二次函数与四边形综合压轴题专题汇编(含答案)

合集下载

中考数学—二次函数的综合压轴题专题复习附答案

中考数学—二次函数的综合压轴题专题复习附答案

一、二次函数真题与模拟题分类汇编〔难题易错题〕1 .童装店销售某款童装,每件售价为60元,每星期可卖100件,为了促销该店决定降价销售, 经市场调查发现:每降价1元,每星期可多卖10件,该款童装每件本钱30元,设降价后该款童装每件售价工元,每星期的销售量为〕'件.⑴降价后,当某一星期的销售量是未降价前一星期销售量的3倍时,求这一星期中每件童装降价多少元?⑵当每件售价定为多少元时,一星期的销售利润最大,最大利润是多少?【答案】〔1〕这一星期中每件童装降价20元;〔2〕每件售价定为50元时,一星期的销售利润最大,最大利润4000元.【解析】【分析】〔1〕根据售量与售价x 〔元/件〕之间的关系列方程即可得到结论.〔2〕设每星期利润为W元,构建二次函数利用二次函数性质解决问题.【详解】解:〔1〕根据题意得,〔60-x〕 xl0+100=3xl00,解得:x=40,60 - 40 = 20 元,答:这一星期中每件童装降价20元:〔2〕设利润为w,根据题意得,w= 〔x- 30〕 [ 〔60-X〕xl0+100]= - 10x2+1000x - 21000=-10 〔x- 50〕 2+4000,答:每件售价定为50元时,一星期的销售利润最大,最大利润4000元.【点睛】此题考查二次函数的应用,一元二次不等式,解题的关键是构建二次函数解决最值问题, 利用图象法解一元二次不等式,属于中考常考题型.2 .阅读:我们约定,在平面直角坐标系中,经过某点且平行于坐标轴或平行于两坐标轴夹角平分线的直线,叫该点的“特征线〞.例如,点M 〔1, 3〕的特征线有:x=l, y=3,备用图问题与探究:如图,在平面直角坐标系中有正方形0A8C,点8在第一象限,A、C分别在x轴和y轴上,抛物线> =;*一〃?〕2+〃经过8、C两点,顶点.在正方形内部.〔1〕直接写出点.〔m, n〕所有的特征线:〔2〕假设点.有一条特征线是y=x+l,求此抛物线的解析式:〔3〕点P是48边上除点八外的任意一点,连接0P,将AOAP沿着0P折登,点4落在点々的位置,当点4在平行于坐标轴的.点的特征线上时,满足〔2〕中条件的抛物线向下平移多少距离,其顶点落在0P上?【答案】〔1〕 x=m, y=n, y=x+n - m, y= - x+m+n;〔2〕 y = - 〔x-2〕2 + 3 ;〔3〕抛物4线向下平移上二正或W距离,其顶点落在OP上. 3 12【解析】试题分析:〔1〕根据特征线直接求出点.的特征线:〔2〕由点.的一条特征线和正方形的性质求出点.的坐标,从而求出抛物线解析式;〔2〕分平行于x轴和y轴两种情况,由折卷的性质计算即可.试题解析:解:〔1〕・二点D 〔m,.〕,,••点.〔m, n〕的特征线是x=m, y=n, y=x+n - m,y= - x+m+n;〔2〕点.有一条特征线是y=x+l, .•.〃=m+l. •.•抛物线解析式为了 = !〔工一"?了+〃,.•.y = =〔x—〃?〕2+〃? + 1, ,四边形OA8C是正方形,且.点为正方4 4形的对称轴,.〔m, /?〕,「. 8 〔2m, 2m〕 ,y = —〔2m — m〕2 + n = 2m 9将c=m+l 带4入得到m=2, n=3;・・・.〔2, 3〕,・•・抛物线解析式为y = !〔x-2〕2+3.〔3〕①如图,当点A在平行于y轴的.点的特征线时:根据题意可得,D (2, 3),・ .0A=0A=4, 0M=2,N AOM=60°,「・N AOP=N AOP=30°,:MN笺空,抛物线需要向下平移的距离=3—李亨•②如图,当点4在平行于X轴的.点的特征线时,设A〔P,3 〕,那么OA=OA=4, OE=3,EA 二“2.32 =a,,AF=4-a,设P(4, c) (c>0),,在RS AFP 中,(4-V7)2+ (3-c) 2=c2, .•“」6T立,「.p (4, .16 —4" ) ,直线OP解析式为3 3y=匕Lx, :.N (2, l") •.抛物线需要向下平移的距离=3-3 38-2>/7 _1 + 2>/7-3-- -3综上所述:抛物线向下平移) - 2琳或1 + 2"距离,其顶点落在0P上. 3 3点睛:此题是二次函数综合题,主要考查了折叠的性质,正方形的性质,解答此题的关键是用正方形的性质求出点.的坐标.3.在直角坐标系中,我们不妨将横坐标,纵坐标均为整数的点称之为〃中国结〃.〔1〕求函数y=/x+2的图像上所有“中国结〞的坐标:〔2〕求函数y=±〔HO, k为常数〕的图像上有且只有两个“中国结〃,试求出常数k的值X与相应“中国结〞的坐标;〔3〕假设二次函数丫=〔公一3攵+2〕/+〔2攵2-4%+ 1〕%+公一% 〔k为常数〕的图像与x轴相交得到两个不同的"中国结",试问该函数的图像与x轴所围成的平而图形中〔含边界〕,一共包含有多少个“中国结〞?【答案】〔1〕〔0,2〕 : 〔2〕当k=l时,对应"中国结〞为〔1,1〕〔一1, -D ;当k=-l 时,对应"中国结"为〔1, 一1〕, 〔一1,1〕 ; 〔3〕 6个.【解析】试题分析:〔1〕由于X是整数,XHO时,JJx是一个无理数,所以XHO时,JJx+2不是整数,所以x=o, y=2,据此求出函数y=J^x+2的图象上所有“中国结〃的坐标即可.k〔2〕首先判断出当k=l时,函数/一〔k/0, k为常数〕的图象上有且只有两个〃中国xk结〃:〔1, 1〕、〔-1、-1〕:然后判断出当代1时,函数度一〔kHO, k为常数〕的图X象上最少有4个〃中国结〃,据此求出常数k的值与相应〃中国结〃的坐标即可.(3)首先令(k2-3k+2) x2+ (2k2-4k+l) x+k2 - k=0,那么[(k- 1) x+k][ (k-2) x+ (k-1)]=0,求出X】、X2的值是多少;然后根据X】、X2的值是整数,求出k的值是多少:最后根据横坐标,纵坐标均为整数的点称之为"中国结",判断出该函数的图象与x轴所用成的平面图形中(含边界),一共包含有多少个“中国结〞即可.试题解析:(l);x是整数,XHO时,、^x是一个无理数,xHO时,JJx+2不是整数,x=0> y=2,即函数y=Cx+2的图象上"中国结〞的坐标是(0, 2).(2)①当k=l时,函数度勺(k#0, k为常数)的图象上有且只有两个“中国结〃:x (1, 1)、(-1、-1):②当匕-1时,函数丫=&(HO, k为常数)的图象上有且只有两个“中国结〃:X(1, -1)、( -1, 1).③当修±1时,函数尸& (HO, k为常数)的图象上最少有4个〃中国结JX(I, k)、( - 1, - k)、(k, 1)、( - k, - 1),这与函数度土(kxo, k 为常数)的x图象上有且只有两个“中国结"矛盾,k综上可得,k=l时,函数y=— (k/0, k为常数)的图象上有且只有两个“中国结J (1, x 1)、( - 1、- 1);k=-l时,函数y=七(k/0, k为常数)的图象上有且只有两个“中国结J (1, -1)、x (-1、1).(3)令(k2-3k+2) x2+ (2k2-4k+l) x+k2 - k=0,那么[(k- 1) x+k][ (k-2) x+ (k- 1) ]=0, kx.= ---------.•・{ ik-\f x 2x) +1• k =——=-=——. x1 +1 x2 +1 整理,可得XlX2+2X2+l=0t/. xz (xi+2) = T,•••X】、X2都是整数,X)= 1 x, =—1{- 或{-玉+2 = _「^+2 = 1匹=T ②当{X、= —1k ,,/ ------- = -1 ,l — kk=k-l,无解;练上,可得.3K=—, XF-3, x2=l t2y= (k2- 3k+2) x2+ (2k2-4k+l) x+k2 - k3 3 3 3 3 3=[(-)2-3X-+21X2+[2X ( - ) 2-4x-+l]x+ (- ) 2--2 2 2 2 2 2①当x=-2时,1 13 1 1 3y= - - x2- — x+ — = " - x ( - 2) 2 - -x ( - 2) + —4 2 4 4 2 4_3~4②当X=-1时,=13③当x=0时,y=-,另外,该函数的图象与X轴所闱成的平面图形中x轴上的“中国结〞有3个: 〔-2, 0〕、〔 -1、0〕、〔0, 0〕.综上,可得假设二次函数y= 〔k2-3k+2〕 x2+ 〔2k2-4k+l〕 x+l?-k 〔k为常数〕的图象与x轴相交得到两个不同的"中国结〞,该函数的图象与x轴所围成的平面图形中〔含边界〕,一共包含有6个“中国结〞:〔-3, 0〕、〔-2, 0〕、〔 - 1, 0〕〔-1, 1〕、〔0, 0〕、〔1, 0〕.考点:反比例函数综合题4.如图,抛物线〕,= 公+ C的顶点为A〔4,3〕,与轴相交于点3〔0,—5〕,对称轴为直线/,点"是线段A8的中点.〔1〕求抛物线的表达式:〔2〕写出点M的坐标并求直线A3的表达式;〔3〕设动点尸,.分别在抛物线和对称轴I上,当以A,P,Q,例为顶点的四边形是平行四边形时,求.,.两点的坐标.【答案】〔1〕y = --x2+4x-5t〔2〕 A/〔2,-1〕, y = 2x-5:〔3〕点夕、.的坐 2标分别为〔6,1〕或〔2,1〕、〔4,—3〕或〔4』〕.【解析】【分析】〔1〕函数表达式为:〕,= a〔x = 4『+3,将点3坐标代入上式,即可求解:〔2〕 A〔4,3〕、B〔0-5〕,那么点加〔2,-1〕,设直线A8的表达式为:y = ^-5,将点4坐标代入上式,即可求解;〔3〕分当AM是平行四边形的一条边、AM是平行四边形的对角线两种情况,分别求解即可. 【详解】解:〔1〕函数表达式为:y = a〔x = 4〕2+3,将点4坐标代入上式并解得:.=2故抛物线的表达式为:y = -l x2+4x-5:乙(2) 4(4,3)、B(0,-5),那么点M(2,-1),设直线A8的表达式为:y = /oc-5,将点A坐标代入上式得:3 =必一5,解得:k = 2,故直线A8的表达式为:y = 2x-5:( i \(3)设点.(4,s)、点P m,——nr +4/H —5 ,①当AM是平行四边形的一条边时,点A向左平移2个单位、向下平移4个单位得到M,同样点P;"?,-:〃,+4机一5)向左平移2个单位、向下平移4个单位得到0(4,s),即:团一2 = 4, —nr +4m-5-4 = s , 2解得:m = 6 ♦ s = —3,故点P、.的坐标分别为(6,1)、(4,-3):②当AM是平行四边形的对角线时,由中点定理得:4+2 = 〃z+4, 3-1 = --//r +4w-5 + 5,2解得:〞1 = 2, 5 = 1 >故点尸、.的坐标分别为(2/)、(4,1);故点尸、.的坐标分别为(6,1), (4,一3)或(2,1)、(分-3), (2,1)或(4,1).【点睛】此题考查的是二次函数综合运用,涉及到一次函数、平行四边形性质、图象的面积计算等,其中(3),要主要分类求解,防止遗漏.5.如图,某足球运发动站在点0处练习射门,将足球从离地面0.5m的A处正对球门踢出 (点A在y轴上),足球的飞行高度y(单位:m)与飞行时间t(单位:s)之间满足函数关系y= at2 + 5t+c,足球飞行0.8s时,离地面的高度为3.5m.⑴足球飞行的时间是多少时,足球离地而最高?最大高度是多少?⑵假设足球飞行的水平距离x(单位:m)与飞行时间t(单位:s)之间具有函数关系x = 10t,己知球门的高度为2.44m,如果该运发动正对球门射门时,离球门的水平距离为28m,他能否将球直接射入球门?8【答案】(1)足球飞行的时间是一s时,足球离地而最高,最大高度是4.5m: (2)能.5【解析】(2)把 x=28 代入 x=10t 得 t=2.8,251・•・当 t=2.8 时,y=-a2・8?+5乂2・8令2・25 V2/4, •L . 乙^ 他能将球直接射入球门. 考点:二次函数的应用.6.如图,在平面直角坐标系中,抛物线y=ax?+2x+c 与x 轴交于A ( - 1, 0) B (3, 0)两 点,与y 轴交于点C,点D 是该抛物线的顶点.(1)求抛物线的解析式和直线AC 的解析式;(2)请在y 轴上找一点M,使△BDM 的周长最小,求出点M 的坐标;(3)试探究:在抛物线上是否存在点P,使以点A, P, C 为顶点,AC 为直角边的三角形 是直角三角形?假设存在,请求出符合条件的点P 的坐标:假设不存在,请说明理由.试题分析:(1)由题意得:函数y=atz+5t+c 的图象经过(0, 0.5) (0.8, 35),于是得0. 5二.到 n,求得抛物线的解析式为:3. 5=0.8 4+5X0. 8+c 、 y=-衰2+514,当t=|时,y 破大=4.5;1(2)把x=28代入x=10t 得t=2.8,当t=2.8时,y=- 竿2.82+5、2.8哈2・25V2.44,于是得 16 2到他能将球直接射入球门.解:(1)由题意得:函数y=a&5t+c 的图象经过(0, 0.5) (0.8, 3.5),"0. 5二c• «, 、3. 5=0. 