电力电子变流装置及应用

合集下载

电力电子技术在电气工程中的应用

电力电子技术在电气工程中的应用

电力电子技术在电气工程中的应用电力电子技术是现代电气工程领域非常重要的一个分支,它通过电子器件和电路将电能转换、控制和调节为各种形式的电能输出,被广泛应用于电力系统的稳定性、效率和可靠性提升。

本文将就电力电子技术在电气工程中的应用进行介绍。

1. 变频调速技术变频调速技术是电力电子技术在电气工程中最为常见的应用之一。

通过变频器将交流电源转换为可变频率、可控制的交流电源,可以实现电机的无级调速。

这种技术广泛应用于电梯、水泵、风机等需要调速的设备中,可以提高设备的效率和节能。

2. 柔性直流输电技术柔性直流输电技术是一种新兴的输电方式,采用高压直流输电,通过可控硅元件和光伏阵列等装置,可以实现电能的稳定输送。

这种技术在大规模风力、光伏发电等可再生能源的接入中具有重要意义,可以提高电力系统的灵活性和可靠性。

3. 电力质量改善技术电力质量问题是电气工程中一直存在的难题,电力电子技术可以通过有源滤波器、静止无功发生器等设备,改善电力系统中的谐波、电压波动等问题,保障用电设备的正常运行和安全性。

4. 电力电子变换器技术电力电子变换器技术是电气工程中的核心技术之一,它通过可控硅、IGBT等功率器件,实现电能的直流与交流之间的转换。

电力电子变换器广泛应用于直流输电、换流站等领域,对电网的稳定性和可靠性起到了关键作用。

5. 电力电子补偿技术电力电子补偿技术是为了改善电力系统中的功率因数问题而开发的技术,通过静止无功发生器、电容器组等装置,可以对系统中的无功功率进行补偿,提高系统的功率因数,减少电能的损耗。

以上便是电力电子技术在电气工程中的主要应用领域,它在电力系统的稳定性、效率和可靠性方面发挥着重要作用。

二、电力电子技术的发展趋势随着科学技术的不断发展,电力电子技术也在不断创新和进步,未来的发展趋势主要有以下几个方面:1. 高效绿色技术随着节能环保理念的普及,电力电子技术将朝着高效、环保的方向发展,研究和应用更加高效的功率器件和电力电子转换技术,以减少能源消耗和环境污染。

电力电子技术的新进展及其应用

电力电子技术的新进展及其应用

电力电子技术的新进展及其应用电力电子技术是当今社会中非常重要的一个领域。

近年来,随着科技的不断进步和人们对环保、节能和高效的需求不断提高,电力电子技术也在不断发展与创新。

本文旨在介绍电力电子技术的新进展以及其在现代社会中的应用。

一、电力电子技术的新进展1、新型IGBT模块的研发IGBT(Insulated Gate Bipolar Transistor)是电力电子技术中非常重要的一种器件,广泛应用于交流变直流、电机控制、变频调速等领域。

为提高IGBT模块的效率和稳定性,在多项研究中,人们开始关注IGBT模块的结构、工艺和材料等方面的改进。

一种新的IGBT模块是全极面键合技术(full-surface wire bonding technology)制造的。

与传统机械键合技术相比较,全极面键合技术能够提供更大的可靠性和更强的耐久性,其结构也更为简单,更容易集成其他模块或器件。

同时,全极面键合技术也能够提供更高的解决方案种类,以及单一模块上高达12个IGBT芯片的压缩。

这种新型IGBT模块的问世极大程度地提高了电力电子设备的效率与可靠性。

2、新型功率半导体器件的应用功率半导体器件是电力电子技术中最常用的器件之一。

最近在这方面的研究中,可以看到针对某些特殊的应用场合,出现了一些新型的功率半导体器件。

例如,一款新型的硅基氮化镓(GaN)晶体管已经被研制出来,该器件相比传统硅制器件具备更高的开关速度、更高的工作频率、更低的开关噪声、更高的开关效率和更低的导通电阻等优点。

