函数及其表示法练习题

合集下载

函数及其表示练习题

函数及其表示练习题

函数及其表示练习题一、选择题1. 函数f(x)=3x^2-2x+1在x=2处的导数是()。

A. 10B. 12C. 14D. 162. 已知函数f(x)=x^3-2x^2+x-2,求f'(1)的值是()。

A. -1B. 0C. 1D. 23. 函数y=sin(x)+cos(x)的值域是()。

A. [-1, 1]B. [0, √2]C. [1, √2]D. [-√2, √2]4. 若函数g(x)=x^2+1在区间[-1,1]上是增函数,则g(x)的导数g'(x)在该区间内()。

A. 恒为正B. 恒为负C. 恒等于0D. 变化不定5. 函数h(x)=ln(x)的定义域是()。

A. (0, +∞)B. (-∞, 0)C. (-∞, +∞)D. [0, +∞)二、填空题6. 函数f(x)=x^3-6x^2+11x-6的零点个数是_________。

7. 函数f(x)=1/x在x=2处的导数f'(2)是_________。

8. 函数f(x)=x^2+bx+c,当b^2-4ac=0时,该二次函数的图像是_________。

9. 函数f(x)=sin(x)在[0, π]区间内的值域是_________。

10. 若函数f(x)=x^3-3x^2+2x+1在x=1处取得极值,则f'(1)=_________。

三、解答题11. 已知函数f(x)=2x^3-3x^2-12x+5,求其导数f'(x),并找出f'(x)=0时的x值。

12. 给定函数g(x)=x^4-4x^3+6x^2-4x+1,求其在x=0和x=1时的值,并讨论g(x)在区间[0,1]上的单调性。

13. 函数h(x)=e^x-1的图像在x=0处的切线方程是什么?14. 若函数p(x)=x^5-5x^3+3x,求其在x=-1处的二阶导数p''(-1)。

15. 证明函数f(x)=x^3在R上是严格递增的。

表示函数的方法专题训练卷(含答案详解)

表示函数的方法专题训练卷(含答案详解)

1.已知函数f (x )由下表给出,则f (2)=( ).A .1B .2C 2.y =f (x )的图象如图,则函数的定义域是( ).A .[-5,6)B .[-5,0]∪[2,6]C .[-5,0)∪[2,6)D .[-5,0]∪[2,6)3.一个面积为100 cm 2的等腰梯形,上底长为x cm ,下底长为上底长的3倍,则把它的高y 表示成x 的函数为( ).A .y =50x (x >0)B .y =100x (x >0)C .50y x =(x >0) D .100y x=(x >0) 4.已知()2xf x x =+,则f (f (-1))的值为( ). A .0 B .1 C .-1 D .25.某人从甲村去乙村,一开始沿公路乘车,后来沿小路步行,下图中横轴表示走的时间,纵轴表示某人与乙村的距离,则较符合该人走法的图象是( ).6.已知111f x x ⎛⎫=⎪+⎝⎭,则f (x )=________. 7.已知函数f (x )满足f (x -1)=x 2,那么f (2)=__________.8.某班连续进行了5次数学测试,其中智方同学的成绩如表所示,在这个函数中,定义域是__________,值域是__________.9资的方式是:第一个月1 000元,以后每个月比上一个月多100元.设该大学生试用期的第x个月的工资为y元,则y是x的函数,分别用列表法、图象法和解析法表示该函数关系.10.已知f(x)是二次函数,且满足f(0)=1,f(x+1)-f(x)=2x,求f(x)的解析式.参考答案1. 答案:C2. 答案:D3. 答案:C 解析:依题意有12(x +3x )y =100,所以xy =50,50y x =,且x >0,故y 与x 的函数关系式是50y x=(x >0). 4. 答案:C 解析:∵()2x f x x =+,∴f (-1)=112--+=-1. ∴f (f (-1))=f (-1)=112--+=-1. 5. 答案:D解析:(1)开始乘车速度较快,后来步行,速度较慢;(2)开始某人离乙地最远,以后越来越近,最后到达乙地,符合(1)的只有C ,D ,符合(2)的只有B ,D .6. 答案:1x x + 解析:令1t x =,则1x t =,将1x t=代入111f x x⎛⎫= ⎪+⎝⎭,得()1111tf t t t==++.∴()1x f x x =+.7. 答案:9解析:令x -1=2,则x =3,而32=9,所以f (2)=9. 8. 答案:{1, 2,3,4,5} {90,92,93,94,95} 9. 解:(1)该函数关系用列表法表示为:(2)(3)该函数关系用解析法表示为:y=100x+900,x∈{1,2,3,…,6}.10.解:设f(x)=ax2+bx+c(a≠0),∵f(0)=1,∴c=1.又∵f(x+1)-f(x)=2x,∴a(x+1)2+b(x+1)+1-(ax2+bx+1)=2x,即2ax+(a+b)=2x.∴22aa b=⎧⎨+=⎩,,解得a=1,b=-1.∴f(x)=x2-x+1.。

【创新设计】高中数学(人教版必修一)配套练习:1.2函数及其表示习题课(含答案解析)

【创新设计】高中数学(人教版必修一)配套练习:1.2函数及其表示习题课(含答案解析)

§1.2 习题课
课时目标 1.加深对函数概念的理解,加深对映射概念的了解.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.通过具体实例,理解简单的分段函数,并能简单应用.
1.下列图形中,不可能作为函数y=f(x)图象的是()
2.已知函数f:A→B(A、B为非空数集),定义域为M,值域为N,则A、B、M、N 的关系是()
A.M=A,N=B B.M?A,N=B
C.M=A,N?B D.M?A,N? B
3.函数y=f(x)的图象与直线x=a的交点()
A.必有一个B.一个或两个
C.至多一个D.可能两个以上
4.已知函数,若f(a)=3,则a的值为()
A. 3 B.- 3
C.±3 D.以上均不对
5.若f(x)的定义域为[-1,4],则f(x2)的定义域为()
A.[-1,2] B.[-2,2]
C.[0,2] D.[-2,0]
6.函数y=
x
kx2+kx+1
的定义域为R,则实数k的取值范围为()
A.k<0或k>4 B.0≤k<4 C.0<k<4 D.k≥4或k≤0
一、选择题
1.函数f(x)=
x
x2+1
,则f(
1
x
)等于()。

