原卷版)

第3章概率的进一步认识单元测试(A卷基础篇)(北师版)(广东专用) 考试范围:第三章整章;考试时间:100分钟;总分:120分一、单选题(每小题3分,共36分)1.(2019·四川初三月考)连续两次掷一枚质地均匀的硬币,两次都是正面朝上的概率是( )A.16B.14C.12D.132.(2019·贵州初三期末)小兰和小潭分别用掷A、B两枚骰子的方法来确定()P x,y的位置,她们规定:小兰掷得的点数为x,小谭掷得的点数为y,那么,她们各掷一次所确定的点落在已知直线y2x6=-+上的概率为()A.636B.118C.112D.193.(2016·深圳市高级中学初二期中)在一个不透明的盒子里,装有10个红球和5个蓝球,它们除颜色不同外,其余均相同,从中随机摸出一个球,它为蓝球的概率是()A.23B.12C.13D.154.(2019·河南初三期末)小明和小亮在玩“石头、剪子、布”的游戏,两人一起做同样手势的概率是()A.12B.13C.14D.155.(2019·广东初三月考)一个不透明的袋子中装有仅颜色不同的1个红球和3个绿球,从袋子中随机摸出一个小球,记下颜色后,不放回再随机摸出一个小球,则两次摸出的小球恰好是一个红球和一个绿球的概率为( )A.12B.716C.14D.386.试验中,随着次数的逐渐增多,事件发生频率的变化规律是()A.波澜起伏B.风平浪静C.先风平浪静后波澜起伏D.先波澜起伏后风平浪静7.(2018·陕西初一期末)以下说法合理的是()A.小明做了3次掷图钉的实验,发现2次钉尖朝上,由此他说钉尖朝上的概率是2 3B.某彩票的中奖概率是5%,那么买100张彩票一定有5张中奖C.某射击运动员射击一次只有两种可能的结果:中靶与不中靶,所以他击中靶的概率是1 2D.小明做了3次掷均匀硬币的实验,其中有一次正面朝上,2次正面朝下,他认为再掷一次,正面朝上的概率还是1 28.(2018·四川石室中学初三月考)经过某十字路口的行人,可能直行,也可能左拐或右拐.假设这三种可能性相同,现有两人经过该路口,则恰有一人直行,另一人左拐的概率为()A.19B.29C.13D.239.从一定高度抛一个瓶盖100次,落地后盖面朝下65次,则下列说法中错误的是()A.盖面朝下的频数是65B.盖面朝下的频率是0.65C.同样的试验做200次,落地后盖面朝下一定是130次D.盖面朝下的概率不一定是0.6510.甲、乙两人玩一个游戏,判定这个游戏公平的标准是()A.游戏的规则由甲方确定B.游戏的规则由乙方确定C.游戏的规则由甲、乙双方商定D.甲、乙双方赢的概率相等11.(2018·全国初三单元测试)如图,是两个可以自由转动的转盘,转盘各被等分成三个扇形,分别标上1、2、3和6、7、8这6个数字,如果同时转动这两个转盘各一次(指针落在等分线上重转),转盘停止后,指针指向字数之和为偶数的是()A. B. C. D.12.(2019·陕西初一期末)如图把一个圆形转盘按1:2:3:4的比例分成A、B、C、D四个扇形区域,自由转动转盘,停止后指针落在B区域的概率为()A.25B.15C.35D.110二、填空题(每小题4分,共48分)13.(2018·黑龙江中考真题)同时抛掷两枚质地均匀的硬币,一枚硬币正面向上,一枚硬币反面向上的概率是_____.14.(2019·上海中考模拟)从0,1,2,3这四个数字中任取3个数,取得的3个数中不含2的概率是_______. 15.在“正三角形,正方形,等腰梯形,正五边形,矩形,正六边形”中任取其中一个图形,恰好既是中心对称图形,又是轴对称图形的概率为________.16.(2019·江苏省泰兴市济川中学初三月考)两枚硬币抛向空中,落地时两枚都正面朝上的概率是____. 17.(2019·辽宁中考真题)有5张无差别的卡片,上面分别标有﹣1,0,13,2,π,从中随机抽取1张,则抽出的数是无理数的概率是_____.18.(2019·辽宁中考真题)在一个不透明的盒子中装有a 个除颜色外完全相同的球,其中只有6个白球.若每次将球充分搅匀后,任意摸出1个球记下颜色后再放回盒子,通过大量重复试验后,发现摸到白球的频率稳定在20%左右,则a 的值约为_____.19.(2019·四川中考模拟)抽屉里有2只黑色和1只白色的袜子,它们混在一起,随意抽出两只刚好配成一双的概率是___________.20.