8 &2+5 X 0. g+c '3=解得:_ 251612・•・抛物线的解析式为:y=・•,y【答案】(1)抛物线解析式为y=-x2+2x+3;直线AC 的解析式为丫=3x+3; (2)点M 的 坐标为(0, 3):7 20 1013〔3〕符合条件的点P 的坐标为〔或,2〕或〔“,-"〕, 3 93 9【解析】分析:〔1〕设交点式y=a 〔x+1〕 〔x-3〕,展开得到-2a=2,然后求出a 即可得到抛物线解 析式:再确定C 〔0, 3 〕,然后利用待定系数法求直线AC 的解析式:〔2〕利用二次函数的性质确定D 的坐标为〔1, 4〕,作B 点关于y 轴的对称点W,连接DB 咬y 轴于M,如图1,那么B ,〔-3, 0〕,利用两点之间线段最短可判断此时MB+MD 的值最小,那么此时△ BDM 的周长最小,然后求出直线DB ,的解析式即可得到点M 的坐标:〔3〕过点C 作AC 的垂线交抛物线于另一点P,如图2,利用两直线垂直一次项系数互为负倒数设直线PC 的解析式为y=-lx +b,把C 点坐标代入求出b 得到直线PC 的解析式为再解方程组, 1得此时P 点坐标;当过点A 作AC 的垂线交抛物y=--x + 3 I 3线于另一点P 时,利用同样的方法可求出此时P 点坐标. 详解:〔1〕设抛物线解析式为y=a 〔x+1〕〔x-3〕, KP y=ax 2 - 2ax - 3a,,2a=2,解得 a=- 1,・•・抛物线解析式为y= - X 2+2X +3: 当 x=0 时,y= - x 2+2x+3=3,那么 C (0, 3), 设直线AC 的解析式为y=px+q.q = 0把 A ( - 1, 0) , C (0, 3)代入得〈q = 3直线AC 的解析式为y=3x+3;〔2〕 •/ y= - X 2+2X +3= - 〔x- 1〕 2+4, •1•顶点D 的坐标为〔1, 4〕,作B 点关于y 轴的对称点B",连接DB ,交y 轴于M,如图1,那么夕〔-3, 0〕,MB=MB',/. MB+MD=MB /+MD=DB /,此时 MB+MD 的值最小, 而BD 的值不变,・•,此时△ BDM 的周长最小,y=-x 2 +2x + 31 y=- -x+3, 3易得直线DB ,的解析式为y=x+3, 当 x=0 时,y=x+3=3> ・ ・•点M 的坐标为〔0, 3〕;〔3〕存在.过点C 作AC 的垂线交抛物线于另一点P,如图2,把C 〔0, 3 〕代入得b=3,・ ,・直线PC 的解析式为y=- -x+3,过点A 作AC 的垂线交抛物线于另一点P,直线PC 的解析式可设为y=-点+b, 把A ( -1, 0)代入得1+b=0,解得b=- L 3 3・ •・直线PC 的解析式为y=- :x- 1点睛:此题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数 的性质;会利用待定系数法求函数解析式,理解两直线垂直时一次项系数的关系,通过解 方程组求把两函数的交点坐标;理解坐标与图形性质,会运用两点之间线段最短解决最短 路径问题:会运用分类讨论的思想解决数学问题.直线PC 的解析式可设为y=- —x+b,3解方程组?y=-x 2+2x + 31 ,解得?y=——x + 33x = 0)=3或,7x =一3 7 20 ,那么此时P 点坐标为〔一,—〕:2.39y =解方程组?y=-x 2+2x + 31 1 y=——x ——33x = -ly = 010x =—3 13那么此时P 点坐标为〔—, 3综上所述,符合条件的点p 的坐标为〔N, 310 T-?>•直线AC 的解析式为y=3x+3.7.如图,直线A8与抛物线C :),=⑪2+21+.相交于人(—1,0)和点8(2,3)两点.⑴求抛物线.的函数表达式;⑵假设点M 是位于直线A3上方抛物线上的一动点,以M4、/W8为相邻两边作平行四边形 M4N8,当平行四边形M4N8的而积最大时,求此时四边形M4N8的而积S 及点M 的 坐标: ⑶在抛物线C 的对称轴上是否存在定点尸,使抛物线.上任意一点夕到点尸的距离等于到 直线y ="的距离,假设存在,求出定点厂的坐标:假设不存在,请说明理由.41 27 【答案】〔1〕 y =—厂 + 2x + 3 :〔2〕当 〃 =—,S ZMANB = 2S △ ABM =—,此时2 415 \ :⑶存在.当/A — 时,无论%取任何实数,均有= 理由见解析. \ 4 )【解析】【分析】 (1)利用待定系数法,将A, B 的坐标代入y=ax2+2x+c 即可求得二次函数的解析式; (2)过点M 作MH_Lx 轴于H,交直线AB 于K,求出直线AB 的解析式,设点M (a,- a?+2a+3),那么K (a, a+1),利用函数思想求出MK 的最大值,再求出△ AMB 面积的最大 值,可推出此时平行四边形MANB 的面积S 及点M 的坐标:17(3)如图2,分别过点B, C 作直线y=—的垂线,垂足为N. H,设抛物线对称轴上存在 4点F,使抛物线C 上任意一点P 到点F 的距离等于到直线y=—的距离,其中F (1, a), 4 连接BF, CF,那么可根据BF=BN, CF=CN 两组等量关系列出关于a 的方程组,解方程组即 可.【详解】(1)由题意把点(-1, 0)、(2, 3)代入 y=ax2+2x+c, .- 2 + c = 0得, ,4a + 4 + c = 3 解得 a=-l, c=3,,此抛物线c 函数表达式为:y=*2+2x+3:〔2〕如图1,过点M 作MHLx 轴于H,交直线AB 于K,MH4 〕>>将点〔・1, 0〕、〔2, 3〕代入y=kx+b中, 一k+b=0得,2y 解得,k=l, b=l,/.Y AB=X+1,设点M (a, -a2+2a+3),那么K (a, a+1), 贝lj MK=-a2+2a+3- (a+1)=-(a- - ) 2+—, 2 41 9根据二次函数的性质可知,当合二彳时,MK有最大长度丁, 2 4S A AMB以大=S A AMK+S A BMK=—MK*AH+ —MK> (x B-x H)2 2=—MK e (XB-XA)21 9=x — x32 4_27-—,8以MA、MB为相邻的两边作平行四边形MANB,当平行四边形MANB的面积最大时,27 27 1 15s 餐大=2S A AMB 4U=2X —=—,M (-, —).(3)存在点F,•/ y=-x2+2x+3=-(x-1) 2+4,「・对称轴为直线x=l.当y=0 时,xi=-l, X2=3,,抛物线与点x轴正半轴交于点C (3, 0),17如图2,分别过点B, C作直线y:一的垂线,垂足为N, H, 4抛物线对称轴上存在点F,使抛物线C上任意一点P到点F的距离等于到直线y=—的距4离,设 F (1, a ),连接BF, CF,IT1 17 5 17那么BF=BN二一-3二一,CF=CH=—, 4 4 4(5、(2-1)2+3—3)2 =由题意可列:(3 — 1)2+/=阴【点睛】此题考查了待定系数法求解析式,还考查了用函数思想求极值等,解题关键是能够判断出当平行四边形MANB的面积最大时,aABM的面积最大,且此时线段MK的长度也最大.8.如图,己知二次函数%=a' + "过(-2, 4) , ( - 4. 4)两点.〔1〕求二次函数力的解析式:〔2〕将为沿x轴翻折,再向右平移2个单位,得到抛物线及,直线y=m 〔m>0〕交及于M、N 两点,求线段MN的长度〔用含m的代数式表示〕:〔3〕在〔2〕的条件下,力、及交于A、B两点,如果直线y=m与力、刃的图象形成的封闭曲线交于C、D两点〔C在左侧〕,直线y=-m与力、刃的图象形成的封闭曲线交于E、F两点〔E在左侧〕,求证:四边形CEFD是平行四边形.1yi =_/2_3%【答案】〔1〕2【解析】〔2〕 5 +范〔3〕证实见解析.试题分析:〔1〕根据待定系数法即可解决问题.〔2〕先求出抛物线yz的顶点坐标,再求出其解析式,利用方程组以及根与系数关系即可求出MN.〔3〕用类似〔2〕的方法,分别求出CD、EF即可解决问题.试题解析:⑴・•・二次函数月=°/ + "过〔-2, 4〕 , 〔-4, 4〕两点,4a - 2b = 416a -4b = 4解得:1a=~2=_1 2_ -「.二次函数力的解析式为一寸3X2-3% -# + 3)2 +9,二顶点坐标〔-3, >〕 , ,「将力沿x釉翻折,再向右平移2个单位,得到抛物线〞,9.・・抛物线y2的顶点坐标〔-1, -、〕,•,・抛物线均为1 9y=#+i)2_] 消去y整理得到/ + 2x_8_2m = 0,设打,也是它的两个根,那么"21A〔q+ x2〕-似/2=、阳而千J5:〔3〕由y = my =一/2-3欠,消去y整理得到x +6%+2m = 0,设两个根为打,0那么y =-m1 9______ y =—〔x --CD」"I一亚15〔修+ OF - 4町2«36 -所,由2 2,消去丫得到x2 + 2x-8 + 2m = 0,设两个根为勺,%2,那么EF」X1 - "zlK,dl + 工2〕2 - 4XI%2=«36 - 8m, ... EF=CD, EFII CD,四边形CEFD 是平行四考点:二次函数综合题.9 .抛物避= a/ + M + c,假设a, b, c满足b=a+c,那么称抛物线,=.壮+必+ c为“恒定〞抛物线. 〔1〕求证:"恒定"抛物线'=°/ +丘+,必过*轴上的一个定点人;〔2〕"恒定〃抛物线y = -于的顶点为P,与X轴另一个交点为B,是否存在以Q为顶点,与X轴另一个交点为C的“恒定〞抛物线,使得以PA, CQ为边的四边形是平行四边形?假设存在,求出抛物线解析式:假设不存在,请说明理由.【答案】〔1〕证实见试题解析:〔2〕 y = \/^2 + 4v-^x + 3-V3 那么=- v取2 + y3.【解析】试题分析:〔1〕由"恒定〞抛物线的定义,即可得出抛物线恒过定点〔-1, 0〕:〔2〕求出抛物线F = W"一小的顶点坐标和B的坐标,由题意得出PAII CQ, PA=CQ:存在两种情况:①作QMXAC于M,那么QM=0P=\3,证实RtA QM〔^ RtA POA. MC=OA=1,得出点Q的坐标,设抛物线的解析式为,=矶" + 2〕2-\/3,把点A坐标代入求出a的值即可:②顶点Q在y轴上,此时点C与点B重合:证实△0QS4 0PA,得出OQ=OP=\B,得出点Q坐标,设抛物线的解析式为' =以2+«3,把点C坐标代入求出a的值即可.试题解析:〔1〕由“恒定〃抛物线,二仙2 +%+ 4得:b=a+c,即a-b+c=0,二•抛物线y = ax2 + bx + c t当x=-l时,y=0, 恒定〞抛物线,=必+八+〔;必过乂轴上的一个定点 A 〔 - 1, 0〕:〔2〕存在:理由如下::“恒定"抛物线卜"*丫一道,当尸0时,\8/-、6=0,解得:x=±l, V A ( - 1, 0) , /. B (1, 0):.・x=O 时,y=一\'3,顶点P 的坐标为(0, 一\3),以PA, CQ为边的平行四边形,PA、CQ是对边,「.PAII CQ, PA=CQ, .,.存在两种情况:①如图1所示:作QM_LAC 于M,那么QM=0P=y3, Z QMC=90°=Z POA,在RtA QMC 和RtA POA 中,: CQ=PA, QM=OP,J RtA QMC合RtA POA (HL) , /. MC=OA=1, OM=2, 丁点 A 和点C 是抛物线上的对称点,AM=MC=1, .,.点Q的坐标为(-2, 一\3),设以Q为顶点,与x轴另一个交点为C的“恒定〞抛物线的解析式为y = a(% + 2)2-«3,把点A(-l, 0)代入得:aS% .•.抛物线的解析式为:丫 = \乃(% + 2)273,即,=\访2 + 4、%+3日②如图2所示:顶点Q在y轴上,此时点C与点B重合,.•.点C坐标为(1, 0),CQII PA, /. Z OQC=Z OPA,在^ OQC 和4 OPA 中,: Z OQC=Z OPA, Z COQ=Z AOP,CQ=PA,OQC2△ OPA (AAS) ,「・0Q=0P=、3,「•点Q 坐标为(0, \§),设以Q为顶点,与X轴另一个交点为C的“恒定〞抛物线的解析式为y = a%2 + g3,把点C(l, 0)代入得:a=-W, .•.抛物线的解析式为:?=一臼2 + 口;综上所述:存在以Q为顶点,与x轴另一个交点为C的“恒定〞抛物线,使得以PA, CQ为边的四边形是平行四边形,抛物线的解析式为:«3/ + 4\,做+3\3,或y =-%即 + 0考点:1.二次函数综合题:2.压轴题:3.新定义:4.存在型:5.分类讨论.3 910 .二次函数y=—-x2+bx+c的图象经过A (0, 3) , B ( - 4,--)两点.(1)求b, c的值.3(2)二次函数y= -「xZ+bx+c的图象与x轴是否有公共点,求公共点的坐标:假设没有,请16说明情况.【答案】⑴j 8 : 〔2〕公共点的坐标是〔-2, 0〕或〔8, 0〕. c = 3【解析】【分析】〔1〕把点A、B的坐标分别代入函数解析式求得b、c的值;〔2〕利用根的判别式进行判断该函数图象是否与x轴有交点,由题意得到方程-3 o—X2+-X+3=0,通过解该方程求得x的值即为抛物线与x轴交点横坐标.16 89 3【详解】(1)把 A (0, 3) , B ( - 4,--)分别代入y=- - x2+bx+c,2 16c = 3得4 39------ x l6-4〃 + c =——16 26 = ?解得彳8 ;[c = 33 9〔2〕由〔1〕可得,该抛物线解析式为:y=- -x2+-x+3, 1 o 83 225-4x ( - -- ) x3= >0»16 6483所以二次函数y=- - x2+bx+c的图象与x轴有公共点, 163 9.「- -x2+-x+3=0 的解为:x产・2, X2=8,16 8公共点的坐标是〔-2, 0〕或〔8, 0〕.【点睛】此题考查了抛物线与x轴的交点,二次函数图象上点的坐标特征.注意抛物线解析式与一元二次方程间的转化关系.。

