2018中考数学专题复习 几何最值问题综合课(pdf,无答案)
2018年中考数学真题分类汇编专题复习(六)几何最值问题(答案不全)

( 2018 陕西)
5
( 2018 扬州)如图,在 ABC 中, AB AC , AO BC 于点 O , OE AB 于点 E ,以点 O 为圆心, OE 为半 径作半圆,交 AO 于点 F . ( 1)求证: AC 是 O 的切线; ( 2)若点 F 是 AO 的中点, OE 3 ,求图中阴影部分的面积; ( 3)在( 2)的条件下,点 P 是 BC 边上的动点,当 PE PF 取最小值时,直接写出 BP 的长 .
6
菱
形,点 P、E、 F 分别为线段 AB、AD、DB 的任意点,则 PE PF 的最小值是
.
15
4
平行线之间垂线段最短
3
( 2018 泰安)
( 2018 广州)如图 11,在四边形 ABCD中,∠ B=∠ C=90°, AB> CD, AD=AB+CD.
(1) 利用尺规作∠ ADC的平分线 DE,交 BC于点 E, 连接 AE(保留作图痕迹,不写作法 ) ( 2)在( 1)的条件下, ①证明: AE⊥ DE; ②若 CD=2, AB=4,点 M,N 分别是 AE,AB 上的动点,求 BM+MN的最小值。 ( 2018 荆门)
( 2018 荆州)
专题复习(六)几何最值问题
( 2018 新疆建设兵团)轴对称求最值
( 2018 苏州)二次函数最值 2 3
( 2018 铜仁) ( 2018 十堰) 垂线段最短 ( 201,等腰△ ABC的底边 BC=20,面积为 120,点 F 在边 BC上,且 BF=3FC, EG是腰 AC的垂直平分 线,若点 D 在 EG上运动,则△ CDF周长的最小值为 13 . 轴对称求最短路径
( 2018 天津) 轴对称求最短路径
2018中考数学压轴题探究专题 :几何最值的存在性问题

∴OA+OB+OC=O′A′+OB+OO′=BA′时值最小; ②当等边△ABቤተ መጻሕፍቲ ባይዱ 的边长为 1 时,OA+OB+OC 的最小值 A′B= .
3.已知:在直角坐标系中,点 A(0,6),B(8,0),点 C 是线段 AB 的中点, CD⊥OB 交 OB 于点 D,Rt△EFH 的斜边 EH 在射线 AB 上,顶点 F 在射线 AB 的左 侧,EF∥OA.点 E 从点 A 出发,以每秒 1 个单位的速度向点 B 运动,到点 B 停 止.AE=EF,运动时间为 t(秒). (1)在 Rt△EFH 中,EF= t ,EH= t ;F( t , 6﹣ t )(用含有 t 的代数式表示) (2)当点 H 与点 C 重合时,求 t 的值. (3)设△EFH 与△CDB 重叠部分图形的面积为 S(S>0),求 S 与 t 的关系式; (4)求在整个运动过程中 Rt△EFH 扫过的面积.
由旋转的性质可知,∠OCD=60°,∠ADC=∠BOC=120°, ∴∠DAO=360°﹣60°﹣90°﹣120°=90°, 故答案为:90°; ②线段 OA,OB,OC 之间的数量关系是 OA2+OB2=OC2. 如图 1,连接 OD. ∵△BOC 绕点 C 按顺时针方向旋转 60°得△ADC, ∴△ADC≌△BOC,∠OCD=60°. ∴CD=OC,∠ADC=∠BOC=120°,AD=OB. ∴△OCD 是等边三角形, ∴OC=OD=CD,∠COD=∠CDO=60°, ∵∠AOB=150°,∠BOC=120°, ∴∠AOC=90°, ∴∠AOD=30°,∠ADO=60°. ∴∠DAO=90°. 在 Rt△ADO 中,∠DAO=90°, ∴OA2+AD2=OD2. ∴OA2+OB2=OC2. (2)①如图 2,当 α=β=120°时,OA+OB+OC 有最小值. 作图如图 2, 如图 2,将△AOC 绕点 C 按顺时针方向旋转 60°得△A′O′C,连接 OO′. ∴△A′O′C≌△AOC,∠OCO′=∠ACA′=60°. ∴O′C=OC,O′A′=OA,A′C=BC, ∠A′O′C=∠AOC. ∴△OC O′是等边三角形. ∴OC=O′C=OO′,∠COO′=∠CO′O=60°. ∵∠AOB=∠BOC=120°, ∴∠AOC=∠A′O′C=120°. ∴∠BOO′=∠OO′A′=180°. ∴四点 B,O,O′,A′共线.
北京市西城区重点中学2018年4月初三数学中考总复习—几何综合题 教学讲座文字稿(无答案)

初三数学中考总复习—几何综合题一、几何综合题特点解证几何综合问题: 就是从逻辑推理和定量计算的角度来探求新的、未知的结论.通俗地讲就是创造条件实现由已知向未知的转化.综合题是知识、方法、能力综合型试题,具有知识容量大、解题方法活、能力要求高、突现数学思想方法的运用以及要求学生具有一定的创新意识和创新能力等特点. 纯几何综合题包括:(1)利用圆的知识可以隐含三角形,形成与直角三角形结合的问题,其中包括求线段长、求角度、求阴影部分的面积以及图形面积问题(不能排除直线形问题);(2)图形变换问题:这是一个独立形成综合题问题的知识点.几何综合题以几何图形的位置,元素之间的关系为核心.以直线或者圆为支撑点,包括多个知识点,多种解题思想方法,多步骤等特点,多为探讨几何本质:研究平面几何图形在运动变化过程中的不变性质和不变量,或者变化规律的问题. 二、中考中对此类问题的考查方面:连续运动变化过程中,不变结论或者变化规律的探究;特定状态的定量计算;点的轨迹特征. 三、在解决此类问题时,往往需要把握以下几点:1.变换工具的运用;2.求解工具的运用;3.作图工具的运用; 4.分类讨论的意识;5.轨迹的意识;6.模型的意识; 四、分析什么?怎么分析符合学生的认知规律? 1.还原图形的生成过程,分步画图; 2.确定每步的结论以及相应的可用的方法; 3.判断图形或图形的元素是否需要移动. 五、举例说明如图,C 为BD 上一点,分别以BC 和CD 为边向同侧作等边ECD ABC ∆∆,,AD 和BE 相交于点M .①探究线段BE 和AD 的数量关系并求∠AMB 的度数.②当ECD ∆绕点C 在平面内转动时,旋转角度为α,则上述结论是否发生变化. ③若BC=4,CD=2,在ECD ∆绕点C 转动时,当∠ACE=30︒时,求AD 的长. ABDEACDEMC举一反三:1. 已知:在△ABC 中,∠ABC =90°,AB =BC ,点D 为射线BC 上一动点(点D 不与B 、C 重合).连接AD,做AF ⊥AD,CF ⊥BC.(1)如图1,当点D 在线段BC 上时,完成作图,并证明:AD=AF ;(2)如图2,当点D 在线段BC 的延长线上时,其它条件不变,则原来的结论是否仍然成立? 并探究:CF 、BC 、BD 三条线段之间的关系并给出证明;(3)如图3,已知AB =4,当D 在BC 延长线上时,其它条件不变,连接DF,将△ADF 沿DF 翻折,点A 的对应点为E,连接BF,当∠EBD =30°时,求CD 的长.六、指导学生研究问题(2010海淀一模)已知:△AOB 中,AB=OB=2,△AOB 中,CD=OC=3, ∠ABO=∠DCO. 连接AD,BC ,点M,N,P 分别为OA,OD,BC 的中点.图1 图2(1) 如图1,若A,O,C 三点在同一直线上,且∠ABO=60°,则△PMN 的形状是________________,此时AD BC=________;(2) 如图2,若A,O,C 三点在同一直线上,且∠ABO=2α,证明PMN BAO △∽△,并计算ADBC的值(用含α的式子表示); (3) 在图2中,固定△AOB ,将△COD 绕点O 旋转,直接写出PM 的最大值. 图1 AC AB DFEC AB DF图3图2七、中考题解析1. 在ABC △中,BA BC BAC =∠=α,,M 是AC 的中点,P 是线段BM 上的动点,将线段PA 绕点P 顺时针旋转2α得到线段PQ 。