(2019·广西中考真题)我市博览馆有A ,B ,C 三个入口和D ,E 两个出口,小明入馆游览,他从A 口进E 口出的概率是_________.21.(2019·四川初三月考)在物理课上,某实验的电路图如图所示,其中S 1,S 2,S 3表示电路的开关,L 表示小灯泡,R 为保护电阻.若闭合开关S 1,S 2,S 3中的任意两个,则小灯泡L 发光的概率为_______.22.(2016·陕西初一期末)有一小球在如图所示的地板上自由滚动,地板上的每个三角形均为等边三角形,则小球在地板上最终停留在黑色区域的概率为_______.23.(2019·辽宁初一期末)如图,由边长为1的小正方形组成的44⨯网格中,ABC ∆的三个顶点均在格点上,若向正方形网格中投针,所投的针都随机落在正方形网格中,则落在ABC ∆内部的概率是________.24.(2019·南京师范大学附属中学树人学校初二期中)“一个事件发生的可能性大小的数值,称为这个事件的概率”.如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率记为P1,指针指向小于3的数的概率记为P2,指针指向偶数的概率记为P3,则P1、P2、P3的大小关系是_____.三、解答题一(每小题6分,共18分)25.(2018·福建初三期末)某商场在促销活动中规定,顾客每消费100元就能获得一次抽奖机会.为了活跃气氛,设计了两个抽奖方案:方案一:转动转盘A一次,转出红色可领取一份奖品;方案二:转动转盘B两次,两次都转出红色可领取一份奖品.(两个转盘都被平均分成3份)如果你获得一次抽奖机会,你会选择哪个方案?请用相关的数学知识说明理由.26.(2019·江苏省泰兴市济川中学初三月考)2019年国庆期间G2京沪高速泰兴入口处开通了3个收费通道A、B、C,车辆经过时可随机选择其中一个通过.(1)若一辆车经过此收费站时,选择A通道通过的概率是.(2)当两辆车经过此收费站时,用树状图或列表法列出两车通过A、B、C收费通道的所有等可能结果,并求两车选择不同..通道通过的概率.27.(2019·陕西初一期末)甲袋里装有红球5个,白球2个和黑球12个,乙袋里装有红球20个,白球20个和黑球10个.(1)如果你想取出1个黑球,选哪个袋子成功的机会大?请说明理由.(2)某同学说“从乙袋取出10个红球后,乙袋中的红球个数仍比甲袋中红球个数多,所以此时想取出1个红球,选乙袋成功的机会大.”你认为此说法正确吗?为什么?解答题二(每小题9分,共18分)28.(2019·青海中考真题)“只要人人献出一点爱,世界将变成美好的人间”.某大学利用“世界献血日”开展自愿义务献血活动,经过检测,献血者血型有“A、B、AB、O”四种类型,随机抽取部分献血结果进行统计,根据结果制作了如图两幅不完整统计图表(表,图):血型统计表血型 A B AB O人数10 5(1)本次随机抽取献血者人数为人,图中m=;(2)补全表中的数据;(3)若这次活动中该校有1300人义务献血,估计大约有多少人是A型血?(4)现有4个自愿献血者,2人为O型,1人为A型,1人为B型,若在4人中随机挑选2人,利用树状图或列表法求两人血型均为O型的概率.29.(2019·山东中考真题)某学校八年级共400名学生,为了解该年级学生的视力情况,从中随机抽取40名学生的视力数据作为样本,数据统计如下:4.2 4.1 4.7 4.1 4.3 4.3 4.4 4.6 4.15.25.2 4.5 5.0 4.5 4.3 4.4 4.8 5.3 4.5 5.24.4 4.2 4.35.3 4.9 5.2 4.9 4.8 4.6 5.14.2 4.4 4.5 4.1 4.55.1 4.4 5.0 5.2 5.3根据数据绘制了如下的表格和统计图:等级 视力(x ) 频数 频率 A4.2x < 4 0.1 B4.2 4.4x ≤≤ 120.3 C4.5 4.7x ≤≤ aD4.85.0x ≤≤ bE5.1 5.3x ≤≤10 0.25 合计 401根据上面提供的信息,回答下列问题: (1)统计表中的a = ,b = ; (2)请补全条形统计图;(3)根据抽样调查结果,请估计该校八年级学生视力为“E 级”的有多少人?(4)该年级学生会宣传部有2名男生和2名女生,现从中随机挑选2名同学参加“防控近视,爱眼护眼”宣传活动,请用树状图法或列表法求出恰好选中“1男1女”的概率.。