这种器件还能够在800V DC电压、15A的高压、高温环境下稳定工作。

这种新型功率半导体器件的应用,大大提高了电力电子设备的创新能力和发展速度。

二、电力电子技术的应用1、交流变直流电源在交流变直流电源的应用方面,在工业制造和家庭用电方面都有广泛的应用。

利用交流斩波技术,交流电源可以转化成稳定的直流电源,从而为电子设备的正常功能提供电力支持。

电力电子变换器的工作原理及应用

电力电子变换器的工作原理及应用

电力电子变换器的工作原理及应用电力电子变换器是一种将电能从一种形式转换为另一种形式的装置,它通过电压和电流的变化来实现电能的转换和控制。

电力电子变换器在许多电力系统和电子设备中起着重要的作用,它广泛应用于工业、交通、通信等领域。

一、工作原理电力电子变换器的工作原理主要涉及到功率半导体器件的开关行为。

主要的功率半导体器件包括晶体管、绝缘栅双极型晶体管(IGBT)和金属氧化物半导体场效应管(MOSFET)等。

这些器件通过控制电流和电压的开关状态,来实现对电能的变换和控制。

在电力电子变换器中,最常见的拓扑结构包括单相全控桥式变流器和三相全控桥式变流器。

其中,单相全控桥式变流器由四个可控硅器件组成,可以将交流电源转换为直流电源,进而实现对电能的控制。

而三相全控桥式变流器由六个可控硅器件组成,可以将三相交流电转换为直流电,用于驱动电动机等应用。

电力电子变换器的工作过程可以简单描述为:首先,通过控制器对变换器中的可控硅或其他功率开关器件进行开关控制;其次,电力电子变换器通过开关器件的导通和截止,实现对输入电压和电流的变换;最后,经过滤波电路的处理,输出稳定的电能供给给电机、电网等负载。