2018年中考数学之几何综合专题

综合题(以几何图形为为背景)课标要求:掌握综合题的基本解题方法——化整为零,各个击破;善于捕捉题中给出的信息,并进行整理、加工、转化;能利用整体思想、数形结合思想、转化思想指导解题,寻找恰当的突破口。
1、如图,在Rt △ABC 中,∠ABC=90°,AB=BC ,点D 是线段AB 上的一点,连接CD ,过点B 作BG ⊥CD ,分别交CD 、CA 于点E 、F ,与过点A 且垂直于AB 的直线相交于点G ,连接DF 。
给出以下四个结论:①FC AF AB AG =②若点D 是AB 的中点,则AB AF 32=③当B 、C 、F 、D 四点在同一个圆上时,DB DF =④若BDF ABC S S AD DB ∆∆==9,21则,其中正确结论的序号是_______________。
A 、①② B 、③④ C 、①②③ D 、①②③④2、如图,△ABC 是等边三角形,高AD 、BE 相交于点H ,BC=34,在BE 上截取BG=2,以GE 为边作等边三角形GEF ,则△ABH 与△GEF 重叠(阴影)部分的面积为__________。
3、在▱ABCD 中,AB <BC ,已知∠B=30°,AB=32,将△ABC 沿AC 翻折至△AB ′C ,使点B ′落在▱ABCD 所在的平面内,连接B ′D ,若△AB ′D 是直角三角形,则BC 的长为___________。
5、如图,在矩形ABCD 中,BC=2AB ,∠ADC 的平分线交边BC 于点E ,AH ⊥DE 于点H ,连接CH 并延长,交边AB 于点F ,连接AE ,交CF 于点O ,给出下列命题:①∠AEB=∠AEH ;②DH=22EH ;③HO=21AE ;④EH BF BC 2=-,其中正确命题的序号是__________。
4、如图,在正方形ABCD 中,△BPC 是等边三角形,BP 、CP 的延长线分别交AD 于点E 、F ,连接BD 、DP ,BD 与CF 相交于点H ,给出下列结论:①△ABE ≌△DCF ;②53=PH FP ③PB PH DP ⋅=2④413-=∆ABCDBPDS S 正方形,其中正确的是_____________。
武汉市2018中考数学综合复习一(PDF版)答案

4 x 2 2 x 2 x 2 x 4 2 2 2 18 8 2 x 6 x 3x 4 x 4 3
2 4 2 4
(二)圆弧轨迹与最值
1、 如图,AB 为⊙O 的直径,点 D 为 OB 的中点,C 为 AB 弧中点, 2、 点 E 为⊙O 上一动点,P 为 DE 的中点,连接 CP,若 AB=8, 3、 则线段 CP 长度的最大值为__________. 考察知识点:中位线定理、圆的定义、三角形三边关系、勾股定理 方法与技巧:先结合条件,根据动点轨迹,判断“随动点”的轨迹,再计算
中点, 解:①如图 1,延长 EI 交⊙O 于点 F,连 FO、FC、FD、OC,OD,DI,则点 F 为 CD
导角知 FI FD FO 2 .②如图 2, 当点 E 从点 A 顺时针运动到点 B 的过程中, △CDE COD 120 , CED 60 , ( I1 、 FB 上) , 因为 AB 为直径, ∴ I1 FI 2 90 , 的内心 I, 也从点 I1 顺时针沿着半径为 2 圆弧运动到点 I 2 I 2 分别在 FA, ∴当点 E 从点 A 顺时针运动到点 B 的过程中,△CDE 的内心 I 所经过的路径长度为
1 解:如图,连接 OE,取 DO 中点 F,连接 PF,则 PF OE 2 , 2
∴点 P 在以 F 为圆心 2 为半径的圆上运动,连接 CO,在 Rt△COF 中求得 CF 17 ,∴ CP ≤ CF PF ≤ 17 2 . 2、如图,AB 为⊙O 的直径,点 D 为 OB 的中点,C 为 AB 弧中点,EF 为经过点 D 的动弦(不 与 AB 重合,点 P 为 EF 的中点,连接 CO、CP,若 AB=8,则当∠PCO 最大时,弦 EF 的长度为__________. 方法与技巧:根据“定角对定弦”得到动点轨迹 解:如图 1,连接 OP,则 OP⊥EF,取 OD 中点 G,则点 P 在以 OD 为 直径的圆⊙G 上运动(去掉点 O、D).如图 2,显然当 CP 与⊙G 相切时, ∠PCO 最大,设 E、F 在直径 AB 上下两侧,连接 OP 交 CG 于 H,则在 Rt△COG 中, 用面积法求得 OH
7.12几何最值型问题(第4部分)-2018年中考数学试题分类汇编(word解析版)

第七部分专题拓展7.12 几何最值型问题【一】知识点清单【二】分类试题汇编及参考答案与解析一、选择题1.(2018年湖北省荆州市-第10题-3分)如图,平面直角坐标系中,⊙P经过三点A(8,0),O(0,0),B(0,6),点D是⊙P上的一动点.当点D到弦OB的距离最大时,tan∠BOD的值是()A.2 B.3 C.4 D.5【知识考点】坐标与图形性质;圆周角定理;解直角三角形.【思路分析】直接连接AB,过点P作PE⊥BO,并延长EP交⊙P于点D,求出⊙P的半径,进而结合勾股定理得出答案.【解答过程】解:连接AB,过点P作PE⊥BO,并延长EP交⊙P于点D,此时点D到弦OB的距离最大,∵A(8,0),B(0,6),∴AO=8,BO=6,∵∠BOA=90°,∴AB==10,则⊙P的半径为5,∵PE⊥BO,∴BE=EO=3,∴PE==4,∴ED=9,∴tan∠BOD==3.故选:B.【总结归纳】此题主要考查了圆周角定理以及勾股定理、解直角三角形等知识,正确作出辅助线是解题关键.二、填空题1.(2018年湖北省十堰市-第16题-3分)如图,Rt△ABC中,∠BAC=90°,AB=3,AC=D,E分别是边BC,AC上的动点,则DA+DE的最小值为.【知识考点】轴对称﹣最短路线问题.【思路分析】如图,作A关于BC的对称点A',连接AA',交BC于F,过A'作AE⊥AC于E,交BC于D,则AD=A'D,此时AD+DE的值最小,就是A'E的长,根据相似三角形对应边的比可得结论.【解答过程】解:作A关于BC的对称点A',连接AA',交BC于F,过A'作A'E⊥AC于E,交BC 于D,则AD=A'D,此时AD+DE的值最小,就是A'E的长;Rt△ABC中,∠BAC=90°,AB=3,AC=6,∴BC==9,S△ABC=AB•AC=BC•AF,∴3×=9AF,AF=2,∴AA'=2AF=4,∵∠A'FD=∠DEC=90°,∠A'DF=∠CDE,∴∠A'=∠C,∵∠AEA'=∠BAC=90°,∴△AEA'∽△BAC,∴,∴,∴A'E=,即AD+DE的最小值是;故答案为:.