北师大版九年级数学上册第三章概率的进一步认识单元测试题(含答案)

北师大版九年级数学上册第三章概率的进一步认识单元测试题(含答案)

参考答案
一、选择题(每小题 3 分,共 30 分)
1.在一个不透明的盒子中装有 12 个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一 个球是白球的概率是13,则黄球的个数为( C )
A.18
B.20
C.24
D.28
5 / 11
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
20.(10 分)有 3 张形状材质相同的不透明卡片,正面分别写有 1、2、-3,三个数字.将这三张卡片背面朝上 洗匀后,第一次从中随机抽取一张,并把这张卡片标有的数字作为一次函数 y=kx+b 中 k 的值;第二次从余下的两 张卡片中再随机抽取一张,上面标有的数字作为 b 的值.
(1)k 的值为正数的概率是________; (2)用画树状图或列表法求所得到的一次函数 y=kx+b 的图象经过第一、三、四象限的概率.
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
北师大版九年级数学上册第三章概率的进一步认识单元测试题
(时间:120 分钟 满分:120 分)
一、选择题(每小题 3 分,共 30 分)
1.在一个不透明的盒子中装有 12 个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一 个球是白球的概率是13,则黄球的个数为( )
A.18
B.20
C.24
D.28
2.在一个口袋中有 4 个完全相同的小球,把它们分别标号为①,②,③,④.随机地摸出一个小球,记录后放 回,再随机摸出一个小球,则两次摸出的小球的标号相同的概率是( )
1
3
1
A.16
B.16
C.4
5 D.16
3.如图,是一个可以自由转动的转盘,它被分成三个面积相等的扇形,任意转动转盘两次,当转盘停止后, 指针所指颜色相同的概率为( )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第3章 概率的进一步认识单元测验 (时间:45分钟 满分:100分) 班级: __________________ 姓名:____________ 一、选择题:(每小题3分,共30分) 1.下列事件中,是必然事件的是 ( ) A.打开电视机,正在播放新闻 B.父亲年龄比儿子年龄大 C.通过长期努力学习,你会成为数学家 D.下雨天,每个人都打着雨伞 2.下列事件中:确定事件是 ( ) A.掷一枚六个面分别标有1~6的数字的均匀骰子,骰子停止转动后偶数点朝上 B.从一副扑克牌中任意抽出一张牌,花色是红桃 C.任意选择电视的某一频道,正在播放动画片 D.在同一年出生的367名学生中,至少有两人的生日是同一天. 3.10名学生的身高如下(单位:cm) 159 169 163 170 166 165 156 172 165 162从中任选一名学生,其身高超过165cm的概率是 ( ) A.12 B.25 C.15 D.110 4.下列说法正确的是 ( ) ①试验条件不会影响某事件出现的频率; ②在相同的条件下试验次数越多,就越有可能得到较精确的估计值,但各人所得的值不一定相同; ③如果一枚骰子的质量分布均匀,那么抛掷后每个点数出现的机会均等; ④抛掷两枚质量分布均匀的相同的硬币,出现“两个正面”、“两个反面”、“一正一反”的机会相同. A.①② B.②③ C.③④ D.①③ 5.如图1所示为一水平放置的转盘,使劲转动其指针,并让它自由停下,下面叙述正确的是( ) A.停在B区比停在A区的机会大 B.停在三个区的机会一样大 C.停在哪个区与转盘半径大小有关 D.停在哪个区是可以随心所欲的 图1