高一数学函数及其表示试题

高一数学函数及其表示试题

高一数学函数及其表示试题1.下列函数中,图象如图的函数可能是().A.y=x3B.y=2x C.y=D.y=log2x【答案】C【解析】由图像可知,函数的定义域为,且过点;而选项A:的定义域为,选项B:的定义域为,选项C:的定义域为,且过点,选项D:的定义域为;故选C.考点:函数的图像.2.,则 ( )A.B.C.D.【答案】D【解析】本题主要考查函数解析式.由,故选D.【考点】函数解析式,诱导公式.3.下列各组函数中,表示同一个函数的是()A.与B.与C.与D.与【答案】D【解析】表示同一函数必须具备两个条件:一是定义域相同,二是对应法则相同.对于A,的定义域为,而的定义域为,不符合;对于B,的定义域为,对于的定义域为,不符合;对于C,函数与函数的定义域都为,但当时,与的对应法则不相同,也不符合;对于D,函数与函数的定义域都为,且,两个函数的对应法则也相同,故相同函数的是答案D.【考点】1.函数的概念;2.对数的恒等式.4.设是集合M到集合N的映射, 若N="{1,2}," 则M不可能是()A.{-1}B.C.D.【答案】D【解析】对应法则是,根据映射的定义,集合M中的任何一个元素在N中都要有唯一的元素和他对应,而D选项中的2,,,不满足定义,所以不正确,故选D.【考点】映射的定义5.已知函数,那么的值是()A.B.C.D.【答案】D【解析】表示当自变量时对应的函数值;根据分段函数的定义,当时,;因为 , 所以.故选D【考点】1、函数的概念;2、分段函数.6.已知函数,则下列说法中正确的是()A.若,则恒成立B.若恒成立,则C.若,则关于的方程有解D.若关于的方程有解,则【答案】D.【解析】绝对值不等式||a|-|b||≤|a±b|≤|a|+|b|,由题,a≤0,则|x-a|≤|x|-a,f(x)≥1,A错误;f(x)≥1恒成立,则a≤0,x≥0,B错误,a<0,则0≤|x-a|≤|x|-a,方程f(x)=a,左边是正数,右边是负数,无解,所以C错误,方程f(x)=a有解,则两边同号,即|x|-a与a同号,可解得0<a≤1,选D.【考点】函数与绝对值不等式.7.下列四组中表示相等函数的是 ( )A.B.C.D.【答案】B【解析】A.的定义域不同;B.是同一函数;C.的定义域不同;D.的值域不同。

函数的表示方法练习题 试题

函数的表示方法练习题  试题

心尺引州丑巴孔市中潭学校函数的表示方法练习题一、阅读课本完成以下问题:1、函数的三种表示方法1〕、用____来表示两个变量之间函数关系的方法称为解析法,这个____通常叫做函数的_____,简称_____。

2〕、用____来表示两个变量之间函数关系的方法称为列举法。

3〕、用____表示两个变量之量的函数关系的方法称为图象法。

2.各种表示法的优点3、分段函数的概念在定义域内________上,有______的函数通常叫做分段函数。

二、探究新知1、下表列出的是2006年全国普通高等招生全国统一考试〔全国卷1〕数学9理工类〕这个表格表示的是函数关系吗?为什么?2、f(x)是一次函数,且f[f(x)]=4x-1,能否由此求出f(x)的解析式?三、知识应用举例例1.根据条件,分别求出()f x 的表达式。

〔1〕2211()f x x x x +=+; 〔2〕21(1)1x f x x +=-; 〔3〕[()]21f f x x =-,其中()f x 为一次函数;〔4〕221()()(,,,0,)af x bf cx a b c R abc a b x+=∈≠≠。

例2、画出以下函数图象,并求其值域。

〔1〕2[2,1),()2[1,);x x f x x x ⎧-∈-=⎨-∈+∞⎩ 〔2〕2()2||1f x x x =-+。

例3〔1〕假设2(1)21,f x x +=+求(1).f x - 〔2〕设2()44f x x x =--的定义域为[]2,1t t --,对任意,t R ∈ 求函数()f x 的最小值()g t 的解析式.四、实战演习1.以下函数表示同一个函数的是 ( )A .24(),()22x f x g x x x -==+- B.()1,()f x x g x =-C .()21,()21f x x g t t =+=+ D.()()f x g x ==2.一个面积为100的等腰梯形,上底长为x ,下底长为上底长的3倍,那么它的高y 与x 的函数关系式是( )A.)0x (x 50y >=B.)0x (x 100y >=C.)0x (x 50y >=D.)0x (x100y >= 3. 函数f(x)=⎪⎩⎪⎨⎧<+=->)0(1)0()0(02x x x x π,那么复合函数 f{f[f(-1)]}的值等于 ( )A x 2 +1B 2π+1C -πD 0 5.设函数2()231f x x x =+-,那么(1)f x += 6.函数(21)32,f x x +=-且()7,f a =那么______.a =7.一次函数()f x 满足(2)5,(0)1,f f =-= 那么函数()f x 的解析式为 . 8.、函数()f x 的图象如下列图,那么它的一个解析式是_____。

函数的表示法习题含答案

函数的表示法习题含答案
若 ,则
解得 或 (舍去),
或 .
(2)由题意:
【点睛】
本题考查分段函数求值以及由函数值求自变量,考查分类讨论思想以及基本求解能力.
20.(1) .(2)
【解析】
【分析】
(1) 对任意的 恒成立,等价于 对任意的 ,由此能求出实数 的最小值.
(2)推导出 ,由此能求出数 的值域.
3.配凑法:由已知条件 ,可将 改写成关于 的表达式,然后以 代替 ,便得 的解析式;
4.消去法:已知 与 之间的关系式,可根据已知条件再构造出另外一个组成方程组,通过解方程组求出
16.(1) ;(2)
【解析】
【分析】
(1)过A、D分别作 于G, 于H,由平面图形的知识可得线段长度,由面积公式分段可得函数解析式;(2)化简A、B集合,由 可得 ,得到关于a的不等式,从而求出 的取值范围。
19.已知
(1)若 ,且 ,求实数 的值;
(2)求 的值.
20.已知函数 .
(1)若 对任意的 恒成立,求实数 的最小值;
(2)若函数 ,求函数 的值域.
参考答案
1.C
【解析】
【分析】
推导出 ,由此能求出结果.
【详解】
函数 的定义域为 当 时, ;
当 时, ;当 时, ,