二次函数压轴题专题(含答案)

二次函数压轴题专题(含答案)

二次函数压轴题专题1.如图,已知△ABC的三个顶点坐标分别为A(﹣4,0)、B(1,0)、C(﹣2,6).(1)求经过A、B、C三点的抛物线解析式;(2)设直线BC交y轴于点E,连接AE,求证:AE=CE;(3)设抛物线与y轴交于点D,连接AD交BC于点F,试问以A、B、F为顶点的三角形与△ABC相似吗?2.如图,在平面直角坐标系xOy中,四边形ABCD是菱形,顶点A、C、D均在坐标轴上,且AB=5,sinB=.(1)求过A、C、D三点的抛物线的解析式;(2)记直线AB的解析式为y1=mx+n,(1)中抛物线的解析式为y2=ax2+bx+c,求当y1<y2时,自变量x的取值范围;(3)设直线AB与(1)中抛物线的另一个交点为E,P点为抛物线上A、E两点之间的一个动点,当P点在何处时,△PAE的面积最大?并求出面积的最大值.3.如图,经过点A(0,﹣4)的抛物线y=x2+bx+c与x轴相交于B(﹣2,0),C两点,O为坐标原点.(1)求抛物线的解析式;(2)将抛物线y=x2+bx+c向上平移个单位长度,再向左平移m(m>0)个单位长度得到新抛物线,若新抛物线的顶点P在△ABC内,求m的取值范围;(3)设点M在y轴上,∠OMB+∠OAB=∠ACB,求AM的长.参考答案,,由题意得:,=2,=2,的函数解析式可得:,,,)=,=,,=sinB=sinD=﹣﹣x x+4﹣;﹣x x+4,;=x+bx+b=x x+4,即直线x+;,))﹣(××(+.(,)时,.x2y=,即:x2+x+﹣;m=;<。

中考数学总复习《二次函数与特殊四边形综合压轴题》专题训练(附答案)

中考数学总复习《二次函数与特殊四边形综合压轴题》专题训练(附答案)