【总结归纳】本题考查轴对称﹣最短问题、三角形相似的性质和判定、两点之间线段最短、垂线段最短等知识,解题的关键是灵活运用轴对称以及垂线段最短解决最短问题,属于中考选择题中的压轴题.2.(2018年湖南省岳阳市-第16题-4分)如图,以AB为直径的⊙O与CE相切于点C,CE交AB 的延长线于点E,直径AB=18,∠A=30°,弦CD⊥AB,垂足为点F,连接AC,OC,则下列结论正确的是.(写出所有正确结论的序号)①BC BD=;②扇形OBC的面积为274π;③△OCF∽△OEC;④若点P为线段OA上一动点,则AP•OP有最大值20.25.【知识考点】相似三角形的判定与性质;垂径定理;圆周角定理;切线的性质;扇形面积的计算.【思路分析】利用垂径定理对①进行判断;利用圆周角定理得到∠BOC=2∠A=60°,则利用扇形的面积公式可计算出扇形OBC的面积,于是可对②进行判断;利用切线的性质得到OC⊥CE,然后根据相似三角形的判定方法对③进行判断;由于AP•OP=﹣(OP﹣3)2+9,则可利用二次函数的性质对④进行判断.【解答过程】解:∵弦CD⊥AB,∴=,所以①正确;∴∠BOC=2∠A=60°,∴扇形OBC的面积==π,所以②错误;∵⊙O与CE相切于点C,∴OC⊥CE,∴∠OCE=90,∵∠COF=∠EOC,∠OFC=∠OCE,∴△OCF∽△OEC;所以③正确;AP•OP=(9﹣OP)•OP=﹣(OP﹣3)2+9,当OP=3时,AP•OP的最大值为9,所以④错误.故答案为①③.【总结归纳】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.也考查了垂径定理、圆周角定理和切线的性质.3.(2018年江苏省南通市-第17题-3分)如图,在△ABC中,∠C=90°,AC=3,BC=4,点O是BC 中点,将△ABC绕点O旋转得△A′B'C,则在旋转过程中点A、C′两点间的最大距离是.【知识考点】旋转的性质.【思路分析】连接OA,AC′,如图,易得OC=2,再利用勾股定理计算出OA=,接着利用旋转的性质得OC′=OC=2,根据三角形三边的关系得到AC′≤OA+OC′(当且仅当点A、O、C′共线时,取等号),从而得到AC′的最大值.【解答过程】解:连接OA,AC′,如图,∵点O是BC中点,∴OC=BC=2,在Rt△AOC中,OA==,∵△ABC绕点O旋转得△A′B'C′,∴OC′=OC=2,∵AC′≤OA+OC′(当且仅当点A、O、C′共线时,取等号),∴AC′的最大值为2+,即在旋转过程中点A、C′两点间的最大距离是2+.故答案为2+.【总结归纳】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.三、解答题1.(2018年湖北省荆门市-第19题-9分)如图,在Rt△ABC中,(M2,N2),∠BAC=30°,E为AB 边的中点,以BE为边作等边△BDE,连接AD,CD.(1)求证:△ADE≌△CDB;(2)若AC边上找一点H,使得BH+EH最小,并求出这个最小值.【知识考点】轴对称﹣最短路线问题;坐标与图形性质;全等三角形的判定与性质;等边三角形的性质【思路分析】(1)只要证明△DEB是等边三角形,再根据SAS即可证明;(2)如图,作点E关于直线AC点E',连接BE'交AC于点H.则点H即为符合条件的点.【解答过程】(1)证明:在Rt△ABC中,∠BAC=30°,E为AB边的中点,∴BC=EA,∠ABC=60°.∵△DEB为等边三角形,∴DB=DE,∠DEB=∠DBE=60°,∴∠DEA=120°,∠DBC=120°,∴∠DEA=∠DBC∴△ADE≌△CDB.(2)解:如图,作点E关于直线AC点E',连接BE'交AC于点H.则点H即为符合条件的点.由作图可知:EH=HE',AE'=AE,∠E'AC=∠BAC=30°.∴∠EAE'=60°,∴△EAE'为等边三角形,∴,∴∠AE'B=90°,在Rt△ABC中,∠BAC=30°,,∴,,∴,∴BH+EH的最小值为3.【总结归纳】本题考查轴对称最短问题、等边三角形的判定和性质、全等三角形的判定和性质等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型.2.(2018年湖南省怀化市-第24题-14分)如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(﹣1,0)B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点.(1)求抛物线的解析式和直线AC的解析式;(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标;(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.【知识考点】二次函数综合题.【思路分析】(1)设交点式y=a(x+1)(x﹣3),展开得到﹣2a=2,然后求出a即可得到抛物线解析式;再确定C(0,3),然后利用待定系数法求直线AC的解析式;(2)利用二次函数的性质确定D的坐标为(1,4),作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(﹣3,0),利用两点之间线段最短可判断此时MB+MD的值最小,则此时△BDM 的周长最小,然后求出直线DB′的解析式即可得到点M的坐标;(3)过点C作AC的垂线交抛物线于另一点P,如图2,利用两直线垂直一次项系数互为负倒数设直线PC的解析式为y=﹣x+b,把C点坐标代入求出b得到直线PC的解析式为y=﹣x+3,再解方程组得此时P点坐标;当过点A作AC的垂线交抛物线于另一点P时,利用同样的方法可求出此时P点坐标.【解答过程】解:(1)设抛物线解析式为y=a(x+1)(x﹣3),即y=ax2﹣2ax﹣3a,∴﹣2a=2,解得a=﹣1,∴抛物线解析式为y=﹣x2+2x+3;当x=0时,y=﹣x2+2x+3=3,则C(0,3),设直线AC的解析式为y=px+q,把A(﹣1,0),C(0,3)代入得,解得,∴直线AC的解析式为y=3x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D的坐标为(1,4),作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(﹣3,0),∵MB=MB′,∴MB+MD=MB′+MD=DB′,此时MB+MD的值最小,而BD的值不变,∴此时△BDM的周长最小,易得直线DB′的解析式为y=x+3,当x=0时,y=x+3=3,∴点M的坐标为(0,3);(3)存在.过点C作AC的垂线交抛物线于另一点P,如图2,∵直线AC的解析式为y=3x+3,∴直线PC的解析式可设为y=﹣x+b,把C(0,3)代入得b=3,∴直线PC的解析式为y=﹣x+3,解方程组,解得或,则此时P点坐标为(,);过点A作AC的垂线交抛物线于另一点P,直线PC的解析式可设为y=﹣x+b,把A(﹣1,0)代入得+b=0,解得b=﹣,∴直线PC的解析式为y=﹣x﹣,解方程组,解得或,则此时P点坐标为(,﹣),综上所述,符合条件的点P的坐标为(,)或(,﹣),【总结归纳】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求函数解析式,理解两直线垂直时一次项系数的关系,通过解方程组求把两函数的交点坐标;理解坐标与图形性质,会运用两点之间线段最短解决最短路径问题;会运用分类讨论的思想解决数学问题.3.