A B 120

C 6.从标有号码1到100的100张卡片中,随意地抽出一张,其号码是3的倍数的概率是( ) A.33100 B.34100 C.310 D.不确定 7.两个射手彼此独立射击一目标,甲射中目标的概率为0.9,乙射中目标的概率为0.8,在一次射击中,甲、乙同时射中目标的概率是( ) A.0.72 B.0.85 C.0.1 D.不确定 8.如图2所示的两个圆盘中,指针落在每一个数上 的机会均等,则两个指针同时落在偶数上的概率是( ) A.525 B.625 C.1025 D.1925 9.有阜阳到合肥的某一次列车,运行途中停靠的车站依次是:阜阳—淮南—水家湖—合肥,那么要为这次列车制作的火车票有( ) A.3种 B.4种 C.6种 D.12种 10.中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竟猜游戏,游戏规则如下:在20个商标牌中,有5个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张哭脸,若翻到哭脸,就不得奖,参与这个游戏的观众有三次翻牌的机会(翻过的牌不能再翻).某观众前两次翻牌均获得若干奖金,那么他第三翻牌获奖的概率是 ( ) A.14 B.15 C.16 D.320 二、填空题(每小题3分,共15分) 11.一个口袋中装有4个白色球,1个红色球,7个黄色球,搅匀后随机从袋中摸出1个球是白色球的概率是 . 12.掷两枚硬币,一枚硬币正面朝上,另一枚硬币反面朝上的概率是 . 13.小红、小芳、小明在一起做游戏时需要确定做游戏的先后顺序,他们约定用“锤子、剪刀、布”的方式确定.请问在一个回合中三个人都出“布”的概率是 .

图2 1 2 3 5 4 1 2

5 4

6 14.在对某次实验数据整理过程中,某个事件出现的频率随实验次数变化折线图如图3所示,这个图形中折线的变化特点是 ,试举一个大致符合这个特点的实物实验的例子(指出关注的结果) . 15.某校九年级(3)班在体育毕业考试中,全班所有学生得分的情况如下表所示: 分数段 18分以下 18~20分 21~23分 24~26分 27~29分 30分 人数 2 3 12 20 18 10 那么该班共有 人,随机地抽取1人,恰好是获得30分的学生的概率是 ,从上表中,你还能获取的信息是 (写出一条即可) 三、解答题(共55分) 16.(6分)有两组卡片,第一组三张卡片上都写着A、B、B,第二组五张卡片上都写着A、B、B、D、E.试用列表法求出从每组卡片中各抽取一张,两张都是B的概率.

17.(6分)将分别标有数字1,2,3 的三张卡片洗匀后,背面朝上放在桌上. (1)随机抽取一张,求抽到奇数的概率; (2)随机抽取一张作为十位上的数字(不放回),再抽取一张作为个位上的数字,能组成哪些两位数?恰好是32的概率是多少

图3 18.(8分)依据闯关游戏规则,请你探究“闯关游戏”的奥秘: (1)用列表的方法表示所有可能的闯关情况; (2)求出闯关成功的概率. 闯关游戏规则:图4所示的面板上,有左右两组开关按钮,每组中的两个按钮均分别控制一个灯泡和一个发音装置,同时按下两组中各一个按钮:当两个灯泡都亮时闯关成功;当按错一个按钮时,发音装置就会发出“闯关失败”的声音.

19.(8分)有一个转盘游戏,被平均分成10份(如图5),分别标有1,2,……,10这10个数字,转盘上有固定的指针,转动转盘,当转盘停止转动时,指针指向的数字即为转出的数字.两人进行游戏,一人转动转盘,另一人猜数,如果猜的数与转出的数情况相符,则猜数的人获胜,否则转盘的人获胜.猜数的方法为下列三种中的一种: (1)猜奇数或偶数; (2)猜是3的倍数或不是3的倍数; (3)猜大于4的数或不大于4的数. 如果你是猜数的游戏者,为了尽可能取胜,你选哪种猜法?怎样猜?