中考数学总复习《二次函数与特殊四边形综合压轴题》专题训练(附答案)学校:___________班级:___________姓名:___________考号:___________1.如图,抛物线2y x bx c =-++的顶点D 坐标为()1,4,且与x 轴相交于A ,B 两点,点A 在点B 的左侧,与y 轴相交于点C ,点E 在x 轴上方且在对称轴左侧的抛物线上运动,点F 在抛物线上并且和点E 关于抛物线的对称轴对称,作矩形EFGH ,其中点G ,H 都在x 轴上.(1)求抛物线解析式; (2)设点F 横坐标为m①用含有m 的代数式表示点E 的横坐标为______(直接填空); ②当矩形EFGH 为正方形时,求点G 的坐标; ③连接AD ,当EG 与AD 垂直时,求点G 的坐标;(3)过顶点D 作DM x ⊥轴于点M ,过点F 作FP AD ⊥于点P ,直接写出DFP △与DAM △相似时,点F 的坐标.2.如图,抛物线()20y ax bx c a =++≠交x 轴于点A 、B (点A 在点B 左侧),交y 轴于点C ,点P 是抛物线上的一动点,已知点()0,4C ,AOC COB △∽△且4AO BO =.(1)求抛物线和直线AC 的表达式.(2)若点P 在直线AC 的上方,过点P 作PF AB ⊥,与AC 交于点E ,垂足为点F ,当PE EF =时,求点P 的坐标.(3)若点M 为x 轴上一动点,当B 、C 、P 、M 四个点组成的四边形是平行四边形时,请直接写出点P 的坐标. 3.在平面直角坐标系xOy 中,已知点A 在y 轴正半轴上.(1)如果四个点()()()()00032411-,,,,,,,中恰有三个点在二次函数2y ax =(a 为常数,且0a ≠)的图像上.①=a :①如图1,已知菱形ABCD 的顶点B 、C 、D 在该二次函数的图像上,且AD y ⊥轴,求点D 的坐标; ①如图2,已知正方形ABCD 的顶点B 、D 在该二次函数的图象上,点B 、D 在y 轴的同侧,且点B 在点D 的左侧,设点B 、D 的横坐标分别为m 、n ,试探究n m -是否为定值.如果是,求出这个值;如果不是,请说明理由.(2)已知正方形ABCD 的顶点B 、D 在二次函数2y ax =(a 为常数,且0a >)的图像上,点B 在点D 的左侧,设点B 、D 的横坐标分别为m 、n ,直接写出m 、n 满足的等量关系式. 4.如图,抛物线2y x bx c =-++的顶点A 在直线3y x上,直线3yx与抛物线的另一个交点为点B ,与y 轴的交点为C .(1)若点B 与点C 重合时,求此时抛物线的解析式;(2)移动点A ,另一个交点B ,也随之移动,试求出AB 的长;(3)在抛物线上是否存在一点P ,使得由A ,B ,O ,P 四个点构成的四边形为平行四边形;若存在,求出此时抛物线的解析式;若不存在,说明理由.5.如图,已知抛物线2y x bx c =-++与一直线相交于()1,0A -,()2,3C 两点,与y 轴交于点N ,其顶点为D .(1)求抛物线及直线AC 的解析式.(2)设点()3,M m ,求使MN MD +的值最小时m 的值.(3)若抛物线的对称轴与直线AC 相交于点B ,E 为直线AC 上的任意一点,过E 作EF BD ∥交抛物线于点F ,以B ,D ,E ,F 为顶点的四边形能否为平行四边形?若能,求出点E ,F 的坐标;若不能,请说明理由. 6.如图1,抛物线234y x x =-++与x 轴交于A 、B 两点(A 在B 的左侧),与y 轴交于点C ,连接,AC BC .(1)求△ABC 的面积;(2)如图2,点P 为直线上方抛物线上的动点,过点P 作PD AC ∥交直线BC 于点D ,过点P 作直线PE x 轴交直线BC 于点E ,求PD PE +的最大值及此时P 的坐标;(3)在(2)的条件下,将原抛物线234y x x =-++向右平移2个单位,再向上平移8个单位,点M 是新抛物线与原抛物线的交点,N 是平面内任意一点,若以P 、B 、M 、N 为顶点的四边形是平行四边形,请直接写出点N 的坐标.7.如图,抛物线212y x bx c =-++与x 轴交于点A 和点B ,与y 轴交于点C .点B 坐标为(6,0),点C 坐标为(0,6),点D 是抛物线的顶点.(1)求抛物线的解析式及点D 的坐标;(2)点M 是抛物线上的动点,过点M 作MN x ∥轴与抛物线交于点N ,点P 在x 轴上,在坐标平面内是否存在点Q ,使得以线段MN 为对角线的四边形MPNQ 为正方形,若存在,请求出点Q 的坐标,若不存在,请说明理由.8.已知抛物线1C :22y ax ax c =-+经过点()2,3,与x 轴交于()1,0A -、B 两点.(1)求抛物线1C 的解析式;(2)如图1,已知()0,1E -,以A E C D 、、、为顶点作平行四边形,若C D 、两点都在抛物线上,求C D 、两点的坐标;(3)如图2,将抛物线1C 沿x 轴平移,使其顶点在y 轴上,得到抛物线2C ,过定点()0,2H 的直线交抛物线2C 于M N 、两点,过M N 、的直线MR NR 、与抛物线2C 都只有唯一公共点,求证:R 点在定直线上运动. 9.如图1,抛物线223y x x =--+与x 轴相交于点A 、B (点B 在点A 左侧),与y 轴相交于点C .(1)求点A 到直线BC 的距离;(2)点P 是直线BC 上方抛物线上一动点,过点P 作直线BC 的垂线,垂足为点E ,过点P 作PF y ∥轴交BC 于点F ,求PEF 周长的最大值及此时点P 的坐标;(3)如图2,将该抛物线向左平移2个单位长度得到新的抛物线y ',平移后的抛物线与原抛物线相交于点D ,点M 为直线BC 上的一点,点N 是平面坐标系内一点,是否存在点M ,N ,使以点B ,D ,M ,N 为顶点的四边形为菱形,若存在,请直接写出点M 的坐标;若不存在,请说明理由. 10.如图,已知抛物线()213022y x x n n =-->与x 轴交于A ,B 两点(A 点在B 点的左边),与y 轴交于点C .(1)如图1,若5AB =,则n 的值为______(直接写出结果);(2)如图1,在(1)的条件下,点P 在抛物线上,点Q 在抛物线的对称轴上,若以BC 为边,以点B 、C 、P 、Q 为顶点的四边形是平行四边形,求P 点的坐标;(3)如图2,过点A 作直线BC 的平行线交抛物线于另一点D ,交y 轴于点E ,若:1:4AE ED =,求n .11.在平面直角坐标系中,二次函数22y ax bx =++的图象与x 轴交于()()3010A B -,,,两点,与y 轴交于点C .(1)求这个二次函数的解析式;(2)点P 是直线AC 上方的抛物线上一动点,设三角形APC 的面积为S ,求S 的最大值及S 取得最大值时点P 的坐标;(3)点M 为抛物线上一动点,在x 轴上是否存在点Q ,使以A 、C 、M 、Q 为顶点的四边形是平行四边形?若存在,直接写出点Q 的坐标;若不存在,说明理由.12.如图,直线2y kx =+与x 轴交于点()30A ,,与y 轴交于点B ,抛物线2423y x bx =-++经过点A B ,.(1)求k 的值和抛物线的解析式.(2) (,0)M m 为x 轴上一动点,过点M 且垂直于x 轴的直线与直线AB 及抛物线分别交于点P N ,.若以O B N P ,,,为顶点的四边形是平行四边形,求m 的值.13.在直角坐标系中,抛物线()2102y x bx c a =++≠与x 轴交于A 、B 两点.其中点()2,0A -,点()4,0B .(1)求抛物线的解析式.(2)如图1,在直线1:2l y x n =-+经过A 点,与y 轴交于D .在直线l 下方的抛物线上有一个动点P ,连接PA ,PD ,求PAD 面积的最大值及其此时P 的坐标.(3)将抛物线y 向右平移1个单位长度后得到新抛物线1y ,点E 是新抛物线1y 的对称轴上的一个动点,点F 是原抛物线上的一个动点,取PAD 面积最大值时的P 点.若以点P 、D 、E 、F 为顶点的四边形是平行四边形,直接写出点F 的坐标,并写出求解其中一个F 点的过程. 14.如图,抛物线2y ax bx c =++与x 轴交于A ,B 两点,点B 的坐标为()20,,抛物线与y 轴交于点()022C -,,对称轴为直线322x =-,连接AC ,过点B 作BE AC ∥交抛物线于点E .(1)求抛物线的解析式;(2)点P 是线段AC 下方抛物线上的一个动点,过点P 作PF y ∥轴交直线BE 于点F ,过点F 作FD AC ⊥交直线AC 于点D ,连接PD ,求FDP 面积的最大值及此时点P 的坐标;(3)在第(2)小问的条件下,将原抛物线沿着射线CB 方向平移,平移后的抛物线过点B ,点M 在平移后抛物线的对称轴上,点T 是平面内任意一点,是否存在以B 、P 、M 、T 为顶点的四边形是以BP 为边的菱形,若存在,直接写出点T 的坐标,若不存在,请说明理由.15.如图,抛物线()21:260l y ax x a =++≠与y 轴交于点()0,6C ,与x 轴交于点A 和点B ,抛物线的对称轴2x =与抛物线交于点D ,与直线BC 交于点E .抛物线2l 与抛物线1l 关于原点O 中心对称.(1)求抛物线1l 顶点D 的坐标及抛物线2l 的解析式;(2)若点P 是抛物线2l 上位于y 轴左侧的一个动点,点Q 是坐标平面内一点,是否存在点Q ,使得以点P 、Q 、D 、E 为顶点的四边形是面积为36的平行四边形?若存在,请求出点Q 的坐标;若不存在,请说明理由.参考答案:1.(1)223y x x =-++ (2)2m -①;G ②点坐标为()5,0;G ③点坐标为117,02⎛⎫+ ⎪ ⎪⎝⎭;(3)F 点坐标为720,39⎛⎫ ⎪⎝⎭2.(1)213442y x x =--+ 142y x =+;(2)(2,6)P -;(3)1()0,4P 2(6,4)P - 3(413,4)P -- 4(413,4)P ---;3.(1)①1;①234,33D ⎛⎫⎪ ⎪⎝⎭;①1(2)()1a n m -=或0m n +=.4.(1)2(1)4y x =--+; (2)2;(3)存在,当四边形为平行四边形时,抛物线为:231391322y x ⎛⎫++=--+ ⎪ ⎪⎝⎭或:231391322y x ⎛⎫--=--+ ⎪ ⎪⎝⎭ 或:211351322y x ⎛⎫+-=-++ ⎪ ⎪⎝⎭ 或:211351322y x ⎛⎫-+=-++ ⎪ ⎪⎝⎭.5.(1)抛物线的解析式为223y x x =-++,直线AC 的解析式为1y x =+ (2)185(3)以B ,D ,E ,F 为顶点的四边形能为平行四边形,()01E ,,()03F ,或11731722E ⎛⎫++ ⎪ ⎪⎝⎭,,11717122F ⎛⎫+- ⎪ ⎪⎝⎭,或11731722E ⎛⎫-- ⎪ ⎪⎝⎭, 11717122F ⎛⎫--- ⎪ ⎪⎝⎭, 6.(1)10(2)最大值为41745+;此时()2,6P (3)113,24⎛⎫ ⎪⎝⎭或345,24⎛⎫- ⎪⎝⎭或53,24⎛⎫- ⎪⎝⎭7.(1)21262y x x =-++ (2,8)D(2)存在,(2,2217)-+或(2,2217)--8.(1)223y x x =-++(2)(1,4),(2,3)C D 或(1,4),(2,5)C D --或(2,5)C -- ()1,4D9.(1)22(2)当点P 坐标为31524⎛⎫- ⎪⎝⎭,时,PEF 的周长有最大值,最大值为92944+(3)7544⎛⎫- ⎪⎝⎭,或()355-+,或()355---,或()1,4M10.(1)2(2)11(2 395),(82-,39)8)(3)278n =11.(1)224233y x x =--+(2)94 3522P ⎛⎫- ⎪⎝⎭, (3)存在点Q ,使得以A C M Q 、、、为顶点的四边形是平行四边形,Q 点的坐标为()10-,或()50-,或()270+,或()270-,12.(1)23k =-,抛物线的解析式为2410233y x x =-++(2)m 的值为332±或3152±13.(1)2142y x x =-- (2)PAD 面积最大值为258,此时135,28P ⎛⎫- ⎪⎝⎭;(3)335,28F ⎛⎫- ⎪⎝⎭或527,28F ⎛⎫- ⎪⎝⎭或311,28F ⎛⎫-- ⎪⎝⎭14.(1)2232242y x x =+- (2)PDF S △最大值为92()2232P --,(3)7263222⎛⎫--- ⎪⎝⎭,或7263222⎛⎫--+ ⎪⎝⎭,或52622⎛⎫ ⎪⎝⎭,或52622⎛⎫- ⎪⎝⎭,.15.(1)顶点D 的坐标为()2,8 21262y x x =+- (2)存在,Q 的坐标为177,2⎛⎫- ⎪⎝⎭或17,2⎛⎫- ⎪⎝⎭或1511,2⎛⎫ ⎪⎝⎭。

二次函数中考精品压轴题(四边形的存在性问题)解析精选

二次函数中考精品压轴题(四边形的存在性问题)解析精选

二次函数中考精品压轴题(四边形与存在性问题)解析精选【例1】综合与实践:如图,在平面直角坐标系中,抛物线y=﹣x 2+2x+3与x 轴交于A .B 两点,与y 轴交于点C ,点D 是该抛物线的顶点.(1)求直线AC 的解析式及B .D 两点的坐标;(2)点P 是x 轴上一个动点,过P 作直线l ∥AC 交抛物线于点Q ,试探究:随着P 点的运动,在抛物线上是否存在点Q ,使以点A .P 、Q 、C 为顶点的四边形是平行四边形?若存在,请直接写出符合条件的点Q 的坐标;若不存在,请说明理由.(3)请在直线AC 上找一点M ,使△BDM 的周长最小,求出M 点的坐标.【答案】解:(1)当y=0时,﹣x 2+2x+3=0,解得x 1=﹣1,x 2=3。

∵点A 在点B 的左侧,∴A .B 的坐标分别为(﹣1,0),(3,0)。

当x=0时,y=3。

∴C 点的坐标为(0,3)。

设直线AC 的解析式为y=k 1x+b 1(k 1≠0),则111b =3k +b =0⎧⎨-⎩,解得11k =3b =3⎧⎨⎩。

∴直线AC 的解析式为y=3x+3。

∵y=﹣x 2+2x+3=﹣(x ﹣1)2+4,∴顶点D 的坐标为(1,4)。

(2)抛物线上有三个这样的点Q 。

如图,①当点Q 在Q 1位置时,Q 1的纵坐标为3,代入抛物线可得点Q 1的坐标为(2,3);②当点Q 在点Q 2位置时,点Q 2的纵坐标为﹣3,代入抛物线可得点Q 2坐标为(1+7,﹣3);③当点Q 在Q 3位置时,点Q 3的纵坐标为﹣3,代入抛物线解析式可得,点Q 3的坐标为(1﹣7,﹣3)。