故选:C.
【点睛】
本题考查函数值的求法,考查函数性质等基础知识,考查运算求解能力,是基础题.
【详解】
(1)过A、D分别作 于G, 于H,
因为ABCD是等腰梯形,底角为 ,AB= cm ,
所以BG=AG=DH=HC=2cm ,
又BC=7cm,所以AD=GH=3cm,
(1)当点F在BG上,即 时, ;

函数的表示法训练题(附答案)

函数的表示法训练题(附答案)

函数的表示法训练题(附答案)1.下列各图中,不能是函数f(x)图象的是()解析:选C.结合函数的定义知,对A、B、D,定义域中每一个x都有唯一函数值与之对应;而对C,对大于0的x而言,有两个不同值与之对应,不符合函数定义,故选C.2.若f(1x)=11+x,则f(x)等于()A.11+x(x≠-1)B.1+xx(x≠0)C.x1+x(x≠0且x≠-1)D.1+x(x≠-1)解析:选C.f(1x)=11+x=1x1+1x(x≠0),∴f(t)=t1+t(t≠0且t≠-1),∴f(x)=x1+x(x≠0且x≠-1).3.已知f(x)是一次函数,2f(2)-3f(1)=5,2f(0)-f(-1)=1,则f(x)=() A.3x+2B.3x-2C.2x+3D.2x-3解析:选B.设f(x)=kx+b(k≠0),∵2f(2)-3f(1)=5,2f(0)-f(-1)=1,∴k-b=5k+b=1,∴k=3b=-2,∴f(x)=3x-2.4.已知f(2x)=x2-x-1,则f(x)=________.解析:令2x=t,则x=t2,∴f(t)=t22-t2-1,即f(x)=x24-x2-1.答案:x24-x2-11.下列表格中的x与y能构成函数的是()A.x非负数非正数y1-1B.x奇数0偶数y10-1C.x有理数无理数y1-1D.x自然数整数有理数y10-1解析:选C.A中,当x=0时,y=±1;B中0是偶数,当x=0时,y=0或y=-1;D中自然数、整数、有理数之间存在包含关系,如x=1∈N(Z,Q),故y的值不唯一,故A、B、D均不正确.2.若f(1-2x)=1-x2x2(x≠0),那么f(12)等于()A.1B.3C.15D.30解析:选C.法一:令1-2x=t,则x=1-t2(t≠1),∴f(t)=--1,∴f(12)=16-1=15.法二:令1-2x=12,得x=14,∴f(12)=16-1=15.3.设函数f(x)=2x+3,g(x+2)=f(x),则g(x)的表达式是()A.2x+1B.2x-1C.2x-3D.2x+7解析:选B.∵g(x+2)=2x+3=2(x+2)-1,∴g(x)=2x-1.4.某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了再走余下的路程,在下图中纵轴表示离学校的距离,横轴表示出发后的时间,则下图中较符合此学生走法的是()解析:选D.由于纵轴表示离学校的距离,所以距离应该越来越小,排除A、C,又一开始跑步,速度快,所以D符合.5.如果二次函数的二次项系数为1且图象开口向上且关于直线x=1对称,且过点(0,0),则此二次函数的解析式为()A.f(x)=x2-1B.f(x)=-(x-1)2+1C.f(x)=(x-1)2+1D.f(x)=(x-1)2-1解析:选D.设f(x)=(x-1)2+c,由于点(0,0)在函数图象上,∴f(0)=(0-1)2+c=0,∴c=-1,∴f(x)=(x-1)2-1.6.已知正方形的周长为x,它的外接圆的半径为y,则y关于x的函数解析式为()A.y=12x(x>0)B.y=24x(x>0)C.y=28x(x>0)D.y=216x(x>0)解析:选C.设正方形的边长为a,则4a=x,a=x4,其外接圆的直径刚好为正方形的一条对角线长.故2a=2y,所以y=22a=22×x4=28x. 7.已知f(x)=2x+3,且f(m)=6,则m等于________.解析:2m+3=6,m=32.答案:328.如图,函数f(x)的图象是曲线OAB,其中点O,A,B的坐标分别为(0,0),(1,2),(3,1),则的值等于________.解析:由题意,f(3)=1,∴=f(1)=2.答案:29.将函数y=f(x)的图象向左平移1个单位,再向上平移2个单位得函数y=x2的图象,则函数f(x)的解析式为__________________.解析:将函数y=x2的图象向下平移2个单位,得函数y=x2-2的图象,再将函数y=x2-2的图象向右平移1个单位,得函数y=(x-1)2-2的图象,即函数y=f(x)的图象,故f(x)=x2-2x-1.答案:f(x)=x2-2x-110.已知f(0)=1,f(a-b)=f(a)-b(2a-b+1),求f(x).解:令a=0,则f(-b)=f(0)-b(-b+1)=1+b(b-1)=b2-b+1.再令-b=x,即得f(x)=x2+x+1.11.已知f(x+1x)=x2+1x2+1x,求f(x).解:∵x+1x=1+1x,x2+1x2=1+1x2,且x+1x≠1,∴f(x+1x)=f(1+1x)=1+1x2+1x=(1+1x)2-(1+1x)+1.∴f(x)=x2-x+1(x≠1).12.设二次函数f(x)满足f(2+x)=f(2-x),对于x∈R恒成立,且f(x)=0的两个实根的平方和为10,f(x)的图象过点(0,3),求f(x)的解析式.解:∵f(2+x)=f(2-x),∴f(x)的图象关于直线x=2对称.于是,设f(x)=a(x-2)2+k(a≠0),则由f(0)=3,可得k=3-4a,∴f(x)=a(x-2)2+3-4a=ax2-4ax+3.∵ax2-4ax+3=0的两实根的平方和为10,∴10=x21+x22=(x1+x2)2-2x1x2=16-6a,∴a=1.∴f(x)=x2-4x+3.。

函数的表示法重难点题型(举一反三)(解析版)

函数的表示法重难点题型(举一反三)(解析版)