二、应用领域1. 电力系统电力电子变换器在电力系统中起着至关重要的作用。

它们可用于电力传输的高压直流输电系统(HVDC),将交流电转换为直流电以降低输电损耗和提高输电能力。

此外,电力电子变换器还被广泛应用于无功补偿装置、电力调制装置以及电力质量改善装置等领域,用于提高电能质量和电压的稳定性。

2. 工业在工业领域,电力电子变换器可用于可调速驱动器,用于控制电动机的转速和扭矩。

这种变换器可以根据需要调整电源电压和频率,实现更高的运行效率和精确控制。

同时,电力电子变换器还广泛应用于电焊机、电炉和数控设备等工业设备中,以满足不同的工作需求。

3. 交通电力电子变换器在交通领域中具有重要作用。

例如,交流传动机构中的变频器是一种电力电子变换器,它将交流电源转换为直流电并供给给电动机,从而实现电机转速的调节。

电力电子变流器的工作原理及调节方法

电力电子变流器的工作原理及调节方法

电力电子变流器的工作原理及调节方法电力电子变流器是一种能够将电力源的特定特性转化为所需要的特定负载特性的装置。

它在现代电力系统中起着至关重要的作用,广泛应用于工业、交通等领域。

本文将介绍电力电子变流器的工作原理以及调节方法。

一、电力电子变流器的工作原理电力电子变流器是通过将电力源的特性进行变换,使其能够符合负载的特性要求。

其工作原理主要包括两个关键过程:开关过程和能量转移过程。

1. 开关过程电力电子变流器通过控制开关器件的导通和关断,将电源的电能转换为符合负载需求的电能。

开关器件通常采用晶闸管、二极管等,通过改变其导通和关断状态来控制电力的流向和大小。

开关过程的实现涉及到控制信号的生成和传输,其中包括PWM(脉宽调制)技术和谐波滤除等方法。

2. 能量转移过程能量转移过程是指电力电子变流器将电源提供的电能转移到负载上的过程。

在能量转移过程中,通过开关过程实现的电能转换成为满足负载要求的电能,同时也会伴随能量损耗。

为了提高能量转移的效率,电力电子变流器通常采用高效能量转换电路,如谐振电路和电路拓扑优化等。

二、电力电子变流器的调节方法为了满足不同负载要求,电力电子变流器需要进行精确的调节。

以下是常用的几种调节方法:1. 脉宽调制(PWM)调节脉宽调制技术是一种通过改变开关器件的导通时间比例,来调节输出电压或电流的方法。

通过调节脉宽,可以实现对输出电压或电流的精确控制。

脉宽调制技术具有调节范围广、调节精度高等优点,广泛应用于变频调速、电力调节等领域。

2. 频率调制调节频率调制调节是一种通过改变开关器件的开关频率,来调节输出电压或电流的方法。

通过调节频率,可以实现对输出电压或电流的调节。

频率调制调节一般用于特殊应用,如谐振电力电子变流器等。

3. 直接调节法直接调节法是指通过改变电力电子变流器的控制参数,直接调节输出电压或电流的方法。

这种调节方法通常通过改变参数,如控制电压、电流或转矩等,来实现对电力电子变流器的调节。

电力电子技术的应用和原理

电力电子技术的应用和原理

电力电子技术的应用和原理1. 引言电力电子技术是一种应用在电力系统中的技术,通过将电力转换为可控的形式,实现电力的调节、变换和控制。

本文将介绍电力电子技术的应用领域和基本原理。

2. 应用领域电力电子技术在现代电力系统中有着广泛的应用,下面列举几个主要的应用领域:•变频调速:电力电子技术可以实现交流电源向直流电源的变换,通过控制电压和频率,实现对电机的调速,广泛应用于工业控制、高速列车、船舶等领域。

•可再生能源发电:电力电子技术可以实现可再生能源(如太阳能、风能)的转换和接入电力系统。

•电力传输和配电:电力电子技术可以实现高压直流输电,提高输电效率,同时可以实现电力系统的电能质量调节和稳定。

•电力负载控制:电力电子技术可以实现对电力负载的控制,如电炉、焊机、电动汽车充电桩等。

3. 基本原理电力电子技术的基本原理主要包括以下几个部分:3.1 可控硅电路可控硅是一种具有电压控制能力的电子器件,通过控制其导通和关断的时刻,可以实现对交流电的控制。