(2018年湖南省张家界市-第20题-6分)如图,点P是⊙O的直径AB延长线上一点,且AB=4,点M为AB上一个动点(不与A,B重合),射线PM与⊙O交于点N(不与M重合)(1)当M在什么位置时,△MAB的面积最大,并求岀这个最大值;(2)求证:△PAN∽△PMB.【知识考点】圆周角定理;相似三角形的判定.【思路分析】(1)当M在弧AB中点时,三角形MAB面积最大,此时OM与AB垂直,求出此时三角形面积最大值即可;(2)由同弧所对的圆周角相等及公共角,利用两对角相等的三角形相似即可得证.【解答过程】解:(1)当点M在的中点处时,△MAB面积最大,此时OM⊥AB,∵OM=AB=×4=2,∴S△ABM=AB•OM=×4×2=4;(2)∵∠PMB=∠PAN,∠P=∠P,∴△PAN∽△PMB.【总结归纳】此题考查了相似三角形的判定,以及圆周角定理,熟练掌握相似三角形的判定方法是解本题的关键.4.(2018年湖南省湘西州-第24题-8分)反比例函数kyx(k为常数,且k≠0)的图象经过点A(1,3)、B(3,m).(1)求反比例函数的解析式及B点的坐标;(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标.【知识考点】反比例函数图象上点的坐标特征;待定系数法求反比例函数解析式;轴对称﹣最短路线问题.【思路分析】(1)先把A点坐标代入y=求出k得到反比例函数解析式;然后把B(3,m)代入反比例函数解析式求出m得到B点坐标;(2)作A点关于x轴的对称点A′,连接BA′交x轴于P点,则A′(1,﹣3),利用两点之间线段最短可判断此时此时PA+PB的值最小,再利用待定系数法求出直线BA′的解析式,然后求出直线与x 轴的交点坐标即可得到P点坐标.【解答过程】解:(1)把A(1,3)代入y=得k=1×3=3,∴反比例函数解析式为y=;把B(3,m)代入y=得3m=3,解得m=1,∴B点坐标为(3,1);(2)作A点关于x轴的对称点A′,连接BA′交x轴于P点,则A′(1,﹣3),∵PA+PB=PA′+PB=BA′,∴此时此时PA+PB的值最小,设直线BA′的解析式为y=mx+n,把A′(1,﹣3),B(3,1)代入得,解得,∴直线BA′的解析式为y=2x﹣5,当y=0时,2x﹣5=0,解得x=,∴P点坐标为(,0).【总结归纳】本题考查了用待定系数法求反比例函数的解析式:先设出含有待定系数的反比例函数解析式y=(k为常数,k≠0);再把已知条件(自变量与函数的对应值)带入解析式,得到待定系数的方程;接着解方程,求出待定系数;然后写出解析式.也考查了最短路径问题.5.(2018年湖南省益阳市-第23题-10分)如图,在平面直角坐标系中有三点(1,2),(3,1),(﹣2,﹣1),其中有两点同时在反比例函数kyx的图象上,将这两点分别记为A,B,另一点记为C.(1)求出k的值;(2)求直线AB对应的一次函数的表达式;(3)设点C关于直线AB的对称点为D,P是x轴上的一个动点,直接写出PC+PD的最小值(不必说明理由).【知识考点】一次函数的性质;待定系数法求一次函数解析式;反比例函数的性质;反比例函数图象上点的坐标特征;轴对称﹣最短路线问题.【思路分析】(1)确定A、B、C的坐标即可解决问题;(2)理由待定系数法即可解决问题;(3)作D关于x轴的对称点D′(0,﹣4),连接CD′交x轴于P,此时PC+PD的值最小,最小值=CD′的长;【解答过程】解:(1)∵反比例函数y=的图象上的点横坐标与纵坐标的积相同,∴A(1,2),B(﹣2,﹣1),C(3,1)∴k=2.(2)设直线AB的解析式为y=mx+n,则有,解得,∴直线AB的解析式为y=x+1(3)∵C、D关于直线AB对称,∴D(0,4)作D关于x轴的对称点D′(0,﹣4),连接CD′交x轴于P,此时PC+PD的值最小,最小值=CD′= =【总结归纳】本题考查反比例函数图象上的点的特征,一次函数的性质、反比例函数的性质、轴对称最短问题等知识,解题的关键是熟练掌握待定系数法确定函数解析式,学会利用轴对称解决最短问题.6.(2018年江苏省扬州市-第25题-10分)如图,在△ABC中,AB=AC,AO⊥BC于点O,OE⊥AB 于点E,以点O为圆心,OE为半径作半圆,交AO于点F.(1)求证:AC是⊙O的切线;(2)若点F是A的中点,OE=3,求图中阴影部分的面积;(3)在(2)的条件下,点P是BC边上的动点,当PE+PF取最小值时,直接写出BP的长.【知识考点】切线的判定与性质;等腰三角形的性质;扇形面积的计算;轴对称﹣最短路线问题.【思路分析】(1)作OH⊥AC于H,如图,利用等腰三角形的性质得AO平分∠BAC,再根据角平分线性质得OH=OE,然后根据切线的判定定理得到结论;(2)先确定∠OAE=30°,∠AOE=60°,再计算出AE=3,然后根据扇形面积公式,利用图中阴影部分的面积=S△AOE﹣S扇形EOF进行计算;(3)作F点关于BC的对称点F′,连接EF′交BC于P,如图,利用两点之间线段最短得到此时EP+FP 最小,通过证明∠F′=∠EAF′得到PE+PF最小值为3,然后计算出OP和OB得到此时PB的长.【解答过程】(1)证明:作OH⊥AC于H,如图,∵AB=AC,AO⊥BC于点O,∴AO平分∠BAC,∵OE⊥AB,OH⊥AC,∴OH=OE,∴AC是⊙O的切线;(2)解:∵点F是AO的中点,∴AO=2OF=3,而OE=3,∴∠OAE=30°,∠AOE=60°,∴AE=OE=3,∴图中阴影部分的面积=S△AOE﹣S扇形EOF=×3×3﹣=;(3)解:作F点关于BC的对称点F′,连接EF′交BC于P,如图,∵PF=PF′,∴PE+PF=PE+PF′=EF′,此时EP+FP最小,∵OF′=OF=OE,∴∠F′=∠OEF′,而∠AOE=∠F′+∠OEF′=60°,∴∠F′=30°,∴∠F′=∠EAF′,∴EF′=EA=3,即PE+PF最小值为3,在Rt△OPF′中,OP=OF′=,在Rt△ABO中,OB=OA=×6=2,∴BP=2﹣=,即当PE+PF取最小值时,BP的长为.【总结归纳】本题考查了切线的判定与性质:经过半径的外端且垂直于这条半径的直线是圆的切线;圆的切线垂直于经过切点的半径.判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”.也考查了等腰三角形的性质和最短路径问题.。
中考数学专题复习资料--几何最值问题