1.2.2 函数的表示法重难点题型【举一反三系列】知识链接举一反三【考点1 函数的三种表示方法】【练 1】某种笔记本的单价是 5 元,买x(x ∈{1,2,3,4,5}) 本笔记本需要y 元,试用三种方法表示函数y =f (x) .【思路分析】利用函数的三种表示方法,即可将y表示成x的函数.【答案】解:(1)列表法:x12345y510152025(2)图象法(3)解析法:y=5x,x∈{1,2,3,4,5}.【点睛】本题考查函数的三种表示方法,列表法,图象法以及解析法,比较基础.【练 1.1】已知函数f(x),g(x)分别由下表给出:x123f(x) 211x123g(x) 321则f(g(1))的值为;当g(f(x))=2 时,x=.【思路分析】根据表格先求出g(1)=3,再求出f(3)=1,即f[g(1)]的值;由g(x)=2 求出x =2,即f(x)=2,再求出x的值.【答案】解:由题意得,g(1)=3,则f[g(1)]=f(3)=1∵g[f(x)]=2,即f(x)=2,∴x=1.故答案为:1,1.【点睛】本题是根据表格求函数值或自变量的值,看清楚函数关系和自变量对照表格求出.【练 1.2】在函数y=|x|(x∈[-1,1])的图象上有一点P(t,|t|),此函数与x轴、直线x=-1 及x=t围成图形(如图阴影部分)的面积为S,则S与t的函数关系图可表示为( )【思路分析】利用在y轴的右侧,S的增长会越来越快,切线斜率会逐渐增大,从而选出正确的选项.【答案】解:由题意知,当t>0 时,S的增长会越来越快,ƒ(3) ƒ(3) 故函数 S 图象在 y 轴的右侧的切线斜率会逐渐增大, 故选:B .【点睛】本题考查函数图象的变化特征,函数的增长速度与图象的切线斜率的关系,体现了数形结合的 数学思想.【练 1.3】如图,函数 f (x )的图象是曲线 O A B ,其中点 O ,A ,B 的坐标分别为(0,0),(1,2),(3,1),则 f ⎡ 1 ⎤ ⎢f (3) ⎥ ⎣ ⎦的值等于.【思路分析】先求出 f (3)=1,从而 ƒu 1] =f (1),由此能求出结果.【答案】解:函数 f (x )的图象是曲线 OAB ,其中点 O ,A ,B 的坐标分别为(0,0),(1,2),(3,1),∴f (3)=1,ƒu 1] =f (1)=2.故答案为:2.【点睛】本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.【考点 2 描点法作函数图象】【练 2】作出下列函数的图象并写出定义域、值域.(1)y =2x ;(2)y =(x ﹣2)2+1;(3)y = 2;x(4)y=2x+1,x∈Z 且|x|<2.【思路分析】分别根据函数的单调性进行求解即可.【答案】解:(1)y=2x的定义域(﹣∞,+∞),值域(﹣∞,+∞);(2)函数y=(x﹣2)2+1≥1;定义域为(﹣∞,+∞),值域[1,+∞).(3)y= 2的定义域为(﹣∞,0)∪(0,+∞),值域为(﹣∞,0)∪(0,+∞);x(4)y=2x+1,x∈Z 且|x|<2.的定义域为{﹣1,0,1},此时y=﹣1,1,3,即值域为{﹣1,1,3},对应的图象为:【点睛】本题主要考查函数定义域和值域的求解,比较基础.【练 2.1】画下列函数图象并求值域.(1)y=﹣x2+2x+3;(2)y=|﹣x2+2x+3|;(3)y=|x﹣2|﹣|x﹣1|;(4)y=﹣x2+2|x|+3;(5)y=|x﹣2|+|x﹣1|.【思路分析】利用绝对值的几何意义,画出图象并求值域.【答案】解:(1)y=﹣x2+2x+3,如图所示,值域为(﹣∞,4](2)y=|﹣x2+2x+3|,如图所示,值域为[0,+∞),(3)y=|x﹣2|﹣|x﹣1|,如图所示,值域为[﹣1,1](4)y=﹣x2+2|x|+3,如图所示,值域为(﹣∞,4](5)y=|x﹣2|+|x﹣1|,如图所示,值域为[1,+∞)【点睛】本题考查函数的图象与性质,考查学生的作图能力,考查学生的计算能力,正确作出函数的图象是关键.【练 2.2】作出下列函数的图象并写出它们的值域.(1)y=|x﹣1|+|x+1|;(2)y=x,x∈z且|x|≤2.【思路分析】(1)运用分段函数化简函数y,即可得到所求图象和值域;(2)求得整点坐标,即可得到所求图象和值域.【答案】解:(1)y=|x﹣1|+|x+1|2x,x ≤ 1= 2,— 1<x<1,— 2x,x ≤— 1值域为[2,+∞);(2)y=x,x∈z且|x|≤2,可得x=﹣2,y=﹣2;x=﹣1,y=﹣1;x=0,y=0;x=1,y=1;x=2,y=2.值域为{﹣2,﹣1,0,1,2}.【点睛】本题考查函数的图象的画法和运用:求值域,考查运算能力,属于基础题.【练2.3】画出二次函数f(x)=﹣x2+2x+3的图象,并根据图象回答下列问题:(1)比较f(0)、f(1)、f(3)的大小;(2)若x1<x2<1,比较f(x1)与f(x2)的大小;(3)求函数f(x)的值域.【思路分析】先画出函数的图象,由图象即可得到相应的答案.【答案】解:图象如图所示:(1)由图象可得f(1)>f(0)>f(3),(2)x1<x2<1,函数在(﹣∞,1)上为增函数,∴f(x1)<f(x2),(3)由函数图象可得函数的值域为(﹣∞,4].【点睛】本题考查了二次函数图象的画法和识别,属于基础题.【考点3 求函数解析式—待定系数法】【练 3】设二次函数f (x) 满足 f (0) = 1,且f (x + 1) -f (x) = 4x ,求f (x) 的解析式.【思路分析】用待定系数法设出f(x)=a x2+b x+c=0(a≠0),再通过已知条件列方程可解得;【答案】解设所求二次函数为f(x)=a x2+b x+c=0(a≠0),∵f(0)=1,∴c=1,则f(x)=a x2+b x+1=0,(a≠0),又∵f(x+1)﹣f(x)=4x,∴a(x+1)2+b(x+1)+1﹣(a x2+b x+1)=4x,即 2ax+a+b=4x,得,2t = 4t 䘞= 䕼∴t = 2䘞 =— 2∴f(x)=2x2﹣2x+1,【点睛】本题考查了函数解析式的求解及常用方法,属中档题.【练 3.1】已知二次函数f (x) 满足条件f (0) = 1和 f (x + 1) -f (x) = 2x ,求 f (x) 的解析式;【思路分析】据二次函数的形式设出f(x)的解析式,将已知条件代入,列出方程,令方程两边的对应系数相等解得【答案】解:设y=f(x)=a x2+b x+c∵f(0)=1,f(x+1)﹣f(x)=2x∴c=1;a(x+1)2+b(x+1)+c﹣(a x2+b x+c)=2x∴∴2a=2,a+b=0解得a=1,b=﹣1函数f(x)的表达式为f(x)=x2﹣x+1【点睛】本题考查利用待定系数法,方程组法,换元法求函数的解析式,属于基础题.【练 3.2】已知y =f (x) 是一次函数,且有 f [ f (x)] = 9x + 8 ,求 f (x) 的解析式.【思路分析】设f(x)=ax+b(a≠0),由f[f(x)]=9x+8.比较对应项系数可得方程组,解出即得a,b.从而得到函数解析式.