综上可得满足题意的点Q 有三个,分别为:Q 1(2,3),Q 2(1+7,﹣3),Q 3(1﹣7,﹣3)。

(3)点B 作BB′⊥AC 于点F ,使B′F=BF ,则B′为点B 关于直线AC 的对称点.连接B′D 交直线AC 与点M ,则点M 为所求。

过点B′作B′E ⊥x 轴于点E 。

二次函数与几何图形综合(压轴题)-含答案

二次函数与几何图形综合(压轴题)-含答案

二次函数与几何图形综合题类型一 线段数量关系/最值问题1. (2019滨州)如图①,抛物线y =-18x 2+12x +4与y 轴交于点A ,与x 轴交于点B ,C ,将直线AB 绕点A 逆时针旋转90°,所得直线与x 轴交于点D .(1)求直线AD 的函数解析式;(2)如图②,若点P 是直线AD 上方抛物线上的一个动点. ①当点P 到直线AD 的距离最大时,求点P 的坐标和最大距离; ②当点P 到直线AD 的距离为524时,求sin ∠P AD 的值.第1题图2. 如图,直线y =x +2与抛物线y =ax 2+bx +6相交于A (12,52)和B (4,c ).(1)求抛物线的解析式;(2)点P 是直线AB 上的动点,设点P 的横坐标为n ,过点P 作PC ⊥x 轴,交抛物线于点C ,交x 轴于点M .①当点P 在线段AB 上运动时(点P 不与点A ,B 重合),是否存在这样的点P ,使线段PC 的长有最大值?若存在,求出这个最大值;若不存在,请说明理由;②点P 在直线AB 上自由移动,当点C 、P 、M 中恰有一点是其他两点所连线段的中点时,请直接写出n 的值.第2题图类型二面积数量关系/最值问题1. (2019成华区一诊)如图,抛物线经过原点O,与x轴交于点A(-4,0),且经过点B(4,8).(1)求抛物线的解析式;(2)设直线y=kx+4与抛物线两交点的横坐标分别为x1,x2(x1<x2),当1x2-1x1=22时,求k的值;(3)连接OB,点P为x轴下方抛物线上一动点,过点P作OB的平行线交直线AB于点C,连接OC、OP,当S△POC∶S△BOC=1∶2时,求点P的坐标.第1题图2. (2019武侯区一诊)如图,在平面直角坐标系中,直线y =mx +3与抛物线交于点A (9,-6),与y 轴交于点B ,抛物线的顶点C 的坐标是(4,-11).(1)分别求该直线和抛物线的函数表达式;(2)D 是抛物线上位于对称轴左侧的点,若△ABD 的面积为812,求点D 的坐标;(3)在y 轴上是否存在一点P ,使∠APC =45°?若存在,求出满足条件的点P 的坐标;若不存在,请说明理由.类型三特殊三角形存在性问题1. (2019武侯区二诊)如图,抛物线y=x2+(m+2)x+4的顶点C在x轴正半轴上,直线y=x+2与抛物线交于A,B两点(点A在点B的左侧).(1)求抛物线的函数表达式;(2)点P是抛物线上一点,若S△P AB=2S△ABC,求点P的坐标;(3)将直线AB上下平移,平移后的直线y=x+t与抛物线交于A′、B′两点(A′在B′的左侧),当以点A′、B′、(2)中第二象限的点P为顶点的三角形是直角三角形时,求t的值.类型四特殊四边形存在性问题1. (2019高新区二诊)如图,在同一直角坐标系中,抛物线C1:y=ax2-2x-3与抛物线C2:y=x2+mx +n关于y轴对称,C2与x轴交于A、B两点,其中点A在点B的左侧,交y轴于点D.(1)求A、B两点的坐标;(2)过抛物线C2:y=x2+mx+n在第三象限上的一点P,作PF⊥x轴于点F,交AD于点E,若E关于PD的对称点E′恰好落在y轴上,求P点的坐标;(3)在抛物线C1上是否存在一点G,在抛物线C2上是否存在一点Q,使得以A、B、G、Q四点为顶点的四边形是平行四边形?若存在,求出G、Q两点的坐标;若不存在,请说明理由.类型五相似三角形问题1.(2019金牛区一诊)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴的两个交点分别为A(-3,0)、B(1,0),与y轴交于点D(0,3),过顶点C作CH⊥x轴于点H.(1)求抛物线的解析式和顶点C的坐标;(2)连接AD、CD,若点E为抛物线上一动点(点E与顶点C不重合),当△ADE与△ACD面积相等时,求点E的坐标;(3)若点P为抛物线上一动点(点P与顶点C不重合),过点P向CD所在的直线作垂线,垂足为点Q,以P、C、Q为顶点的三角形与△ACH相似时,求点P的坐标.第1题图备用图参考答案类型一 线段数量关系/最值问题1. 解:(1)抛物线y =-18x 2+12x +4,令x =0,可得A 点的坐标为(0,4),令y =0,可得B 点的坐标为(-4,0),C 点的坐标为(8,0). 易得直线AB 的函数解析式为y =x +4, ∵OA =OB , ∴∠BAO =45°.又∵直线AD 由直线AB 逆时针旋转90°而来, ∴∠BAD =90°,∴∠OAD =45°,△OAD 为等腰直角三角形, ∴OD =OA =4,D (4,0),易得直线AD 的函数解析式为y =-x +4;(2)①如解图①,过点P 作PE ⊥x 轴交AD 于点E ,PF ⊥AD 于点F ,第1题解图①易得△PEF 为等腰直角三角形, ∴PF =22PE , ∴当PE 取得最大值时,PF 取得最大值, 设P (x ,-18x 2+12x +4),则E (x ,-x +4),∴PE =-18x 2+12x +4-(-x +4)=-18x 2+32x =-18(x -6)2+92,∴当x =6时,PE 有最大值92,此时PF 有最大值924,∴当x =6时,-18x 2+12x +4=52,∴当点P 到直线AD 的距离最大时,点P 的坐标为(6,52),最大距离为924;②如解图②,连接AP ,过点P 作PE ⊥x 轴,交AD 于点E ,PF ⊥AD 于点F ,当点P 到AD 的距离为524时,PF =524,则此时PE =2PF =52,将PE =52代入PE =-18(x -6)2+92中,解得x 1=10,x 2=2,∴此时点P 的坐标为(10,-72)或(2,92),当点P 的坐标为(2,92)时,AP =22+(92-4)2=172,∴sin ∠P AD =524172=53434;当点P 的坐标为(10,-72)时,AP =102+(-72-4)2=252,∴sin ∠P AD =PF AP =524252=210.综上,sin ∠P AD 的值是53434或210.第1题解图②2. 解:(1)∵B (4,c )在直线y =x +2上, ∴c =6,则B (4,6),∵A (12,52),B (4,6)在抛物线y =ax 2+bx +6上,∴⎩⎪⎨⎪⎧14a +12b +6=5216a +4b +6=6., 解得⎩⎪⎨⎪⎧a =2b =-8,故抛物线的解析式为y =2x 2-8x +6; (2)①存在.设点P 的坐标为(n ,n +2)(12<n <4),则点C 的坐标为(n ,2n 2-8n +6),∴PC =(n +2)-(2n 2-8n +6)=-2n 2+9n -4=-2(n -94)2+498.∵-2<0,12<n <4,∴当n =94时,线段PC 的长取得最大值498.② n 的值为5±212或17±1298.【解法提示】设P 的坐标为(n ,n +2),则点C 的坐标为(n ,2n 2-8n +6),易知抛物线与x 轴交点坐标为(1,0),(3,0),直线与x 轴交点坐标为(-2,0).(Ⅰ)若M 点为PC 的中点,此时n <-2或1<n <3,则PM =CM ,即n +2=-(2n 2-8n +6),整理得2n 2-7n +8=0,此方程没有实数解;(Ⅱ)若P 点为CM 的中点,此时,n >4或-2<n <12,则PM =PC ,CM =2PM ,即2n 2-8n +6=2(n +2),整理得n 2-5n +1=0,解得n 1=5+212,n 2=5-212,n 1,n 2均满足条件;(Ⅲ)若C 点为PM 的中点,此时12<n <1或3<n <4,则PC=CM ,PM =2CM ,即n +2=2(2n 2-8n +6),整理得4n 2-17n +10=0,解得n 1=17+1298,n 2=17-1298,n 1,n 2均满足条件.综上所述,n 的值为5±212或17±1298.类型二 面积数量关系/最值问题1. 解:(1)∵抛物线经过原点O , ∴设抛物线的解析式为y =ax 2+bx ,把点A (-4,0),B (4,8)代入,得⎩⎪⎨⎪⎧16a -4b =016a +4b =8,解得⎩⎪⎨⎪⎧a =14b =1,∴抛物线的解析式为y =14x 2+x ;(2)联立⎩⎪⎨⎪⎧y =14x 2+xy =kx +4,消去y ,得14x 2+(1-k )x -4=0,∴x 1+x 2=4(k -1),x 1x 2=-16,∵1x 2-1x 1=22, ∴(x 1+x 2)2-4x 1x 2(x 1x 2)2=12, 即16(k -1)2+64256=12, 解得k =3或k =-1,经检验都符合题意,∴k 的值为3或-1;(3)∵OB ∥PC ,S △POC ∶S △BOC =1∶2,∴PC ∶OB =1∶2,∵B (4,8),∴OB =45,直线OB 的解析式为y =2x ,∴PC =25,设点P 的坐标为(a ,14a 2+a )(-4<a <0),直线PC 的解析式为y =2x +t , 把P (a ,14a 2+a )代入y =2x +t ,整理得t =14a 2-a , ∴直线PC 的解析式为y =2x +14a 2-a , 易得直线AB 的解析式为y =x +4,联立⎩⎪⎨⎪⎧y =x +4y =2x +14a 2-a , 解得x =4+a -14a 2, ∴PC =5(x C -x P )=5×(4+a -14a 2-a )=25, 解得a =22(舍去)或a =-22,将a =-22代入抛物线的解析式,得y =14×(-22)2-22=2-22, ∴点P 的坐标为(-22,2-22).2. 解:(1)把点A (9,-6)代入y =mx +3中,得m =-1,∴直线的函数表达式为y =-x +3;∵抛物线的顶点C 的坐标是(4,-11)且过点A (9,-6),设抛物线的函数表达式为y =a (x -4)2-11,∴a (9-4)2-11=-6,解得a =15,∴抛物线的函数表达式为y =15(x -4)2-11=15x 2-85x -395; (2)设点D 的横坐标为n .