精品基础教育教学资料,仅供参考,需要可下载使用!几何最值问题复习本内容全部需要在做讲义题目之前进行 一、 读一读下面的内容,想一想 1. 解决几何最值问题的理论依据①两点之间,线段最短(已知两个定点);②_______________(已知一个定点、一条定直线); ③三角形三边关系(已知两边长固定或其和、差固定). 2. 几何最值问题常见的基本结构①利用几何变换进行转化——在右侧一栏中画出相关分析的辅助线,找到最终时刻点P 的位置ll求min ()PA PB +,异侧和最小llMN 为固定线段长,求min ()AM BN +ll求max PB PA -,同侧差最大 ②利用图形性质进行转化MDACO N求ODmax不变特征:Rt△AOB中,直角与斜边长均不变,取斜边中点进行分析.二、还原自己做最值问题的过程(从拿到题目读题开始),与下面小明的动作对标,补充或调整与自己不一样的地方.①研究背景图形,相关信息进行标注;②分析考查目标中的定点、动点及图形特征,利用几何变换或图形性质对问题进行分析;③封装常见的几何结构,当成一个整体处理,后期直接调用分析.三、根据最值问题做题的思考过程,思考最值问题跟存在性问题、动点问题在分析过程中有什么样的区别和联系,简要写一写你的看法.答:下面是小明的看法:①都需要分层对问题分析,一层层,一步步进行分析;②都需要研究基本图形,目标,条件,相关信息都需要有标注;③在画图分析时,都会使用与之有关的性质,判定,定理及公理.如存在性问题需要用四边形的判定;最值问题需要回到问题处理的理论依据.四、借助对上述问题的思考,做讲义的题目.几何最值问题(讲义)一、知识点睛解决几何最值问题的通常思路:1.分析定点、动点,寻找不变特征.2.若属于常见模型、结构,调用模型、结构解决问题;若不属于常见模型,结合所求目标,依据不变特征转化,借助基本定理解决问题.转化原则:尽量减少变量,向定点、定线段、定图形靠拢.二、精讲精练1.如图,在△ABC中,AB=6,AC=8,BC=10,P为BC边上一动点,PE⊥AB于点E,PF⊥AC于点F.若M为EF的中点,则AM长度的最小值为____________.M FE PCBAOED CBA第1题图 第2题图2. 如图,在Rt △ABC 中,∠B =90°,AB =3,BC =4,点D 在BC 边上,则以AC 为对角线的所有□ADCE 中,DE 长度的最小值为_____________.3. 若点D 与点A (8,0),B (0,6),C (a ,a )是一平行四边形的四个顶点,则CD 长度的最小值为_____________.4. 如图,已知AB =2,C 是线段AB 上任一点,分别以AC ,BC 为斜边,在AB 的同侧作等腰直角三角形ACD 和等腰直角三角形BCE ,则DE 长度的最小值为_____________.ED B CA第4题图 第5题图5. 如图,已知AB =10,C 是线段AB 上任一点,分别以AC ,BC 为边,在AB 的同侧作等边三角形ACP 和等边三角形BCQ ,则PQ 长度的最小值为_____________.6. 动手操作:在矩形纸片ABCD 中,AB =3,AD =5.如图所示,折叠纸片,使点A 落在BC边上的A ′处,折痕为PQ ,当点A ′在BC 边上移动时,折痕的端点P ,Q 也随之移动.若限定点P ,Q 分别在AB ,AD 边上移动,则点A ′在BC 边上可移动的最大距离为________________.QPA'D CB AD CBA7. 如图,在直角梯形纸片ABCD 中,AD ⊥AB ,AB =8,AD =CD =4,点E ,F 分别在线段AB ,AD 上,将△AEF 沿EF 翻折,点A 的对应点记为P .QPCBA(1)当点P 落在线段CD 上时,PD 的取值范围是_______.(2)当点P 落在直角梯形ABCD内部时,PD 长度的最小值为_____________.P F ED CB APFE DCBADCBADCBA8. 如图,在Rt △ABC 中,∠ACB =90°,∠A =30°,AC =BC 的中点为D .将△ABC 绕点C 顺时针旋转任意一个角度得到△FEC ,EF 的中点为G ,连接DG ,则在旋转过程中,DG 长度的最大值为____________.9. 如图,已知△ABC 是边长为2的等边三角形,顶点A 的坐标为(0,6),BC 的中点D 在点A下方的y 轴上,E 是边长为2且中心在坐标原点的正六边形的一个顶点,把这个正六边形绕其中心旋转一周,则在旋转过程中DE 长度的最小值为_________.10. 探究:如图1,在等边三角形ABC 中,AB =6,AH ⊥BC 于点H ,则AH =_______,△ABC的面积ABC S △__________.发现:如图2,在等边三角形ABC 中,AB =6,点D 在AC 边上(可与点A ,C 重合),分别过点A ,C 作直线BD 的垂线,垂足分别为点E ,F ,设BD =x ,AE =m ,CF =n .DGFECB A图1 图2(1)用含x ,m ,n 的代数式表示ABD S △及CBD S △;(2)求(m n +)与x 之间的函数关系式,并求出(m n +)的最大值和最小值.应用:如图,已知正方形ABCD 的边长为1,P 是BC 边上的任一点(可与点B ,C 重合),分别过点B ,C ,D 作射线AP 的垂线,垂足分别为点B′,C′,D′,则BB′+CC′+DD′的最大值为______,最小值为______.三、回顾与思考________________________________________________ ________________________________________________ ________________________________________________ 【参考答案】精讲精练 1.1252.3HBAD'B'C'P D CBA3.4.1 5.5 6.27.(1)84PD -≤;(2)8 8.69.410.探究:发现:(1)12ABD S xm =△,12CBD S xn =△(2)m n +=m +n 的最大值为6,最小值为应用:2。
2018年中考数学专题复习第七讲几何最值问题解题策略

中考数学专题复习第七讲几何最值问题解题策略【专题分析】最值问题是初中数学的重要内容,无论是代数问题还是几何问题都有最值问题,在中考压轴题中出现比较高的主要有利用重要的几何结论(如两点之间线段最短、三角形两边之和大于第三边、两边之差小于第三边、垂线段最短等)以及用一次函数和二次函数的性质来求最值问题.【知识归纳】1.在求几何图形中的周长或线段长度最值时,解决此类问题的方法一般是先将要求线段(要求的量)用未知数x表示出来,建立函数模型(一般所表示的式子为一次函数解析式或二次函数解析式),常用勾股定理或三角形相似求得函数关系式,再用函数的增减性或最值来求解即可.2.利用对称的性质求两条线段之和最小值的问题,解决此类问题的方法为:如图,要求直线l上一动点P到点A,B距离之和的最小值,先作点A关于直线l的对称点A',连接A'B,则A'B与直线l的交点即为P点,根据对称性可知此时A'B的长即为PA+PB的最小值,求出A'B的值即可.【题型解析】题型1: 三角形中最值问题例题:(2017山东枣庄)如图,直线y=x+4与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,PC+PD值最小时点P 的坐标为()A.(﹣3,0)B.(﹣6,0)C.(﹣,0) D.(﹣,0)【考点】F8:一次函数图象上点的坐标特征;PA:轴对称﹣最短路线问题.