可控硅电路是电力电子技术中最常用的电力调节器件之一。

3.2 逆变器逆变器是将直流电转换为交流电的装置,其基本原理是通过可控硅等器件对直流电进行开关调制,实现交流电的输出。

逆变器在可再生能源发电和变频调速等领域有着广泛的应用。

3.3 斩波电路斩波电路是电力电子技术中的一种电力负载控制装置,通过可控硅等器件对交流电进行斩波控制,实现对电力负载的控制。

斩波电路可以实现电力负载的连续可调,广泛应用于电力控制领域。

3.4 工频变压器工频变压器是电力电子技术中的一种常见变压器形式,通过可控硅等器件控制变压器的绕组切换,实现对电压和功率的调节。

工频变压器在电力系统的电能调节和稳定中有着重要的作用。

4. 结论电力电子技术作为一种应用在电力系统中的技术,通过将电力转换为可控的形式,实现电力的调节、变换和控制。

本文介绍了电力电子技术的应用领域和基本原理,包括变频调度、可再生能源发电、电力传输和配电以及电力负载控制等。

电力系统中的电力电子变换器设计与控制

电力系统中的电力电子变换器设计与控制

电力系统中的电力电子变换器设计与控制一、引言近年来,随着电力需求的快速增长和可再生能源的广泛应用,电力电子变换器在电力系统中的重要性也日益凸显。

电力电子变换器作为能量转换和调节的核心装置,在电力系统中起着至关重要的作用。

本文将介绍电力电子变换器的设计原理和控制方法,以及其在电力系统中的应用。

二、电力电子变换器设计原理1.1 变换器基本结构电力电子变换器一般由半导体器件、滤波元件和控制电路组成。

其中,半导体器件通常采用功率晶体管(IGBT)或金属氧化物半导体场效应晶体管(MOSFET),而滤波元件则包括电容和电感等。

1.2 变换器工作原理电力电子变换器的基本工作原理是通过开关器件的开关操作,将输入电源的直流信号转换为所需的交流信号。

常见的变换器类型包括直流-直流变换器、直流-交流变换器和交流-交流变换器等。

不同类型的变换器需要根据实际应用需求选择适当的控制策略和拓扑结构。

三、电力电子变换器控制方法2.1 开环控制开环控制是指在变换器的开关操作过程中,通过固定的开关方式和开关频率控制输出电压或电流的变化。

开环控制简单直接,适用于一些简单的应用场景。

但是,由于无法对输出量进行精确调节和补偿,开环控制存在精度和稳定性方面的不足。

2.2 闭环控制闭环控制是指在变换器中引入反馈环路,通过测量输出电压或电流,并将测量值与设定值进行比较,根据比较结果对开关器件进行动态调整。

闭环控制可以实现对输出量的精确控制和补偿,提高系统的稳定性和响应速度。

2.3 基于PWM的控制脉宽调制(PWM)是一种常用的电力电子变换器控制方法。

通过改变开关器件的导通和截止时间,以不同的占空比控制输出电压或电流的大小。

PWM控制方式具有响应速度快、效率高、输出纹波小等优点,广泛应用于各种类型的电力电子变换器中。

四、电力电子变换器在电力系统中的应用3.1 交直流变换器交直流变换器是将交流电转换为直流电的装置,常用于直流电源和交流电网之间的电能转换。

电力电子技术在电力系统电能转换中的应用

电力电子技术在电力系统电能转换中的应用

电力电子技术在电力系统电能转换中的应用电力电子技术是指通过半导体电器件和电力电子设备来控制电能的流动和转换的技术。

它在电力系统中的应用广泛,能够实现高效能量转换和精确的控制,对于提高电力系统的稳定性、可靠性和效率至关重要。

本文将探讨电力电子技术在电力系统电能转换中的应用,并介绍几个常见的应用案例。

1. 电力电子技术在风力发电系统中的应用风力发电是一种利用风能转化为电能的可再生能源发电系统。

在风力发电系统中,风机组产生的交流电需要通过电力电子技术转换为直流电,并由逆变器将直流电转换为交流电供电网络使用。

电力电子技术在风力发电系统中的应用可以实现对风机的变速控制。

通过调整转子的转速,电力电子设备可以使风机在不同风速下都能够以最佳效率运行,从而提高风力发电系统的发电效率。

2. 电力电子技术在光伏发电系统中的应用光伏发电是一种将太阳能转化为电能的发电方式。

在光伏发电系统中,太阳能电池板产生的直流电需要经过电力电子技术进行转换和处理,使其可以供给电力系统使用。

电力电子技术在光伏发电系统中的应用包括直流/直流变换器和逆变器。

直流/直流变换器用于将太阳能电池板产生的直流电转换为电力系统所需的直流电;逆变器则将直流电转换为交流电,并将其注入电力系统。

3. 电力电子技术在电力传输中的应用在电力传输过程中,电力电子技术可以实现电能的高效转换和稳定传输。

交流输电系统中,通过使用静止无功补偿装置和柔性交流输电装置,可以提高系统的稳定性和可靠性,减少输电过程中的能量损耗。

直流输电系统则通过使用高压直流输电装置,可以大幅减少电能在输送过程中的损耗,并提高系统的容量。

4. 电力电子技术在电动汽车充电技术中的应用随着电动汽车的普及,电力电子技术在电动汽车充电技术中发挥着重要作用。

电力电子设备可以实现对电动汽车电池组的快速充电和电能的高效转换。