【答案】解:设f(x)=ax+b(a≠0),则f[f(x)]=a f(x)+b=a(a x+b)+b=a2x+a b+b=9x+8∴a2=9且a b+b=8,解得,a=3,b=2 或a=﹣3,b=﹣4,∴一次函数的解析式为:f(x)=3x+2 或f(x)=﹣3x﹣4.【点睛】本题考查一次函数的性质及图象,属基础题,若已知函数类型,可用待定系数法求其解析式.属于基础题.【练 3.3】已知二次函数f (x) =x2 +ax +b ,A = {x | f (x) = 2x} = {22} ,试求f (x) 的解析式.【思路分析】由已知中二次函数f(x)=x2+a x+b,A={x|f(x)=2x}={22},可得方程(x)=x2+a x+b=2x有两个相等的实根 22,由韦达定理求出a,b的值得答案.【答案】解:∵二次函数f(x)=x2+a x+b,A={x|f(x)=2x}={22},故方程(x)=x2+a x+b=2x有两个相等的实根22,即方程x2+(a﹣2)x+b=0有两个相等的实根22,即22+22=﹣(a﹣2)且22×22=b,解得:a=﹣42,b=484,故f(x)=x2﹣42x+484.【点睛】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质是答案的关键,是基础题.【考点4 求函数解析式—换元法】【练 4】设函数f (x) 满足f (2x - 3) =x2 +x -1 ,求 f (x) 的解析式;【思路分析】可设2x﹣3=t,从而求得x=1t3,代入f(2x﹣3)=x2+x﹣1并整理可得出ƒ(t)=1t22 2 42t 11,从而得出ƒ(x) = 1 x2 2x 11;4 4 4【答案】解:设2x﹣3=t,则x=1t3,带入f(2x﹣3)=x2+x﹣1得:ƒ(t)=(1t3)21t3—1=1t22 22 2 2 2 42t 11;4∴ƒ(x) = 1 x2 2x 11;4 4【点睛】考查换元求函数解析式的方法.x x【练 4.1】已知f ( +1) =x + 2 ,求 f (x) 的解析式【思路分析】令x—1=t,则x=t+1,x=(t+1)2,(t≥﹣1),代入函数的表达式求出即可;【答案】解:令x—1=t,则x=t+1,x=(t+1)2,(t≥﹣1),∴ 由f(x —1)=x+2 x,得:f(t)=(t+1)2+2(t+1)=t2+4t+3,(t≥﹣1),∴f(x)=x2+4x+3,(x≥﹣1).【点睛】本题考查的是函数的解析式求法,用待定系数法求解,本题难度不大,属于基础题.【练 4.2】已知函数f (x) 满足关系式f (x + 2) = 2x + 5 ,求f (x) 的解析式;【思路分析】将f(x+2)=2x+5 中的x+2 看作整体,解得x,代入其解析式,则解得f(x).【答案】解:令t=x+2,∴x=t﹣2∴f(t)=2t+1令x=t∴f(x)=2x+1【点睛】本题主要考查用换元法求函数解析式,要注意等价转化,即要注意换元前后的取值范围.【练4.3】已知f(1—x)=2x,求f(x)的解析式;1x【思路分析】令1—x =t,然后,用t表示x,利用换元法求解其解析式;1x【答案】解:令1—x =t,1x∴x= 1—t,1t∴f(t)=21—t,1t∴f(x)=21—x;1x【点睛】本题重点考查了换元法求解函数的解析式,【考点5 求函数解析式—代入法】【练5】已知f(x)=3x2+1,g(x)=2x﹣1,求f[g(x)]和g[f(x)]的解析式.【思路分析】分别把g(x)和f(x)整体代入到f(x)和g(x)的解析式化简可得.【答案】解:∵f(x)=3x2+1,g(x)=2x﹣1,∴f[g(x)]=3(2x﹣1)2+1=12x2﹣12x+4;∴g[f(x)]=2(3x2+1)﹣1=6x2+1【点睛】本题考查复合函数的解析式,属基础题.【练5.1】已知函数f(x)=2x+1,g(x)=3x2﹣5(1)求f(1),g(2)的值(2)求g(a+1)的表达式(3)求f(g(x))的表达式.【思路分析】(1)根据函数f(x)、g(x)的对应法则,分别将x=1、x=2 代入,即可求出f(1),g(2)的值;(2)根据g(x)的对应法则,用a+1 代替x,化简即可得出g(a+1)的表达式;(3)先在f(x)表达式中用g(x)代替x,得f(g(x))=2g(x)+1,再将g(x)表达式代入即可得到所求.【答案】解:根据题意,得(1)f(1)=2×1+1=3,g(2)=3×22﹣5=7;(2)g(a+1)=3(a+1)2﹣5=3a2+6a﹣2;(3)f(g(x))=2g(x)+1=2[3x2﹣5]+1=6x2﹣9.【点睛】本题给出函数f(x)、g(x)的表达式,求f(g(x)的表达式.着重考查了函数的定义和解析式的求法等知识,属于基础题.【练5.2】已知f(x)=2x﹣1,g(x)1=1x2(1)求f(x+1),g (1),f(g (x));x(2)写出函数f(x)与g(x)定义域和值域.【思路分析】(1)分别代入化简即可;(2)直接写出定义域与值域.【答案】解:(1)f(x+1)=2(x+1)﹣1=2x+1;g(1)= 1 = x2 ,x 111x22xf(g(x))=f( 1 )=2 1 —1;1x2 1x2(2)函数f(x)的定义域为R,值域R;g(x)的定义域为R,值域为(0,1].【点睛】本题考查了函数的定义域与值域的求法,属于基础题.【练5.3】函数f(x)=3x﹣1,若f[g(x)]=2x+3,则g(x)=.【思路分析】直接利用函数的解析式,求解即可.【答案】解:函数f(x)=3x﹣1,若f[g(x)]=2x+3,可得 3g(x)﹣1=2x+3,解得g(x)= 2 x 4.3 3故答案为:2 x 4.3 3【点睛】本题考查函数的解析式的求法,考查计算能力.【考点6 求函数解析式—方程组法】【练 6】已知函数f(x)对任意的x∈R 都满足f(x)+2f(﹣x)=3x﹣2,求f(x)的解析式.【思路分析】利用方程思想求解函数的解析式即可.【答案】解:函数f(x)对任意的x∈R 都满足f(x)+2f(﹣x)=3x﹣2,…①,则f(﹣x)+2f(x)=﹣3x﹣2,…②,①﹣2×②可得:﹣3f(x)=9x+2,可得f(x)=﹣3x—2.3f(x)的解析式:f(x)=﹣3x—2.3【点睛】本题考查函数的解析式的求法,考查函数与方程的思想的应用,考查计算能力.【练 6.1】已知f(x)是一次函数,且f[f(x)]=9x+4,求f(x)的解析式.【思路分析】由题意,设f(x)=a x+b,代入f[f(x)]中,利用多项式相等,对应系数相等,求出a、b的值即可;【答案】解:∵f(x)是一次函数,∴设f(x)=ax+b,(a≠0),则f[f(x)]=f[a x+b]=a(a x+b)+b=a2x+a b+b,又∵f[f(x)]=9x+4,∴a2x+a b+b=9x+4,即t2 = 9 ,t䘞䘞= 4解得t = 3或t =— 3,䘞 = 1 䘞 =— 2∴f(x)=3x+1 或f(x)=﹣3x﹣2;【点睛】本题考查了求函数解析式的问题,解题时应用待定系数法,设出函数的解析式,求出系数即可,是中档题.