【分析】(方法一)根据一次函数解析式求出点A、B的坐标,再由中点坐标公式求出点C、D的坐标,根据对称的性质找出点D′的坐标,结合点C、D′的坐标求出直线CD′的解析式,令y=0即可求出x的值,从而得出点P的坐标.(方法二)根据一次函数解析式求出点A、B的坐标,再由中点坐标公式求出点C、D的坐标,根据对称的性质找出点D′的坐标,根据三角形中位线定理即可得出点P为线段CD′的中点,由此即可得出点P的坐标.【解答】解:(方法一)作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图所示.令y=x+4中x=0,则y=4,∴点B的坐标为(0,4);令y=x+4中y=0,则x+4=0,解得:x=﹣6,∴点A的坐标为(﹣6,0).∵点C、D分别为线段AB、OB的中点,∴点C(﹣3,2),点D(0,2).∵点D′和点D关于x轴对称,∴点D′的坐标为(0,﹣2).设直线CD′的解析式为y=kx+b,∵直线CD′过点C(﹣3,2),D′(0,﹣2),∴有,解得:,∴直线CD′的解析式为y=﹣x﹣2.令y=﹣x﹣2中y=0,则0=﹣x﹣2,解得:x=﹣,∴点P的坐标为(﹣,0).故选C.(方法二)连接CD,作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图所示.令y=x+4中x=0,则y=4,∴点B的坐标为(0,4);令y=x+4中y=0,则x+4=0,解得:x=﹣6,∴点A的坐标为(﹣6,0).∵点C、D分别为线段AB、OB的中点,∴点C(﹣3,2),点D(0,2),CD∥x轴,∵点D′和点D关于x轴对称,∴点D′的坐标为(0,﹣2),点O为线段DD′的中点.又∵OP∥CD,∴点P为线段CD′的中点,∴点P的坐标为(﹣,0).故选C.方法指导:出现最值问题,可转化为轴对称知识所涉及的最短路径问题是我们解答此类问题的常见方法.题型2: 四边形中最值问题例题:(2017贵州安顺)如图所示,正方形ABCD的边长为6,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为 6 .【考点】PA:轴对称﹣最短路线问题;KK:等边三角形的性质;LE:正方形的性质.【分析】由于点B与D关于AC对称,所以连接BD,与AC的交点即为P点.此时PD+PE=BE最小,而BE是等边△ABE的边,BE=AB,由正方形ABCD的边长为6,可求出AB的长,从而得出结果.【解答】解:设BE与AC交于点P,连接BD,∵点B与D关于AC对称,∴PD=PB,最小.∴PD+PE=PB+PE=BE即P在AC与BE的交点上时,PD+PE最小,为BE的长度;∵正方形ABCD的边长为6,∴AB=6.又∵△ABE是等边三角形,∴BE=AB=6.故所求最小值为6.故答案为:6.方法指导:本题借助不等式“a2+b2≥2ab”通过代换转化来求平行四边形面积的最值,体现了转化思想和整体思想的运用.题型3:圆中最值问题例题:(2017浙江衢州)如图,在直角坐标系中,⊙A的圆心A的坐标为(﹣1,0),半径为1,点P为直线y=﹣x+3上的动点,过点P作⊙A的切线,切点为Q,则切线长PQ的最小值是2.【考点】MC:切线的性质;F5:一次函数的性质.【分析】连接AP,PQ,当AP最小时,PQ最小,当AP⊥直线y=﹣x+3时,PQ 最小,根据两点间的距离公式得到AP=3,根据勾股定理即可得到结论.【解答】解:连接AP,PQ,当AP最小时,PQ最小,∴当AP⊥直线y=﹣x+3时,PQ最小,∵A的坐标为(﹣1,0),y=﹣x+3可化为3x+4y﹣12=0,∴AP==3,∴PQ==2.方法指导: 此题综合性强,解题方法很多,考查范围较广,与初中数学很多内容有关,如勾股定理、圆周角定理及推论、垂径定理、相似、三角函数、二次函数、垂线段的性质、二次根式的计算与化简等.考查了多种数学思想,如建模思想、化归思想等.此题难度中等,有一定的灵活性,考生不易拿满分.【提升训练】1. (2017江苏盐城)如图,在边长为1的小正方形网格中,将△ABC绕某点旋转到△A'B'C'的位置,则点B运动的最短路径长为π.【考点】O4:轨迹;R2:旋转的性质.【分析】如图作线段AA′、CC′的垂直平分线相交于点P,点P即为旋转中心,观察图象可知,旋转角为90°(逆时针旋转)时B运动的路径长最短【解答】解:如图作线段AA′、CC′的垂直平分线相交于点P,点P即为旋转中心,观察图象可知,旋转角为90°(逆时针旋转)时B运动的路径长最短,PB==,∴B运动的最短路径长为==π,故答案为π.2. (2017?新疆)如图,在边长为6cm的正方形ABCD中,点E、F、G、H分别从点A、B、C、D同时出发,均以1cm/s的速度向点B、C、D、A匀速运动,当点E 到达点B时,四个点同时停止运动,在运动过程中,当运动时间为 3 s时,四边形EFGH的面积最小,其最小值是18 cm2.【考点】H7:二次函数的最值;LE:正方形的性质.【分析】设运动时间为t(0≤t≤6),则AE=t,AH=6﹣t,由四边形EFGH的面积=正方形ABCD的面积﹣4个△AEH的面积,即可得出S四边形EFGH关于t的函数关系式,配方后即可得出结论.【解答】解:设运动时间为t(0≤t≤6),则AE=t,AH=6﹣t,根据题意得:S四边形EFGH=S正方形ABCD﹣4S△AEH=6×6﹣4×t(6﹣t)=2t2﹣12t+36=2(t ﹣3)2+18,∴当t=3时,四边形EFGH的面积取最小值,最小值为18.故答案为:3;18【点评】本题考查了二次函数的最值、三角形以及正方形的面积,通过分割图形求面积法找出S四边形EFGH关于t的函数关系式是解题的关键.3. (2017湖北宜昌)正方形ABCD的边长为1,点O是BC边上的一个动点(与B,C不重合),以O为顶点在BC所在直线的上方作∠MON=90°.(1)当OM经过点A时,①请直接填空:ON 不可能(可能,不可能)过D点;(图1仅供分析)②如图2,在ON上截取OE=OA,过E点作EF垂直于直线BC,垂足为点F,作EH ⊥CD于H,求证:四边形EFCH为正方形.(2)当OM不过点A时,设OM交边AB于G,且OG=1.在ON上存在点P,过P 点作PK垂直于直线BC,垂足为点K,使得S△PKO=4S△OBG,连接GP,求四边形PKBG 的最大面积.【考点】LO:四边形综合题.【分析】(1)①若ON过点D时,则在△OAD中不满足勾股定理,可知不可能过D 点;②由条件可先判业四边形EFCH为矩形,再证明△OFE≌△ABO,可证得结论;(2)由条件可证明△PKO∽△OBG,利用相似三角形的性质可求得OP=2,可求得△POG面积为定值及△PKO和△OBG的关系,只要△CGB的面积有最大值时,则四边形PKBG的面积就最大,设OB=a,BG=b,由勾股定理可用b表示出a,则可用a表示出△CBG的面积,利用二次函数的性质可求得其最大值,则可求得四边形PKBG面积的最大值.