图4

图5 1 2

3

4 5 6 7 8 9

10 20.(6分)王老汉为了与客户签订购销合同,对自己的鱼塘的鱼的总质量进行估计,第一次捞出100条,称得质量为184千克,并将每条鱼作上记号放入水中;当它们完全混合于鱼群后,又捞出200条,称得质量为416千克,且带有标记的鱼有20条. ①请你帮王老汉估计池塘中有多少条鱼? ②请你帮王老汉估计池塘中的鱼有多重?

21.(6分)(2007·湖州市)在一个布口袋中装有只有颜色不同,其它都相同的白、红、黑三种颜色的小球各1只,甲乙两人进行摸球游戏;甲先从袋中摸出一球看清颜色后放回,再由乙从袋中摸出一球. (1)试用树状图(或列表法)表示摸球游戏所有可能的结果; (2)如果规定:乙摸到与甲相同颜色的球为乙胜,否则为负,试求乙在游戏中能获胜的概率. 22.(7分)如图6,有两个可以自由转动的转盘A、B,转盘A被均匀分成4等份,每份标上数字1、2、3、4四个数字;转盘B被均匀分成6等份,每份标上数字1、2、3、4、5、6六个数字.有人为甲乙两人设计了一个游戏,其规则如下: (1)同时转动转盘A与B; (2)转盘停止后,指针各指向一个数字(如果指针恰好指在分割线上,那么重转一次,直到指针指向一个数字为止),用所指的两个数字作乘积,如果所得的积是偶数,那么甲胜;如果所得的积是奇数,那么乙胜. 你认为这样的规则是否公平?请你说明理由;如果不公平,请你设计一个公平的规则,并说明理由.

23.(8分)(2007·江西省)在一次数学活动中,黑板上画着如图7所示的图形,活动前老师在准备的四张纸片上分别写有如下四个等式中的一个等式: ①ABDC ②ABEDCE ③AEDE ④AD 小明同学闭上眼睛从四张纸片中随机抽取一张,再从剩下的纸片中随机抽取另一张.请结合图形解答下列两个问题: (1)当抽得①和②时,用①,②作为条件能判定BEC△是等腰三角形吗?说说你的理由; (2)请你用树状图或表格表示抽取两张纸片上的等式所有可能出现的结果(用序号表示),并求以已经抽取的两张纸片上的等式为条件,使BEC△不能..构成等腰三角形的概率. 参考答案 一、1.B; 2.D; 3.B; 4.B; 5.A; 6.A; 7.A; 8. B; 9.C; 10.C. 二、11.13; 12. 12; 13.127; 14. 随着实验次数增加,频率趋于稳定.如:抛掷硬币实验中关注正面出现的频率; 15.65,213,答案不惟一,只要合理均可. 三、16.415. 17.(1)P(奇数)=23.(2)恰好是32的概率是16. 18.(1)略.(2)14 19. 选(2)不是3的倍数 20.(1)1000条;(2)2000千克. 21.(1)树状图如下 甲摸到的球 白 红 黑

乙摸到的球 白 红 黑 白 红 黑 白 红 黑 (2)乙摸到与甲相同颜色的球有三种情况 乙能取胜的概率为3193. 22. 不公平.∵P(奇)=1/4; P(偶)=3/4 ∴P(偶)>P(奇) ∴不公平. 新规则:⑴同时自用转动转盘A和B;⑵转盘停止后, 指针各指向一个数字,用所指的两个数字作和,如果得到的和是偶数,则甲胜;如果得到的和是奇数,则乙胜. 理由:∵P(奇)=1/2; P(偶)=1/2 ∴P(偶)=P(奇) ∴公平 23.(1)能. 理由:由ABDC,ABEDCE∠∠,AEBDEC∠∠, 得ABEDCE△≌△. BECE,BEC△是等腰三角形.

(2)树状图: 先抽取的纸片序号

所有可能出现的结果(①②)(①③)(①④)(②①)(②③)(②④)(③①)(③②)(③④)(④①)(④②)(④③) 由表格(或树状图)可以看出,抽取的两张纸片上的等式可能出现的结果有12种,它们出现的可能性相等,不能构成等腰三角形的结果有4种,所以使BEC△不能构成等腰三角

① ② ③ ④ ② ① ③ ④ ③

① ② ④ ④ ① ② ③

开始 后抽取的纸片序号

相关文档
最新文档