【练6.2】已知f(x)﹣2f(1)=3x﹣2,求f(x)的解析式.x【思路分析】根据f(x)﹣2f(1)=3x﹣2,用1代替x,得出另一方程,解方程组,求出f(x)的解析x x式.【答案】解:∵f(x)﹣2f(1)=3x﹣2…①,x∴f(1)﹣2f(x)=3•1—2…②,x x②×2,得;2f(1)﹣4f(x)= 6—4…③,x x③+①,得;﹣3f (x )=3x 6 —6,x∴f (x )=﹣x — 2 —2.x【点睛】本题考查了利用方程组求函数解析式的应用问题,是基础题目.【练 6.3】已知 f (x )是一次函数,且 2f (1)+3f (2)=3,2f (﹣1)﹣f (0)=﹣1,求 f (x )的解析式;【思路分析】根据题意,设f (x )=k x +b ,结合题意可得 2(m 䘞) 3(2m 䘞) = 3,解可得 k 、b 的值,2( — m 䘞) — 䘞 =— 1 代入函数的解析式即可得答案;【答案】解:根据题意,设 f (x )=kx +b , 若 2f (1)+3f (2)=3,2f (﹣1)﹣f (0)=﹣1,则有 2(m 䘞) 3(2m 䘞) = 3, 2( — m 䘞) — 䘞 =— 1解可得:k = 4,b =— 1;99则 f (x )= 4x — 1;99【点睛】本题考查待定系数法求函数的解析式,注意待定系数法的应用,属于基础题.【考点 7 分段函数求值】⎧1 x -1,x ≤ 0【练 7】设函数 f (x ) = ⎪ 2若 f (a ) = a ,则实数 a 的值为()⎨ 1 ⎪ ,x > 0 ⎩ xA. ±1B. -1 C . -2 或-1 D . ±1 或-2【思路分析】由分段函数的解析式知,当 x ≥0 时,f (X )= 1 x — 1;当 x <0 时,f (x )= 1;分别令 f2x(a )=a ,即得实数 a 的取值.【答案】解:由题意知,f (a )=a ;当 a ≥0 时,有1t — 1 = t ,解得 a =﹣2,(不满足条件,舍去);2当 a <0 时,有1= t ,解得 a =1(不满足条件,舍去)或 a =﹣1.t⎨ 所以实数 a 的值是:a =﹣1. 故选:B .【点睛】本题考查了分段函数中用解析式解方程的简单问题,需要分段讨论,是分段函数的常用方法.⎧ 1x +1,x ≤ 0【练 7.1】已知 f (x ) = ⎪ 2⎪⎩- (x -1)2,x > 0使 f (x ) ≥ -1 成立的 x 的取值范围是( )A .[-4 , 2)B .[-4 , 2]C . (0 , 2]D . (-4 , 2]【思路分析】由分段函数,讨论 x ≤0,x >0,由一次不等式和二次不等式的解法,解不等式,求并集即可得到所求范围.【答案】解:f (x )=1 x 1,x ≤ 䕼2,— (x — 1)2,x >䕼由 f (x )≥﹣1,x ≤ 䕼x >䕼可得 1 x 1 ≤— 1或2— (x — 1)2 ≤— 1,即x ≤ 䕼x ≤— 2 或 x >䕼 , 䕼 ≤ x ≤ 2即有﹣4≤x ≤0 或 0<x ≤2, 可得﹣4≤x ≤2. 即 x 的取值范围是[﹣4,2]. 故选:B .【点睛】本题考查分段函数的运用:解不等式,考查一次不等式和二次不等式的解法,考查运算能力, 属于中档题.⎧⎪x 2 + 4x + 3,x ≤ 0 【练 7.2】已知函数 f (x ) = ⎨则 f ( f (5) ) = ( )⎩⎪ 3 - x ,x > 0A .0B . -2 C. -1 D .1【思路分析】分段函数是指在定义域的不同阶段上对应法则不同,因此分段函数求函数值时,一定要看清楚自变量所处阶段,例如本题中,5∈{x |x >0},而 f (5)=﹣2∈{x |x ≤0},分别代入不同的对应法则求值即可得结果【答案】解:因为 5>0,代入函数解析式 f (x )=x 2 4x 3,x ≤ 䕼得 f (5)=3﹣5=﹣2,3 — x ,x >䕼⎨- x - 2a ,x ≥ 1所以 f (f (5))=f (﹣2),因为﹣2<0,代入函数解析式 f (x )==(﹣2)2+4×(﹣2)+3=﹣1故选:C .x 2 4x3,x ≤ 䕼3 — x ,x >䕼得 f (﹣2)【点睛】本题考查了分段函数的定义,求分段函数函数值的方法,解题时要认真细致,准确运算.【练 7.3】已知实数 a ≠ 0 ,函数 f (x ) = ⎧ 2x + a ,x < 1,若 f (1 - a ) = f (1 + a ) ,则 a 的值为()⎩A. - 34B. 34 C. - 35D. 35【思路分析】若 a >0,则 1﹣a <1,1+a >1,由 f (1﹣a )=f (1+a ),得 2(1﹣a )+a =﹣(1+a )﹣ 2a ;若 a <0,则 1﹣a >1,1+a <1,由 f (1﹣a )=f (1+a ),得 2(1+a )+a =﹣(1﹣a )﹣2a .由此能求出 a 的值.【答案】解:∵实数 a ≠0,函数 f (x )=2xt ,x <1— x — 2t ,x ≤ 1,f (1﹣a )=f (1+a ),∴若 a >0,则 1﹣a <1,1+a >1,又 f (1﹣a )=f (1+a ),∴2(1﹣a )+a =﹣(1+a )﹣2a ,解得 a =— 3,不成立;2若 a <0,则 1﹣a >1,1+a <1,又 f (1﹣a )=f (1+a ),∴2(1+a )+a =﹣(1﹣a )﹣2a ,解得 a =— 3.4∴a =— 3.4故选:B .【点睛】本题考查实数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二节(2-3个课时) 第一课时1、如下图,求出A 、B 、C 、D 、E 、F 、O 点的坐标.2、若点A 的坐标为(2,-3),则它在第 象限内,它关于x 轴的对称点的坐标为 ;在第_____________象限.它关于y 轴的对称点的坐标为 ;它关于原点的对称点的坐标为 ;点(3-,π-)在________,点(3,0)在________,点(0,-5)在______.3、请在下图中建立直角坐标系,并写出图中各点的坐标:A :( , )B :( , )C :( , )D :( , )4.下列各点,在第三象限的是( )A .(2, 4)B .(2, -4)C .(-2, 4)D .(-2, -4)5、已知点P 在第二象限内,且到x 轴的距离为2,到y 轴的距离为3,则点P 的坐标为 ;6. 若点P 在x 轴的下方, y 轴的左方, 到每条件坐标轴的距离都是3,则点P 的坐标为( )A. (3,3)B. (-3,3)C. (-3,-3)D. (3,-3).7. 点A 在y 轴上,距离原点4个单位长度,则A 点的坐标是( ) . 8. 在坐标系中, 点C(-2,3)向左平移3个单位长度后坐标为( ) 9. 点P(x ,y)在第四象限,|x |=1,|y |=3,则P 点的坐标是 ( ) A.(1,3) B. (-1,3) C. (-1,-3) D. (1,-3)[B 组]9、 4. 已知A(a –1,3)在y 轴上,则a = .10、 13、在直角坐标系中,点(2x -6,x -5)在第四象限,则x 的取值范围是__。