【解答】解:(1)①若ON过点D,则OA>AB,OD>CD,∴OA2>AD2,OD2>AD2,∴OA2+OD2>2AD2≠AD2,∴∠AOD≠90°,这与∠MON=90°矛盾,∴ON不可能过D点,故答案为:不可能;②∵EH⊥CD,EF⊥BC,∴∠EHC=∠EFC=90°,且∠HCF=90°,∴四边形EFCH为矩形,∵∠MON=90°,∴∠EOF=90°﹣∠AOB,在正方形ABCD中,∠BAO=90°﹣∠AOB,∴∠EOF=∠BAO,在△OFE和△ABO中∴△OFE≌△ABO(AAS),∴EF=OB,OF=AB,,又OF=CF+OC=AB=BC=BO+OC=EF+OC∴CF=EF,∴四边形EFCH为正方形;(2)∵∠POK=∠OGB,∠PKO=∠OBG,∴△PKO∽△OBG,∵S△PKO=4S△OBG,∴=()2=4,∴OP=2,∴S△POG=OG?OP=×1×2=1,设OB=a,BG=b,则a2+b2=OG2=1,∴b=,∴S△OBG=ab=a==,∴当a2=时,△OBG有最大值,此时S△PKO=4S△OBG=1,∴四边形PKBG的最大面积为1+1+=.4. (2017甘肃张掖)如图,已知二次函数y=ax2+bx+4的图象与x轴交于点B(﹣2,0),点C(8,0),与y轴交于点A.(1)求二次函数y=ax2+bx+4的表达式;(2)连接AC,AB,若点N在线段BC上运动(不与点B,C重合),过点N作NM ∥AC,交AB于点M,当△AMN面积最大时,求N点的坐标;(3)连接OM,在(2)的结论下,求OM与AC的数量关系.【考点】HF:二次函数综合题.【分析】(1)由B、C的坐标,利用待定系数法可求得抛物线解析式;(2)可设N(n,0),则可用n表示出△ABN的面积,由NM∥AC,可求得,则可用n表示出△AMN的面积,再利用二次函数的性质可求得其面积最大时n的值,即可求得N点的坐标;(3)由N点坐标可求得M点为AB的中点,由直角三角形的性质可得OM=AB,在Rt△AOB和Rt△AOC中,可分别求得AB和AC的长,可求得AB与AC的关系,从而可得到OM和AC的数量关系.【解答】解:(1)将点B,点C的坐标分别代入y=ax2+bx+4可得,解得,∴二次函数的表达式为y=﹣x2+x+4;(2)设点N的坐标为(n,0)(﹣2<n<8),则BN=n+2,CN=8﹣n.∵B(﹣2,0),C(8,0),∴BC=10,在y=﹣x2+x+4中令x=0,可解得y=4,∴点A(0,4),OA=4,∴S△ABN=BN?OA=(n+2)×4=2(n+2),∵MN∥AC,∴,∴==,∴,∵﹣<0,∴当n=3时,即N(3,0)时,△AMN的面积最大;(3)当N(3,0)时,N为BC边中点,∵MN∥AC,∴M为AB边中点,∴OM=AB,∵AB===2,AC===4,∴AB=AC,∴OM=AC.5. (2017江苏盐城)【探索发现】如图①,是一张直角三角形纸片,∠B=60°,小明想从中剪出一个以∠B为内角且面积最大的矩形,经过多次操作发现,当沿着中位线DE、EF剪下时,所得的矩形的面积最大,随后,他通过证明验证了其正确性,并得出:矩形的最大面积与原三角形面积的比值为.【拓展应用】如图②,在△ABC中,BC=a,BC边上的高AD=h,矩形PQMN的顶点P、N分别在边AB、AC上,顶点Q、M在边BC上,则矩形PQMN面积的最大值为.(用含a,h的代数式表示)【灵活应用】如图③,有一块“缺角矩形”ABCDE,AB=32,BC=40,AE=20,CD=16,小明从中剪出了一个面积最大的矩形(∠B为所剪出矩形的内角),求该矩形的面积.【实际应用】如图④,现有一块四边形的木板余料ABCD,经测量AB=50cm,BC=108cm,CD=60cm,且tanB=tanC=,木匠徐师傅从这块余料中裁出了顶点M、N在边BC上且面积最大的矩形PQMN,求该矩形的面积.【考点】LO:四边形综合题.【分析】【探索发现】:由中位线知EF=BC、ED=AB、由=可得;【拓展应用】:由△APN∽△ABC知=,可得PN=a﹣PQ,设PQ=x,由S矩形2+,据此可得;PQMN=PQ?PN═﹣(x﹣)【灵活应用】:添加如图1辅助线,取BF中点I,FG的中点K,由矩形性质知AE=EH20、CD=DH=16,分别证△AEF≌△HED、△CDG≌△HDE得AF=DH=16、CG=HE=20,从而判断出中位线IK的两端点在线段AB和DE上,利用【探索发现】结论解答即可;【实际应用】:延长BA、CD交于点E,过点E作EH⊥BC于点H,由tanB=tanC 知EB=EC、BH=CH=54,EH=BH=72,继而求得BE=CE=90,可判断中位线PQ的两端点在线段AB、CD上,利用【拓展应用】结论解答可得.【解答】解:【探索发现】∵EF、ED为△ABC中位线,∴ED∥AB,EF∥BC,EF=BC,ED=AB,又∠B=90°,∴四边形FEDB是矩形,则===,故答案为:;【拓展应用】∵PN∥BC,∴△APN∽△ABC,∴=,即=,∴PN=a﹣PQ,设PQ=x,则S矩形PQMN=PQ?PN=x(a﹣x)=﹣x2+ax=﹣(x﹣)2+,∴当PQ=时,S矩形PQMN最大值为,故答案为:;【灵活应用】如图1,延长BA、DE交于点F,延长BC、ED交于点G,延长AE、CD交于点H,取BF中点I,FG的中点K,由题意知四边形ABCH是矩形,∵AB=32,BC=40,AE=20,CD=16,∴EH=20、DH=16,∴AE=EH、CD=DH,在△AEF和△HED中,∵,∴△AEF≌△HED(ASA),∴AF=DH=16,同理△CDG≌△HDE,∴CG=HE=20,∴BI==24,∵BI=24<32,∴中位线IK的两端点在线段AB和DE上,过点K作KL⊥BC于点L,由【探索发现】知矩形的最大面积为×BG?BF=×(40+20)×(32+16)=720,答:该矩形的面积为720;【实际应用】如图2,延长BA、CD交于点E,过点E作EH⊥BC于点H,∵tanB=tanC=,∴∠B=∠C,∴EB=EC,∵BC=108cm,且EH⊥BC,∴BH=CH=BC=54cm,∵tanB==,∴EH=BH=×54=72cm,在Rt△BHE中,BE==90cm,∵AB=50cm,∴AE=40cm,∴BE的中点Q在线段AB上,∵CD=60cm,∴ED=30cm,∴CE的中点P在线段CD上,∴中位线PQ的两端点在线段AB、CD上,由【拓展应用】知,矩形PQMN的最大面积为BC?EH=1944cm2,答:该矩形的面积为1944cm2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识板块
考点一:几何图形中的最小值问题
方法: 1.找对称点求线段的最小值;
步骤:①找已知点的对称点,动点在哪条线上动,就是对称轴;
②连接对称点与另一个已知点;
③与对称轴的交点即是要找的点;通常用勾股定理求线段长;
2.利用三角形三边关系:两边之差小于第三边;
3.转化成其他线段,间接求线段的最小值;例如:用点到直线的距离最短,通过作垂线求最值;
4.用二次函数中开口向上的函数有最小值;
考点二:几何图形中的最大值问题
方法:
1.当两点位于直线的同侧时,与动点所在的直线的交点,这三点在同一直线时,线段差有最大值;
2.当两点位于直线的异侧时,先找对称点,同样三点位于同一直线时,线段差有最大值;
3.利用三角形三边关系:两边之和大于第三边;
4.用二次函数中开口向下的函数有最大值;
例题板块
考点一:几何图形中的最小值问题
例1.如图1,在正方形ABCD 中,E 是AB 上一点,BE=2,AE=3BE ,P 是AC 上一动点,则PB+PE 的最小值是 _________ .