∵抛物线对称轴为直线x =4,∴分两种情况讨论①当0<n <4时,如解图①,过点D 作x 轴的垂线交直线AB 于点E ,则D (n ,15n 2-85n -395),E (n ,-n +3), ∴DE =-n +3-(15n 2-85n -395)=-15n 2+35n +545, ∴S △ABD =S △BDE +S △ADE =12DE ·(x E -x B )+12DE ·(x A -x E ) =12DE ·(x A -x B )=12(-15n 2+35n +545)×9=812, 解得n 1=3-352(不合题意,舍去),n 2=3+352(不合题意,舍去);第2题解图①②当n <0时,如解图②,过点D 作x 轴的垂线交直线AB 于点E ,S △ABD =S △ADE -S △BDE =12DE ·(x A -x E )-12DE ·(x B -x E )=12DE ·(x A -x B )=12(-15n 2+35n +545)×9=812, 解得n 1=3-352,n 2=3+352(不合题意,舍去). 当n =3-352时,y =15×(3-352)2-85×3-352-395=35-152. ∴D (3-352,35-152);第2题解图②(3)在y 轴上存在一点P ,使∠APC =45°,如解图③,分别过点C 、A 作y 轴、x 轴的平行线,两线交于点G ,则∠CGA =90°,∵A 、C 的坐标分别为(9,-6),(4,-11),∴点G 的坐标为(4,-6).∴GA =GC =5.作以G 为圆心,GA 的长度为半径的圆,交y 轴于点P ,P ′,连接AP 、CP 、AP ′、P ′C ,此时∠APC =∠AP ′C =12∠CGA =45°, ∴GP =5.设点P 的坐标为(0,k ),过点G 作GH ⊥y 轴于点H ,则H (0,-6).在Rt △PGH 中,PH 2+HG 2=PG 2,即(k +6)2+42=52,解得k 1=-3,k 2=-9,∴P (0,-3),P ′(0,-9).第2题解图③类型三 特殊三角形存在性问题1. 解:(1)∵抛物线的顶点C 在x 轴的正半轴上,∴4ac -b 24a =16-(m +2)24=0, 解得m =2或-6,∵顶点在x 轴正半轴上,∴-m +22>0.解得m <-2, ∴m =-6,∴抛物线的函数表达式为y =x 2-4x +4;(2)如解图①,过点C 作抛物线的对称轴,交直线AB 于点D ,由y =x 2-4x +4得抛物线的对称轴是直线x =2,则D (2,4),DC =4.在点D 上方的抛物线的对称轴上取一点E ,使DE =2DC ,则E (2,12).连接AE ,BE ,则S △ABE =2S △ABC .过点E (2,12)作直线AB 的平行线交抛物线于点P 1,P 2,此时满足S △P AB =S △ABE =2S △ABC .设直线P 1P 2的函数表达式为y =x +k ,∵点E (2,12)在直线P 1P 2上,∴2+k =12,∴k =10.∴直线P 1P 2的函数表达式为y =x +10.联立⎩⎪⎨⎪⎧y =x +10y =x 2-4x +4, 解得⎩⎪⎨⎪⎧x 1=-1y 1=9或⎩⎪⎨⎪⎧x 2=6y 2=16, 综上所述,满足条件的点P 的坐标为(-1,9),(6,16);第1题解图①(3)设A ′(x 1,y 1),B ′(x 2,y 2),显然,∠P A ′B ′≠90°.①如解图②,当∠A ′B ′P =90°时,过点B ′作直线MN ∥y 轴,A ′M ⊥MN 于点M ,PN ⊥MN 于点N , ∵直线A ′B ′的解析式是y =x +t ,∴∠B ′A ′M =45°,∴△A ′B ′M 和△PB ′N 都是等腰直角三角形,∴PN =NB ′,∴x 2+1=9-y 2,即x 2+y 2=8,联立⎩⎪⎨⎪⎧x 2+y 2=8y 2=x 2+t , 解得⎩⎨⎧x 2=4-12ty 2=4+12t , 将点(4-12t ,4+12t )代入抛物线的函数表达式,得4+12t =(4-12t )2-4×(4-12t )+4. 解得 t 1=0,t 2=10(此时点A ′与点P 重合,舍去);第1题解图②如解图③,若∠A′PB′=90°,过点P作EF∥y轴,A′E⊥EF于E,B′F⊥EF于点F,则△A′EP∽△PFB′,∴A′EPE=PFB′F.∴x1+19-y1=y2-9x2+1.∴x1x2+(x1+x2)+1=9(y1+y2)-y1y2-81,令x2-4x+4=x+t,即x2-5x+4-t=0,则x1+x2=5,x1x2=4-t,y1+y2=(x1+t)+(x2+t)=x1+x2+2t=5+2t,y1y2=(x1+t)(x2+t)=x1x2+t(x1+x2)+t2=t2+4t+4,∴(4-t)+5+1=9(5+2t)-(t2+4t+4)-81,整理得t2-15t+50=0,解得t1=5,t2=10(此时A′与P重合,舍去),综上,t的值为0或5.第1题解图③类型四特殊四边形存在性问题1. 解:(1)∵C1、C2关于y轴对称,∴C1与C2的交点一定在y轴上,且C1与C2的形状,大小均相同,∴a=1,n=-3,∴C1的对称轴为直线x=1,∴C2的对称轴为直线x=-1,∴m=2,∴C 1的函数表达式为y =x 2-2x -3,C 2的函数表达式为y =x 2+2x -3=0,在C 2的函数表达式y =x 2+2x -3中,当y =0可得x 2+2x -3=0,解得x =-3或x =1,∴A (-3,0),B (1,0);(2)根据题意可得点D 的坐标为(0,-3),设直线AD 的表达式为y =kx +b .把(0,-3)和(-3,0)代入到y =kx +b 中得⎩⎪⎨⎪⎧b =-3-3k +b =0, 解得⎩⎪⎨⎪⎧b =-3k =-1, ∴直线AD 的表达式为y =-x -3,设P (a ,a 2+2a -3),则E (a ,-a -3),则PE =-a -3-(a 2+2a -3)=-a 2-3a ,根据对称可得四边形PEDE ′是菱形,则DE ′=PE =-a 2-3a , 如解图,过点P 作PG ⊥y 轴于点G ,∵ED ∥PE ′,ED 所在直线斜率k =-1∴∠E ′=∠AEF =45°,GE ′=-a ,PG =GE ′.在Rt △PGE ′中,根据勾股定理得:PE ′=-2a ,根据菱形性质可得:PE ′=DE ′, ∴-2a =-a 2-3a ,解得a =2-3,∴P (2-3,2-42);第1题解图(3)存在.∵AB 的中点为(-1,0),且点G 在抛物线C 1上,点Q 在抛物线C 2上,∴AB 只能为平行四边形的一边,∴GQ ∥AB 且GQ =AB ,由(1)可知AB =1-(-3)=4,∴GQ =4,设G (t ,t 2-2t -3),则Q (t +4,t 2-2t -3)或(t -4,t 2-2t -3),①当Q (t +4,t 2-2t -3)时,则t 2-2t -3=(t +4)2+2(t +4)-3,解得t =-2,∴t 2-2t -3=4+4-3=5,∴G (-2,5),Q (2,5);②当Q (t -4,t 2-2t -3)时,则t 2-2t -3=(t -4)2+2(t -4)-3,解得t =2,∴t 2-2t -3=4-4-3=-3,∴G (2,-3),Q (-2,-3),综上可知,存在满足条件的点G 、Q ,其坐标为G (-2,5),Q (2,5)或G (2,-3),Q (-2,-3).类型五 相似三角形问题1. 解:(1)把点A 、B 、D 的坐标分别代入抛物线的解析式中得:⎩⎪⎨⎪⎧a +b +c =09a -3b +c =0c =3,解得⎩⎪⎨⎪⎧a =-1b =-2c =3,∴抛物线的解析式为y =-x 2-2x +3,∴抛物线的对称轴为直线x =-b 2a=-1, ∴点C 的坐标为(-1,4);(2)如解图①,过点C 作CE ∥AD 交抛物线于点E ,交y 轴于点T ,则△ADE 与△ACD 面积相等,直线AD 过点D ,设其解析式为y =mx +3,将点A 的坐标代入得:0=-3m +3,解得m =1,则直线AD 的解析式为y =x +3,∵CE ∥AD ,设直线CE 的解析式为y =x +n ,将点C 的坐标代入上式得:4=-1+n ,解得n =5,则直线CE 的解析式为y =x +5,则点T 的坐标为(0,5),联立⎩⎪⎨⎪⎧y =-x 2-2x +3y =x +5, 解得x =-1或x =-2(x =-1为点C 的横坐标),即点E 的坐标为(-2,3);在y 轴取一点H ′,使DT =DH ′=2,过点H ′作直线E ′E ″∥AD ,则△ADE ′和△ADE ″都与△ACD 面积相等,同理可得直线E ′E ″的解析式为y =x +1,联立⎩⎪⎨⎪⎧y =-x 2-2x +3y =x +1, 解得x =-3±172, ∴点E ″、E ′的坐标分别为(-3+172,-1+172)、(-3-172,-1-172), 综上,满足要求的点E 的坐标为(-2,3)或(-3+172,-1+172)或(-3-172,-1-172);第1题解图①(3)如解图②,设点P 的坐标为(m ,n ),则n =-m 2-2m +3,把点C 、D 的坐标代入一次函数的解析式y =kx +b 得:⎩⎪⎨⎪⎧4=-k +b b =3, 解得⎩⎪⎨⎪⎧k =-1b =3, 即直线CD 的解析式为y =-x +3,由(1)得,直线AD 的解析式为y =x +3,∴AD ⊥CD ,而直线PQ ⊥CD ,故直线PQ 的解析式中的k 值与直线AD 的解析式中的k 值相同, 同理可得直线PQ 的解析式为y =x +(n -m ),联立⎩⎪⎨⎪⎧y =-x +3y =x +(n -m ), 解得x =3+m -n 2, 即点Q 的坐标为(3+m -n 2,3-m +n 2), 则PQ 2=(m -3+m -n 2)2+(n -3-m +n 2)2=(m +n -3)22=12(m +1)2·m 2, 同理可得:PC 2=(m +1)2[1+(m +1)2],AH =2,CH =4,则AC =25, 当△ACH ∽△CPQ 时,PC PQ =AC CH =52,即4PC 2=5PQ 2,整理得3m 2+16m +16=0,解得m =-4或m =-43, ∴点P 的坐标为(-4,-5)或(-43,359); 当△ACH ∽△PCQ 时,同理可得,点P 的坐标为(-23,359)或(2,-5), 综上所述,点P 的坐标为(-4,-5)或(-43,359)或(-23,359)或(2,-5).。