电力电子技术能够控制充电过程中的充电电流和电压,并实现充电效率的最优化。

同时,电力电子技术还可以实现电能的双向传输,使电动汽车的电池组能够对电力系统进行功率调节和储能。

电力电子器件及应用技术

电力电子器件及应用技术

电力电子器件及应用技术电力电子器件是指能转换和调节电能的器件,是电力电子技术的核心。

随着电力电子技术的不断发展,电力电子器件的种类也日益增多。

在本文中,我们将介绍几种常见的电力电子器件及其应用技术。

一、开关管开关管是一种常见的电力电子器件,适用于高压、高电流的工作环境。

开关管具有通断能力强、开关速度快等特点,被广泛应用于各个领域。

最常见的应用是在电源开关、直流电机驱动器、电池充电器等设备中。

二、整流器整流器是将交流电转换为直流电的电力电子器件,常用于交流电转换为直流电的环境中。

整流器的类型有很多种,其中最常见的是单相整流器和三相整流器。

整流器广泛应用于交流到直流的转换领域,比如电源适配器、电气焊接设备等。

三、逆变器逆变器是将直流电转换为交流电的电力电子器件,适用于需要将直流电转换为交流电的场合。

逆变器在可逆变和无线电源等领域有广泛应用。

它可以将直流电动力设备连接到交流电网,比如太阳能和风能的利用。

逆变器还可用于驱动交流电机。

四、电力调节器电力调节器是一种能够调节电能的电力电子器件,可以根据需要对电压和电流进行调节。

电力调节器被广泛应用于稳压变送器、磁控管、智能继电器等设备中。

它能够在工业自动化、变频调速等领域起到重要作用。

五、功率电子器件功率电子器件是指能够直接转换大功率电力的电力电子器件。

功率电子器件的种类多样,其中最常见的是晶闸管、电力二极管和功率MOSFET。

这些器件被广泛应用于电力变换、电力控制等领域。

功率电子器件的发展为电力电子技术的进步提供了有力支持。

六、电力电子应用技术电力电子应用技术是指将电力电子器件应用于各个领域的技术方法和方法。

电力电子应用技术在电力系统、工业制造、交通运输、新能源等领域发挥着重要作用。

其中,电力变换技术、电力控制技术、电力传输技术等是电力电子应用技术的重要组成部分。

七、电力电子器件的未来发展随着科技的进步和社会的发展,电力电子器件及其应用技术也在不断发展。

未来,电力电子器件将更加智能化、高效化、小型化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅谈电力电子变流装置及应用
摘要:电力电子变流装置是二十世纪兴起的。

电力电子变流装置主要是由多种整流电路整合而成。

本文详细地阐述了了单相可控整流电路整流的工作原理以及该电路的主要产品smes以及直流输电系统在电力系统中的应用。

电力电子变流装置能够使我们的生活更加舒适
关键词:电力电子变流装置、单相可控整流电路、smes、直流输电系统
众所周知,1948年晶体管的发明引起了电子工业革命,半导体器件首先被用于小功率领域,如通信、雷达、电视和计算机等。

1958年美国通用电气公司研制成功晶闸管,以晶闸管为主的的电力半导体器件具有反应快、重量轻、体积小、能量消耗低等特点,晶闸管和它的各种派生器件能使电能变换和孔氏从旋转变流机组、离子交换器等庞大设备转而迈入以半导体器件等组成的静止交换器时代。

就这样,电力电子技术诞生了。

电力电子变换技术的各种变流装置按其功能不同,课分如下及类:可控整流器、逆变器、斩波器、交流调压器、周波变换器等。

可控整流器是把交流电压转换成固定或可调的直流电压。

逆变器是把直流电压交换成频率固定或可调的交流电压。

斩波器是把固定或变化的直流电压变换成可调或恒定的直流电压。

交流调压器是把固定或变化的交流电压变换成可调或固定的交流电压。

周波变换器是吧固定频率的交流电变换成频率可调的交流电。

以晶闸管或功率晶
体管为核心的各种电力电子变换设备的优点有(1)晶闸管或功率晶体管为静止型的电力半导体器件,具有体积小,重量轻、寿命长、可靠性高等优点。

因而由它构成的变换装置与旋转变流机组相比,没有旋转机械部分的磨损,无噪声,维护方便。

(2)电力电子变流装置功率增益高,只需很小的输入信号,就能控制数百安、数千伏以上的工作电流和电压,即功率增益可高达数万倍以上。

(3)控制的动态特性好,晶闸管装置的响应为毫秒级,功率晶体管则为微秒级,快速性好。

(4)效率高,节省能源。

晶闸管或晶体管工作在开关状态,是理想的无触点开关器件,经济指标好。

1、单向可控整流电路
单向可控整流电路,是将单相交流电经晶闸管开关控制,变成输出电压大小可调的直流电压的电路。

在生产中,有大量设备需要可调的直流电源,如直流电动机的调速、电焊、电镀等。

单相半波可控整流电路
单相半波整流电路的优点是只用一个晶闸管。

线路简单,调整方便。

其缺点是输出电压脉动大,电流的有效值与平均值的比值大,且因变压器只工作半周,造成变压器的容量不能充分利用;又因变压器副边绕组中流过含有直流分量的电波,会引起直流磁化,为使变压器的贴心不饱和,必须增大铁芯的截面积,从而使设备容量大。