A 、3<x <5 B 、-3<x <5 C 、-5<x <3 D 、-5<x <-3 11、(1)在平面直角坐标系中的点与有序实数对之间成___关系.(2)如果点P (x ,y )的坐标满足xy >0,那么点P 在__ 象限,如果满足xy= 0,那么点P __________.(3)如果点P(m -2,m -3)在第四象限,那么m 的取值范围是____ . (4)若点(m,2)与(3, n)关于原点对称,则m+n 的值是 ____ . (5) 已知线段AB 的两个端点的坐标分别是A(3,4),B(-2,1),求: ①把线段AB 向右平移2个单位后的线段的两个端点坐标;__ ②线段AB 关于x 轴对称图形的两个端点的坐标;__ ③线段AB 关于Y 轴对称图形的两个端点的坐标;__[C 组]12.平面直角坐标系内,已知点P (a ,b )且ab <0,则点P 在第__象限。

13、如果点M(a +b ,ab)在第二象限,则点N(a ,b)在第__象限。

14、平面直角坐标系中,点A (n ,1-n )一定不在( C )A 第一象限B 第二象限C 第三象限D 第四象限15:已知:点A 、B 、C 的坐标分别为)3,0(A 、)5,0(-B 、)0,6(C ,求△ABC 的面积.16、若点P (a ,b )在第四象限,则点M (b -a ,a -b )在第__象限。

17、已知点P 在第二象限,它的横坐标与纵坐标的和为1,点P 的坐标可以是__(填上一个你认为正确的即可)第二课时1、画出函数321+-=x y 的图象,并在图象上分别找出满足下列条件的点,写出它的坐标:(1)横坐标是-4的点; (2)和y 轴距离是2个单位长的点.x … … y2、(书上复习题)如图,正方形ABCD 的边长为4,P 为DC 上的点.,设DP =x ,(1)△APD 的面积y 关于x 的函数关系式为 (2)自变量x 的取值范围为 (3)画出这个函数的图象.(4)观察你所画的图象,回答下列问题 (a )当x = 时,△APD 的面积y= 4(b )当x 增大时,y 的值如何变化? (c )当x= 时,△APD 的面积最大。