中考数学总复习《二次函数压轴题(特殊四边形)》专项提升练习题(附答案)

中考数学总复习《二次函数压轴题(特殊四边形)》专项提升练习题(附答案)

中考数学总复习《二次函数压轴题(特殊四边形)》专项提升练习题(附答案)学校:___________班级:___________姓名:___________考号:___________1.如图,已知抛物线232y a x k ⎛⎫=-+ ⎪⎝⎭经过()1,0A -,()0,4C -两点,直线m 是抛物线的对称轴.(1)求抛物线的解析式.(2)设E 是直线m 上的一个动点,当点E 到点A ,C 的距离之和最短时,求点E 的坐标.(3)已知P 为抛物线的顶点,在平面直角坐标系中是否存在一点Q ,恰好使得P ,Q ,B ,C 为顶点平行四边形,若存在,写出所有符合条件的Q 点坐标,并写出求解点Q 的坐标的其中一种情况的过程,若不存在,说明理由. 2.如图,抛物线232yax bx与x 轴交于()1,0A -和()3,0B ,与y 轴交于C 点,点C 关于抛物线的对称轴的对称点为点D .抛物线顶点为H .(1)求抛物线的解析式.(2)如图1,在抛物线上是否存在一点M (异于点B )使得ACB ACM S S =△△?若存在,请求出M 的坐标,不存在,说明理由;(3)如图2,当点E 在抛物线上运动时,在直线AD 上是否存在点F ,使得以点A 、C 、E 、F 为顶点的四边形为平行四边形?若存在,请直接写出点F 的坐标;若不存在,请说明理由.3.如图,已知抛物线23y ax bx =+-(a ,b 为常数,且0a ≠)与x 轴交于()30A B ,,两点,且3OB OA =,与y 轴交于点C ,点D 为第四象限内抛物线上的动点,DE y ∥轴交BC 所在直线于点E .(1)求抛物线的函数表达式和点C '的坐标;(2)若点F 为y 轴上一点,是否存在点D ,使得以点C ,D ,E ,F 为顶点的四边形是菱形?若存在,求出所有符合条件的点D 的坐标:若不存在,请说明理由.4.如图,在平面直角坐标系中,抛物线24y ax bx =++与x 轴分别交于()4,0A -,()2,0B 两点,与y 轴交于C 点.(1)求抛物线的解析式;(2)点P 为直线AC 上方抛物线上任意一点,过点P 作PD y ∥轴交直线AC 于点D ,过点D 作DH x ∥轴,交y 轴于点H ,求PD DH +的最大值及此时点P 的坐标;(3)将抛物线沿着水平方向向右平移2个单位长度得到新的抛物线,点E 为原抛物线与平移后的抛物线的交点,点M 为平移后的抛物线对称轴上一动点,点N 为坐标平面内一点,直接写出所有使得以点B ,E ,M ,N 为顶点的四边形是菱形的点N 的坐标,并把求其中一个点N 的坐标的求解过程写出来.5.如图,已知直线1y x =+与抛物线2y x mx n =-++交于A 、D 两点且A 点在x 轴上,抛物线与x 轴另一个交点为B ,与y 轴交于点()0,3C .(1)求抛物线的解析式;(2)如图,直线AD 上方的抛物线上有一点F ,过点F 作FG AD ⊥于点G ,求线段FG 的最大值;(3)点M 是抛物线的顶点,点P 是y 轴上一点,点Q 是坐标平面内一点,以A ,M ,P ,Q 为顶点的四边形是以AM 为边的矩形,求点Q 的坐标.6.如图,已知直线24y x =-+分别交x 轴、y 轴于点B .抛物线过A ,B 两点. P 是线段AB 上一动点,过点P 作PC ⊥x 轴于点C ,交抛物线于点D .(1)若抛物线的顶点M 的坐标为19,22⎛⎫⎪⎝⎭,其对称轴交AB 于点N .⊥求抛物线的解析式.⊥在抛物线的对称轴上找一点Q ,使AQ BQ -的值最大,试求出点Q 的坐标. ⊥是否存在点P ,使四边形MNPD 为平行四边形?若存在,求出此时点P 的坐标.(2)当点P 的横坐标为1时,是否存在这样的抛物线,使得以B ,P ,D 为顶点的三角形与AOB 相似?若存在,直接写出满足条件的抛物线的解析式;若不存在,请说明理由.7.如图1,在平面直角坐标系中,抛物线22y ax bx =++与x 轴交于()40A -,和()10B ,,与y 轴交于点C ,连接AC BC ,.(1)求该抛物线的解析式;(2)如图1,在x 轴上有一动点D ,平面内是否存在一点E ,使以点A 、D 、C 、E 为顶点的四边形是菱形?若存在,请求出点E 的坐标,若不存在,请说明理由. (3)如图2,点M 为抛物线上的一动点:⊥若点M 为直线AC 上方的抛物线上任意一点,过点M 作y 轴的平行线,交AC 于点N ,过点M 作x 轴的平行线,交直线AC 于点Q ,求MNQ △周长的最大值;⊥若点M 为抛物线上的任意一动点,且45ACM BAC ∠=︒-∠,请直接写出满足条件的点M 的坐标. 8.如图,直线443y x =+与x 轴交于点A ,与y 轴交于点C ,抛物线2)83(0y ax x c a =-+≠经过A ,C 两点,交x 轴的正半轴于点B ,连接BC .(1)求抛物线的解析式.(2)点P 在抛物线上,连接PB ,当45PBC ∠=︒时,求点P 的坐标;(3)已知点M 从点B 出发,以每秒1个单位长度的速度沿BA 运动,同时点N 从点O 出发,以每秒3个单位长度的速度沿OC CA ,运动.当点M ,N 运动到某一时刻时,在坐标平面内是否存在点D ,使得以A ,M ,N ,D 为顶点的四边形是矩形?若存在,请直接写出点D 的坐标;若不存在,请说明理由.9.如图1,平面直角坐标系xOy 中,抛物线()230y ax bx a =++<与x 轴分别交于点()30A -,和点()10B ,,与y 轴交于点C ,P 为抛物线上一动点.(1)写出抛物线的对称轴为直线______,抛物线的解析式为______;(2)如图2,连结AC ,若P 在AC 上方,作PQ y ∥轴交AC 于Q ,把上述抛物线沿射线PQ 的方向向下平移,平移的距离为h ()0h >,在平移过程中,该抛物线与直线AC 始终有交点,求h 的最大值;(3)若P 在AC 上方,设直线AP ,BP 与抛物线的对称轴分别相交于点F ,E ,请探索以A ,F ,B ,G (G 是点E 关于x 轴的对称点)为顶点的四边形面积是否随着P 点的运动而发生变化,若不变,求出这个四边形的面积;若变化,说明理由.(4)设M 为抛物线对称轴上一动点,当P ,M 运动时,在坐标轴上是否存在点N ,使四边形PMCN 为矩形?若存在,直接写出点P 的横坐标;若不存在,请说明理由.10.如图,在平面直角坐标系中,二次函数2y ax bx c =++的图象与x 轴交于()30A ,,()10B -,两点,与y 轴交于点()03C ,.(1)求这个二次函数的解析式;(2)已知点D 是直线AC 上方的抛物线上一动点.⊥当点D 运动到什么位置时,四边形ABCD 的面积最大?求此时D 点的坐标和四边形ABCD 的最大面积; ⊥连接DO DC ,,并把DOC △沿CO 翻折,得到四边形DOD C ',那么是否存在点D ,使四边形DOD C '为菱形?若存在,请求出此时点D 的坐标;若不存在,请说明理由.11.如图,抛物线23y ax ax c =-+与x 轴交于A ,()4,0B 两点(A 在B 的左侧),与y 轴交于点(0,4)C -,直线l 是地物线的对称轴,直线l 与x 轴交于点D .(1)求抛物线的函数表达式;(2)点M 在直线l 上,且12DM =,点P ,Q 是抛物线上的动点,点P 在点Q 的左侧,是否存在点P ,Q 使得以点D 、M 、P 、Q 为顶点的四边形是菱形?若存在,请求出点P ,Q 的坐标;若不存在,请说明理由. 12.如图,二次函数的图象交x 轴于点()2,0A -和()8,0B ,交y 轴于点()0,4C ,连接AC ,BC ,点P 是线段OB 上一动点,过点P 作直线PD AC ∥,交y 轴于点D ,交线段BC 于点E ,交x 轴上方二次函数的图象于点F .(1)求二次函数的表达式.(2)当点P 为线段DE 的三等分点时,求点P 的坐标.(3)在线段OB 上是否存在点P ,使得四边形AEFC 为平行四边形?若存在,求出点P 的坐标;若不存在,请说明理由. 13.综合与探究如图,直线4y x =-+与x 轴交于点B ,与y 轴交于点C ,经过B ,C 两点的抛物线212y x bx c =-++与x 轴的另一个交点为点A ,连接AC .(1)求抛物线的解析式以及点A 的坐标;(2)若点P 是直线BC 上方抛物线上的一个动点,过点P 作PQ AC ∥交直线4y x =-+于点Q ,求线段PQ 的最大值;(3)若点M 在直线BC 上运动,在坐标平面内是否存在另一个点N ,使得以A ,C ,M ,N 为顶点的四边形是菱形?若存在,请直接写出点N 的坐标;若不存在,请说明理由.14.如图,已知抛物线()230y ax ax c a =++>与x 轴交于A 、B 两点,与y 轴交于点C ,点A 在点B 左侧,点B 的坐标为()1,0,点C 的坐标为为()0,3-.(1)求抛物线的函数关系式;(2)若点D 是x 轴上的一点,在抛物线上是否存在点E ,使以A 、C 、D 、C 为顶点且以AC 为一边的四边形是平行四边形﹖若存在,请求出点E 的坐标;若不存在,请说明理由. 15.综合与探究:如图,抛物线248433y x x =+-与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C .(1)求点A ,B ,C 的坐标;(2)点D 是第三象限内抛物线上的动点,设点D 的横坐标为m ,求四边形ABCD 面积S 的最大值及此时点D 的坐标;(3)若点P 在抛物线对称轴上,点Q 是平面内一点,试探究,是否存在点P ,Q ,使以点A ,C ,P ,Q 为顶点的四边形是以AC 为对角线的菱形?若存在,请求出点P 的坐标;若不存在,请说明理由.参考答案:1.(1)232524y x ⎛⎫=-- ⎪⎝⎭(2)35,22E -⎛⎫⎪⎝⎭(3)59,24Q ⎛⎫ ⎪⎝⎭或145,24Q -⎛⎫- ⎪⎝⎭或119,24Q -⎛⎫ ⎪⎝⎭2.(1)21322y x x =-++.(2)存在,M 点的坐标为214,2⎛⎫-- ⎪⎝⎭(3)存在,点F 的坐标为10,2⎛⎫ ⎪⎝⎭或317517,24⎛⎫++ ⎪⎝⎭或317517,24⎛⎫-- ⎪⎝⎭或12,2⎛⎫-- ⎪⎝⎭3.(1)抛物线的函数表达式为223y x x =--,点C 的坐标为()03-,(2)存在点D ,使得以点C ,D ,E ,F 为顶点的四边形是菱形,点D 的坐标为()23-,或()32,242--4.(1)2142y x x =--+ (2)92 53,2P ⎛⎫- ⎪⎝⎭(3)()1,419-+或()1,419--或()3,19或()3,19-5.(1)223y x x =-++(2)928(3)72,2Q ⎛⎫ ⎪⎝⎭或12,2Q ⎛⎫- ⎪⎝⎭6.(1)⊥2224y x x =-++;⊥1,62Q ⎛⎫⎪⎝⎭;⊥存在 3,12P ⎛⎫ ⎪⎝⎭(2)存在,2224y x x =-++或25342y x x =-++7.(1)213222y x x --=+(2)存在 ()10,2E - ()225,2E ()325,2E - 45,22E -⎛⎫⎪⎝⎭(3)⊥625+ ⊥1(5,3)M -- 22375(,)749M -8.(1)248433y x x =--+(2)51213,20100⎛⎫- ⎪⎝⎭(3)71311362⎛⎫+-- ⎪ ⎪⎝⎭,或()33-,或11355⎛⎫-- ⎪⎝⎭,9.(1)=1x - 223y x x =--+ (2)h 的最大值为169(3)不变,这个四边形的面积为16 (4)存在,点P 的横坐标为51456-± 1-10.(1)二次函数的解析式为223y x x =-++;(2)⊥点D 的坐标为31524⎛⎫ ⎪⎝⎭,时,四边形ABCD 的最大面积值为758;⊥点D 的坐标为210322⎛⎫+ ⎪ ⎪⎝⎭,.11.(1)234y x x =--(2)存在,点P 、Q 的坐标分别是()2,6- ()5,6或()1,6- ()2,6-12.(1)213442y x x =-++(2)点P 的坐标为8011⎛⎫ ⎪⎝⎭,或1607⎛⎫⎪⎝⎭,; (3)不存在,理由见解析13.(1)抛物线的解析式为2142y x x =-++ ()20A -,; (2)PQ 的最大值为253; (3)点N 的坐标为()21010--,或()21010-+-,或()46,或()75-,.14.(1)239344y x x =+- (2)()3,3--或341,32⎛⎫-- ⎪ ⎪⎝⎭或341,32⎛⎫-+ ⎪ ⎪⎝⎭15.(1)()30A -,()10B , ()04C -, (2)当点D 坐标为352⎛⎫-- ⎪⎝⎭,时,四边形ABCD 面积S 的最大值为252; (3)存在,P 的坐标为1318⎛⎫-- ⎪⎝⎭,。

中考数学总复习《二次函数与四边形》练习题(含答案)

中考数学总复习《二次函数与四边形》练习题(含答案)

二次函数与四边形一 、解答题1.如图,二次函数y =ax 2+bx 的图象与一次函数y =x +2的图象交于A 、B 两点,点A 的横坐标是﹣1,点B 的横坐标是2. (1)求二次函数的表达式;(2)设点C 在二次函数图象的OB 段上,求四边形OABC 面积的最大值.2.如图,已知二次函数图象的顶点为点,且经过点.(1)求此二次函数的关系式;(2)设点是此二次函数图象上一动点,且位于第三象限,点的坐标为,四边形是以为对角线的平行四边形.① 求平行四边形的面积与之间的函数关系式,并写出自变量的取值范围;② 当点B 在此二次函数图象的对称轴上时,求平行四边形的面积; ③ 当平行四边形的面积为64时,请判断平行四边形是否为菱形?④ 是否存在点,使平行四边形为正方形?若存在,求出点的坐标;若不存在,请说明理由.2y ax c =+()09M -,()30A ,()D x y ,C ()50-,ABCD AC ABCD S x x ABCD ABCD ABCD D ABCD D3.如图,点O 是坐标原点,点(0)A n ,是x 轴上一动点(0)n <.以AO 为一边作矩形AOBC ,点C 在第二象限,且2OB OA =.矩形AOBC 绕点A 逆时针旋转90︒得矩形AGDE .过点A 的直线y kx m =+(0)k ≠交y 轴于点F ,FB FA =.抛物线2y ax bx c =++过点E 、F 、G 且和直线AF 交于点H ,过点H 作HM x ⊥轴,垂足为点M . (1) 求k 的值;(2) 点A 位置改变时,AMH ∆的面积和矩形AOBC 的面积的比值是否改变?说明你的理由.4.如图,已知二次函数图象的顶点坐标为,直线与二次函数的图象交于、两点,其中点在轴上. (1)二次函数的解析式= ;(2)证明点不在(1)中所求的二次函数的图象上; (3)若为线段的中点,过点作轴于点,与二次函数的图象交于点.① 轴上存在点,使以,,,为顶点的四边形是平行四边形,则点的坐标是 ;()20,1y x =+A B A y y ()21m m --,C AB C CE x ⊥E CE D y K K Z D C K②二次函数的图象上是否存在点,使得?求出点坐标;若不存在,请说明理由.5.如图,为正方形的对称中心,,,直线交于,于,点从原点出发沿轴的正半轴方向以1个单位每秒速度运动,同时,点从出发沿个单位每秒速度运动,运动时间为.求: (1)的坐标为 ; (2)当为何值时,与相似?(3)求的面积与的函数关系式;并求以为顶点的四边形是梯形时的值及的最大值.6.如图所示,在平面直角坐标系中,矩形的边在轴的负半轴上,边在轴的正半轴上,且,,矩形绕点按顺时针方向旋转后得到矩形.点的对应点为点,点的对应点为点,点的对应点为点,抛物线过点. (1)判断点是否在轴上,并说明理由; (2)求抛物线的函数表达式;(3)在轴的上方是否存在点,点,使以点为顶点的平行P 2POE ABD S S =△△P P ABCD ()03A ,()10B ,OP AB N DC M H O x R O OM t C t ANO △DMR △HCR △S t A B C R ,,,t S H y xP N M ROD C BAABOC BO x OCy 1AB =OB ABOC O 60EFOD A E B F C D 2y ax bx c =++A E D ,,E y x P Q O B P Q ,,,四边形的面积是矩形面积的2倍,且点在抛物线上,若存在,请求出点,点的坐标;若不存在,请说明理由.ABOC P P Q y xODEC FA B y xO DECFA B M二次函数与四边形答案解析一 、解答题1.(1)把x =﹣1和2分别代入y =x +2,得到y 的值分别是1、4,因而A 、B 的坐标分别是(﹣1,1),(2,4).根据题意得到:1424a b a b +=⎧⎨-=⎩,解得10a b =⎧⎨=⎩因而二次函数的解析式是y=x 2.(2)过点A 、B 作AM ⊥x 轴,BN ⊥x 轴,分别交于M 、N .过点C 作CP ⊥BN 与P .设P 的坐标是(x ,y ).()()1115=143222AMNB S AM BN MN +⋅=+⋅=梯形; 1122AOM S AM OM =⋅=△; ()()()()21112424222BCP S CP BP x y x x =⋅=--=--△;()()()2111=224222CPNO S CP ON PN x y x x +⋅=-+⋅=-⋅⎡⎤⎣⎦四边形. ∴2=2 3 AOM BCP OABC CPNO AMNB S S S S S x x ---=-++△△四边形四边形梯形. 当x =1时,函数S =﹣x 2+2x +3有最大值是4.【解析】本题主要考查了待定系数法求函数的解析式,求面积的最值问题一般要转化为函数的最值问题,依据函数的性质解决.2.(1)由题意得,解之,得,990c a c =-⎧⎨+=⎩19a c =⎧⎨=-⎩故二次函数的关系式为.(2)① 在二次函数的图象上,且位于第三象限, ∴,即,表示点到的距离. ∵是平行四边形的对角线, ∴. 当时,,得,∴二次函数的图象与x 轴的另一个交点是,自变量x 的取值范围是﹣3<x <0.② 过点作,垂足为点, ∵点在二次函数的图象的对称轴上, 由得,∴OE=2, ∴当时,,;③ 根据题意,当时,即. 解之,得,.故所求的点有两个,分别为,.点不满足,∴平行四边形不是菱形(或者说明点D 不在第三象限);点满足,∴平行四边形是菱形.④ 当,且时,平行四边形是正方形,此时点的坐标只能是.点不在二次函数的图象上,故不存在这样的点,使平行四边形为正方形.【解析】代数几何综合题。