因此,单相半波可控整流电路只适用于小容量和要求不高的场合使用。

单相桥式全控整流电路
为了克服单相半波可控整流电路的缺点,我们自然想起在二极管整流电路中所采用的单桥式整流电路。

用vt1,vt2,vt3,vt4
四个晶闸管分别接在整流桥的四个桥臂上,而整流桥的两个对顶端接交流电源u2和负载,这样就构成了单相桥式全控整流电路(如图1)。

图1
对比单相半波整流电路可见,单相桥式全控整流电路具有整流波形好,变压器无直流磁化、原边和副边绕组利用率高及功率因素高等优点,因此它在中小功率的整流装置我得到广泛应用。

单相桥式半控整流电路
在单相桥式全控整流电路中,我们利用晶闸管来控制导通的时刻和电流流通的途径,在全控桥式电路中,负载同时流过两个晶闸管。

但作为整流电路,每个支路只需一只晶闸管就能满足控制要求,而将另一个晶闸管用不可控的大功率硅整流二极管来代替,这样就构成了所谓单桥式半控整流电路(如图2)半控电路在电阻性负载时的工作情况与全控电路完全相同。

图2
单相可控整流电路的主电路和触发控制电路,使用元件少,结构简单,调整容易,但输出电压脉动大,容易造成三相交流电网不平衡,所以单相可控整流装置只用于几千瓦一下的中小容量的设备上。

如果负载大,则一般采用三相可控整流电路。

应用
1、超导储能在电力系统中的应用
从储能的角度来看,smes系统在概念上非常简单,其基本原理就是对超导电感线圈通以直流电源从而将能力储存在线圈的磁场中,其储存在超导电感线圈镇南关的能连可表示为
e=1/2li2
e为储存在线圈中的能量;l为线圈电感;i为线圈电流
如果春能线圈是有常规导线绕制而成,那么线圈所春村的磁能将以热的方式损耗在导线的电阻上。

由于超导体的直流电阻为零,其电流密度仅受临界值的限制,可比普通导向高两个数量级,所以超导线圈具有很高的储能密度且其储存的能力可永久不衰减,知道需要释放为止。

现代工业生产过程自动化地持续发展使得越来越多的用户对电力的质量提出更高的要求。

低劣的电力质量会干扰生产过程、造成生产系统误操作甚至使生产中断。

基于smes的动态电压补偿器为瞬间电压扰动对负载的危害问题提供了一个强有力的解决措施。

当发生瞬间电压扰动时,smes系统快速吸收或释放能量来补偿电压扰动,使得负载端地电压在故障期间保持正常不间断。

同电池等其他动态电压补偿装置相比,基于smes的动态电压补偿器具有效率高、反应速度快、重复率高、对环境污染小一级安全可靠等特点。

出了在瞬间的电压扰动期间起动态电压补偿作用外,snes系统还能屏蔽电压波动、频率波动、高次谐波等连续的电网扰动,避免这些扰动影响负荷的正常运行,保证对负荷供电的高质量。

另外,对于中工
业及暂态系统用户的非线性负荷、波动和冲击负荷,smes还能起到补偿和隔离作用,是电网的电力质量不受其影响。

2、直流输电技术的应用
在许多环境下,在电力系统中引入直流联络线具有明显的经济和技术上的优点。

在某些特定条件下,它甚至可能书输送电能的唯一可行的方式。

例如,当被接连的两个交流系统不能同步时,以及当传输距离和陆地或海底电缆的长度太长以致不能稳定地和经济地进行交流输电时,采用直流系统就成为唯一的选择。

此时,交流在一个换流站被转换成直流,然后将其输送到第二个换流站,再转换回交流,并被输入另一个电网。

参考文献
[1] 康华光,电子技术基础。

第四版.北京:高等教育出版社。

1999
[2] 李加升,电子技术。

北京:北京理工大学出版社,2007
[3] 王文郁,石玉,李秉象编。

晶闸管变流技术应用图集。

北京:机械工业出版社,2002
注:文章内所有公式及图表请用pdf形式查看。

相关文档
最新文档