3、等腰△ABC 的周长为10cm ,底边BC 的长为ycm,腰AB 的长为xcm. (1) 写出y 关于x 的函数关系式 (2) 求x 的取值范围 (3) 画出函数的图象(4) 观察你所画的图象,求y 的取值范围 解:4、下列哪些点在函数2-=x y 的图象上?为什么?哪些不在?为什么? A (1,-1)、B (0,2)、C (-1,-2)、D (2,0)、E (6,8)、F (-1,-3)5、下列各点不在函数的图象上的是( )A 、B 、C 、D 、x … … y (第1题)6、点中,在函数的图象上的点有( )A 、1个B 、2个C 、3个D 、4个 7、函数的图象过四个点中的( )A 、1个B 、2个C 、3个D 、4个 8、下列函数中,图象经过原点的为( )A .y=5x+1B .y=-5x-1C .y=-5xD .y=51 x[B 组]9、点(a ,6),在函数y=x 3的图象上,则a=10、数y=kx+5的图象经过(1,-2),则k=[C 组]11、别在同一坐标系内画出各组函数的图象,并观察每组图象之间的关系和区别. (1)12、知函数(1)画出这个函数的图象;(2)写出相应的函数与x 轴交点坐标,与y 轴的交点坐标; (3)判断点 是否在这个函数的图象上,如果在将它画在图象上. 13、若点在函数的图象上,且当时,.(1)求a 、c 的值;(2)如果点(-1,m )和点(n ,6)也在函数的图象上,求m ,n 的值.第三课时1、一天,亮亮发烧了,早晨他烧得很厉害,吃过药后感觉好多了,中午时亮亮的体温基本正常,但是下午他的体温又开始上升,直到半夜,亮亮才感觉身上不那么发烫了,下面各图能基本上反映出亮亮这一天(0时-24时)体温的变化情况的是( )2、星期天晚饭后,小红从家里出去散步,如图描述了她散步过程中离家的距离与散步的时间t (分)之间的函数关系,依据图象,下面描述符合小红散步情景的是( )A 从家出发,到一个公共阅报栏看了一 会儿报,就回家了。

B 从家出发,到一个公共阅报栏看了一 会儿报,继续向前走了一段,然后回家了。

C 从家出发,一直散步(没有停留),然 后回家了。

D 从家出发,散了一会儿步,就找同学去 了,18分钟后才开始返回。

3、如果A 、B 两人在一次百米赛跑中,路程s (米)与赛跑的时间t (秒)的关500200100ED B80160100140120y系如图所示,则下列说法正确的是( )A A 比B 先出发 B A 、B 两人的速度相同C A 先到达终点D B 比A 跑的路程多4、丹家距学校m 千米,一天她从家上学先以a 千米/时的速度跑步锻炼前进,后以匀速b 千米/时步行到达学校,共用n 小时图17-2-12份中能够反映李丹同学距学校的距离s (千米)与上学的时间t(小时)之间的大致图象是 ( )5、汽车在行驶过程中,速度往往是变化的,下图图象表示的是一辆汽车的速度随时间变化而变化的情况。

(1) 汽车从出发到最后停止共经过了多少时间?它的最高时速是多少?(2) 汽车在哪些时间段保持匀速行驶?时速分别是多少?(3) 出发后8分钟到10分钟辶间可能发生了什么情况?6、如图,图中直线AB 、CD 分别表示一艘轮船和一艘快艇沿相同路线从甲港出发到乙港的过程中,路程y (km )随时间x (小时)变化的图象(其中,轮船出发的时间记作0).(1)分别求出轮船和快艇行驶过程中y与x间的函数关系式;(2)求轮船和快艇行驶时的速度分别是多少;(3)由图中哪点可以得知,快艇出发多少时间赶上轮船,为什么?(4)若用函数关系式来解决问题(3),你会怎样做?为什么?(4)结合以上问题和你对图示中点A、B、C、D、E的理解,用一段话描述一下事情的经过.7、如图表示某学校秋游活动时,学生乘坐旅游车所行走的路程与时间的关系的示意图,请根据示意田回答下列问题:1.学生何时下车参观第一风景区?参观时间有多长?2.11:00时该车离开学校有多远?3.学生何时返回学校,返回学校时车的平均速度是多少?[B组]8、小刚,爸爸,爷爷同时从家中出发到达同一目的地后又立即返回,小刚去时骑自行车,返回时步行;爷爷去时步行,返回时骑自行车;爸爸往返都步行。

三人步行的速度不等,小刚与爷爷骑自行车的速度相等,每个人走的路程与时间的关系分别如下图中的一个,走完一个往返,小刚用 min,爸爸用min,爷爷用 min。

9、小明为了表示爷爷吃过晚饭后,出门散步、报亭看报、回家的过程,绘制了爷爷离家的路程S(米)与外出的时间(分)之间的关系图(如图17-1-3所示),请根据这个关系图回答下列问题.(1)这个关系图反映了哪几个变量之间的关系?(2)任取变量t的一个值,变量S有几个值与它对应,变S是t的函数吗?(3)报亭离爷爷家多远?爷爷在报亭看了多长时间的报?(4) 爷爷出门、返回的平均速度分别是多少?10、在下列几个图象下的括号内分别填上对应函数的序号:(1)一杯越晾越凉的水(水温与时间的关系)(2)一面冉冉上升的旗子(高度与时间的关系)(3)足球守门员大脚开出去的球(高度与时间的关系)(4)匀速行驶的汽车(速度与时间的关系)[C 组]11、如图所示是某蓄水池的横断面示意图,分深水区 和浅水区,如果这个蓄水池以固定的流量注水,下 面哪个图象能大致表示水的最大深度h 与注水时间t间的函数关系( )12、沿墙用长32米的竹篱笆围成一个矩形的护栏(三面),设矩形的宽为x m ,求矩形的面积s 与x 的函数关系式,画出此函数的图象,并指出当x 为何值时面积最大?最大面积是多少?13、一函数的图象如下图,根据图象:观察下图回答下列问题: (1)确定自变量x 的取值范围; (2)求当时,y 的值;ht h O t h t h t h O O O D CB A(3)求当时,对应的x的值;(4)当x为何值时,函数值y最大?(5)当x为何值时,函数值y最小?(6)当y随x的增大而增大时,求相应的x值在什么范围内?(7)当y随x的增大而减小时,求相应的x值在什么范围内?。

相关文档
最新文档