图1 图2 图3
例2.如图2,在锐角△ABC 中,AB=4,∠BAC=45°,∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM+MN
的最小值是 .
例3.如图3,点P 是Rt △ABC 斜边AB 上的一点,PE ⊥AC 于E ,PF ⊥BC 于F ,BC=6,AC=8,则线段EF 长的最小值为 ;
第一节
几何最值问题专项
例4.如图,在Rt △ABC 中,AB=BC=6,点E ,F 分别在边AB ,BC 上,AE=3,CF=1,P 是斜边AC 上的一个动点,则△PEF 周长的最小值为 .
图4 图5 例5.如图,在平面直角坐标系中,Rt △OAB 的顶点A 的坐标为(9,0),点C 的坐标为(2,0),tan ∠BOA=
A .67
B .231 C. 6 D .193+
例6.如图6,等腰Rt △ABC 中,∠ACB=90°,AC=BC=4,⊙C 的半径为1,点P 在斜边AB 上,PQ 切⊙O 于点Q ,则切线长PQ 长度的最小值为( )
图6 图7 图8 例7.如图7,矩形ABCD 中,AB=4,BC=8,E 为CD 的中点,点P 、Q 为BC 上两个动点,且PQ=3,当CQ= _________ 时,四边形APQE 的周长最小.
考点二:几何图形中的最大值问题
例1.已知点A (1,2)、B (4,-4),P 为x 轴上一动点.
(1)若|PA |+|PB |有最小值时,求点P 的坐标;
(2)若|PB |-|PA |有最大值时,求点P 的坐标.
例2.如图8所示,已知A 11
(,y )2,B 2(2,y )为反比例函数1y x
=图像上的两点,动点P (x,0)在x 正半轴上运动,当线段AP 与线段BP 之差达到最大时,点P 的坐标是 .
例3.如图,在平面直角坐标系中,⊙M过原点O,与x轴交于A(4,0),与y轴交于B(0,3),点C 为劣弧AO的中点,连接AC并延长到D,使DC=4CA,连接BD.
(1)求⊙M的半径;
(2)证明:BD为⊙M的切线;
(3)在直线MC上找一点P,使|DP﹣AP|最大.
练习板块
1.如图1,正方形ABCD的面积为18,△ABE是等边三角形,点E在正方形ABCD内,在对角
线AC上有一动点P,则PD+PE的最小值为_____.
图1 图2 图3 图4
2.如图2,在矩形ABCD中,AB=2,AD=4,E为CD边的中点,P为BC边上的任一点,那么,
AP+EP的最小值为_____.
3.如图3,直角三角形ABC中,∠C=90°,AC=1,BC=2,P为斜边AB上一动点.PE⊥BC,PF⊥CA,
则线段EF长的最小值为_______.
4.如图4,∠AOB=30°,点M、N分别在边OA、OB上,且OM=1,ON=3,点P、Q分别在边
OB、OA上,则MP+PQ+QN的最小值是.
5.如下图1,反比例函数x
k y =(x >0)图象上的两点A 、B 的横坐标分别为1,3,点P 为x 轴正半轴上一点,若PA-PB 的最大值为22,则k= .
图1 图2 图3
6.如图2,在△ABC 中,∠C=90°,AC=4,BC=2,点A 、C 分别在x 轴、y 轴上,当点A 在x 轴上运动时,点C 随之在y 轴上运动,在运动过程中,点B 到原点的最大距离是( )
7.如图3,直线l 与半径为4的⊙O 相切于点A ,P 是⊙O 上的一个动点(不与点A 重合),过点P 作PB ⊥l ,垂足为B ,连接PA .设PA=x ,PB=y ,则(x ﹣y )的最大值是 .
8.如图,四边形ABCD 是正方形,△ABE 是等边三角形,M 为对角线BD (不含B 点)上任意一点,将BM 绕点B 逆时针旋转60°得到BN ,连接EN 、AM 、CM .
(1)求证:△AMB ≌△ENB ;
(2)①当M 点在何处时,AM+CM 的值最小;
②当M 点在何处时,AM+BM+CM 的值最小,并说明理由;
(3)当AM+BM+CM 的最小值为13+时,求正方形的边长.
9.已知:如图,把矩形OCBA 放置于直角坐标系中,OC=3,BC=2,取AB 的中点M ,连接MC ,把△MBC 沿x 轴的负方向平移OC 的长度后得到△DAO .
A .25+
B .62
C .52
D .222+
(1)试直接写出点D的坐标;
(2)已知点B与点D在经过原点的抛物线上,点P在第一象限内的该抛物线上移动,过点P作PQ⊥x轴于点Q,连接OP.
①若△OQP∽△DAO,试求出点P的坐标;
②试问在抛物线的对称轴上是否存在一点T,使得|TO-TB|的值最大?
作业板块
1.如图1,在△ABC中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CB,CA分
别相交于点E,F,则线段EF长度的最小值是.
2.如图2,在Rt△ABC中,∠BAC=90°,AB=3,AC=4,点P为BC边上一动点,PE⊥AB于点E,
PF⊥AC于点F,连结EF,点M为EF的中点,则AM的最小值为.
图1 图2
3.如图3,在△ABC中,∠ACB=90°,AC=8,BC=3,点A、C分别在x轴、y轴上,当点A在x
轴上运动时,点C随之在y轴上运动,在运动过程中,点B到原点O的最大距离为.
4.如图4,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上的一动点,
将△AMN沿MN所在直线翻折得到△A′MN,连接A′C,则A′C长度的最小值是.
图3 图4
5..如图1,抛物线y=ax2+bx+c(a≠0)的顶点为C(1,4),交x轴于A、B两点,交y轴于点D,其中点B的坐标为(3,0).
(1)求抛物线的解析式;
(2)如图2,过点A的直线与抛物线交于点E,交y轴于点F,其中点E的横坐标为2,若直线PQ为抛物线的对称轴,点G为直线PQ上的一动点,则x轴上是否存在一点H,使D、G、H、F四点所围成的四边形周长最小?若存在,求出这个最小值及点G、H的坐标;若不存在,请说明理由;。