中考压轴题 二次函数与四边形综合题(解析版)

中考压轴题 二次函数与四边形综合题(解析版)

专题07 二次函数与四边形综合题1.(2019黄石中考)如图,已知抛物线y =13x 2+bx +c 经过点A(−1,0)、B(5,0).(1)求抛物线的解析式,并写出顶点M 的坐标;(2)若点C 在抛物线上,且点C 的横坐标为8,求四边形AMBC 的面积(3)定点D(0,m)在y 轴上,若将抛物线的图象向左平移2各单位,再向上平移3个单位得到一条新的抛物线,点P 在新的抛物线上运动,求定点D 与动点P 之间距离的最小值d (用含m 的代数式表示)【答案】(1)y =13x 2−43x −53,M(2,−3);(2)36;(3)d ={|m|(m ≤32)√12m−92(m >32) 【解析】【分析】(1)函数的表达式为:y =13(x +1)(x -5),即可求解;(2)S 四边形AMBC =12AB (y C -y D ),即可求解;(3)抛物线的表达式为:y =13x 2,即可求解.【详解】(1)函数的表达式为:y =13(x +1)(x -5)=13(x 2-4x -5)=13x 2−43x −53,点M 坐标为(2,-3);(2)当x =8时,y =13(x +1)(x -5)=9,即点C (8,9),S 四边形AMBC =12AB (y C -y D )=12×6×(9+3)=36;(3)y =13(x +1)(x -5)=13(x 2-4x -5)=13(x -2)2-3,抛物线的图象向左平移2个单位,再向上平移3个单位得到一条新的抛物线,则新抛物线表达式为:y =13x 2,则定点D 与动点P 之间距离PD =√x 2+(m −13x 2)2=√19x 4+(1−23m)x 2+m 2, ∵19>0,PD 有最小值,当x 2=3m -92时,PD 最小值d =√3m −92=√12m−92. 【点睛】本题考查的是二次函数综合运用,涉及到图形平移、面积的计算等知识点,难度不大. 2.(2019湖南益阳中考)在平面直角坐标系xOy 中,顶点为A 的抛物线与x 轴交于B 、C 两点,与y 轴交于点D ,已知A (1,4),B (3,0).(1)求抛物线对应二次函数表达式;(2)探究:如图1,连接OA ,作DE ∥OA 交BA 的延长线于点E ,连接OE 交AD 于点F ,M 是BE 的中点,则OM 是否将四边形OBAD 分成面积相等的两部分?请说明理由;(3)应用:如图2,P (m ,n )是抛物线在第四象限的图象上的点,且m +n =﹣1,连接P A 、PC ,在线段PC 上确定一点M ,使AN 平分四边形ADCP 的面积,求点N 的坐标.提示:若点A 、B 的坐标分别为(x 1,y 1)、(x 2,y 2),则线段AB 的中点坐标为(122x x +,122y y +).【答案】(1)y =﹣x 2+2x ﹣3;(2)OM 将四边形OBAD 分成面积相等的两部分,理由见解析;(3)点N (43,﹣73). 【解析】【分析】(1)函数表达式为:y =a (x ﹣1)2+4,将点B 坐标的坐标代入上式,即可求解;(2)利用同底等高的两个三角形的面积相等,即可求解; (3)由(2)知:点N 是PQ 的中点,根据C,P 点的坐标求出直线PC 的解析式,同理求出AC,DQ 的解析式,并联立方程求出Q 点的坐标,从而即可求N 点的坐标. 【详解】(1)函数表达式为:y =a (x ﹣1)2+4, 的将点B坐标的坐标代入上式得:0=a(3﹣1)2+4,解得:a=﹣1,故抛物线的表达式为:y=﹣x2+2x﹣3;(2)OM将四边形OBAD分成面积相等的两部分,理由:如图1,∵DE∥AO,S△ODA=S△OEA,S△ODA+S△AOM=S△OEA+S△AOM,即:S四边形OMAD=S△OBM,∴S△OME=S△OBM,∴S四边形OMAD=S△OBM;(3)设点P(m,n),n=﹣m2+2m+3,而m+n=﹣1,解得:m=﹣1或4,故点P(4,﹣5);如图2,故点D作QD∥AC交PC的延长线于点Q,由(2)知:点N是PQ的中点,设直线PC的解析式为y=kx+b,将点C(﹣1,0)、P(4,﹣5)的坐标代入得:45k bk b-+=⎧⎨+=-⎩,解得:11 kb=-⎧⎨=-⎩,所以直线PC的表达式为:y=﹣x﹣1…①,同理可得直线AC的表达式为:y=2x+2,直线DQ∥CA,且直线DQ经过点D(0,3),同理可得直线DQ的表达式为:y=2x+3…②,联立①②并解得:x =﹣43,即点Q (﹣43,13), ∵点N 是PQ 的中点,由中点公式得:点N (43,﹣73). 【点睛】本题考查的是二次函数综合运用,涉及到一次函数、图形面积的计算等,其中(3)直接利用(2)的结论,即点N 是PQ 的中点,是本题解题的突破点.3.(2019广东中考)如图1,在平面直角坐标系中,抛物线2y x x =+与x 轴交于点A 、B (点A 在点B 右侧),点D 为抛物线的顶点.点C 在y 轴的正半轴上,CD 交x 轴于点F ,CAD ∆绕点C 顺时针旋转得到CFE ∆,点A 恰好旋转到点F ,连接BE .(1)求点A 、B 、D 的坐标;(2)求证:四边形BFCE 是平行四边形;(3)如图2,过顶点D 作1DD x ⊥轴于点1D ,点P 是抛物线上一动点,过点P 作PM x ⊥轴,点M 为垂足,使得PAM ∆与1DD A ∆相似(不含全等).①求出一个满足以上条件的点P 的横坐标;②直接回答....这样的点P 共有几个?【答案】(1)1,0A ,()7,0B -,(3,D --;(2)证明见解析;(3)①点P 的横坐标为53-,11-,373-,②点P 共有3个. 【解析】【分析】(1)令y =0,可得关于x 的方程,解方程求得x 的值即可求得A 、B 两点的坐标,对解析式配方可得顶点D 的坐标;(2)由CF CA =,CO ⊥AF ,可得OF =OA =1,如图2,易得1DD F COF ∆~∆,由此可得OC =证明ACF ∆为等边三角形,推导可得//EC BF ,再由6EC DC ==,6BF =,可得//EC BF ,问题得证;(3)①设点P的坐标为2,848x x x ⎛⎫+- ⎪ ⎪⎝⎭,分三种情况:点P 在B 点左侧,点P 在A 点右侧,点P在AB 之间,分别讨论即可得;②由①的结果即可得.【详解】(1)令20848x x +-=, 解得1x =或7-,故()1,0A ,()7,0B -,配方得)238y x =+-(3,D --; (2)∵CF CA =,CO ⊥AF ,∴OF =OA =1,如图,DD 1⊥轴,∴DD 1//CO ,∴1DD F COF ∆~∆, ∴11D D CO FD OF=,CO 1,∴OC =∴CF,∴2CA CF FA ===,即ACF ∆为等边三角形,∴∠AFC =∠ACF =60°,∵∠ECF =∠ACF ,∴AFC ECF ∠=∠,∴//EC BF ,∵CF :DF =OF :FD 1=1:2,∴DF =4,∴CD =6,又∵6EC DC ==,6BF =, ∴//EC BF ,∴四边形BFCE 是平行四边形;(3)①设点P的坐标为2,848x x x ⎛⎫+- ⎪ ⎪⎝⎭, (ⅰ)当点P 在B 点左侧时,因为PAM ∆与1DD A ∆相似,则1)11PM MA DD D A=,214x x x +-,∴11x =(舍),x 2=-11; 2)11PM MA AD DD =,即28484x x +,∴11x =(舍),2373x =-; (ⅱ)当点P 在A 点右侧时,因为PAM ∆与1DD A ∆相似,则3)11PM MA DD D A=,即214x x x +-,∴11x =(舍),23x =-(舍); 4)11PM MA AD DD =,即28484x x +,∴11x =(舍),253x =-(舍); (ⅲ)当点P 在AB 之间时,∵PAM ∆与1DD A ∆相似,则5)11PM MA DD D A=,即214x x x -+-, ∴11x =(舍),23x =-(舍); 6)11PM MA AD DD =,即24x x -+⎝⎭, ∴11x =(舍),253x =-; 综上所述,点P 的横坐标为53-,11-,373-; ②由①可得这样的点P 共有3个.【点睛】本题考查的是函数与几何综合题,涉及了等边三角形的判定与性质,平行四边形的判定,相似三角形的判定与性质,解一元二次方程等,综合性较强,有一定的难度,熟练掌握相关知识,正确进行分类讨论并画出符合题意的图形是解题的关键.4.(山西省2019年中考数学试题)如图,抛物线26y ax bx =++经过点A (-2,0),B (4,0)两点,与y 轴交于点C ,点D 是抛物线上一个动点,设点D 的横坐标为(14)m m <<.连接AC ,BC ,DB ,DC ,(1)求抛物线的函数表达式;(2)△BCD 的面积等于△AOC 的面积的34时,求m 的值; (3)在(2)的条件下,若点M 是x 轴上的一个动点,点N 是抛物线上一动点,试判断是否存在这样的点M,使得以点B ,D ,M ,N 为顶点的四边形是平行四边形,若存在,请直接写出点M 的坐标;若不存在,请说明理由.【答案】(1)233642y x x =-++;(2)3;(3)1234(8,0),(0,0),(M M M M . 【解析】【分析】 (1)利用待定系数法进行求解即可;(2)作直线DE ⊥x 轴于点E ,交BC 于点G ,作CF ⊥DE ,垂足为F ,先求出S △OAC =6,再根据S △BCD =34S △AOC ,得到S △BCD =92,然后求出BC 的解析式为362y x =-+,则可得点G 的坐标为3(,6)2m m -+,由此可得2334DG m m =-+,再根据S △BCD =S △CDG +S △BDG =12DG BO ⋅⋅,可得关于m 的方程,解方程即可求得答案; (3)存在,如下图所示,以BD 为边或者以BD 为对角线进行平行四边形的构图,以BD 为边时,有3种情况,由点D 的坐标可得点N 点纵坐标为±154,然后分点N 的纵坐标为154和点N 的纵坐标为154-两种情况分别求解;以BD 为对角线时,有1种情况,此时N 1点与N 2点重合,根据平行四边形的对边平行且相等可求得BM 1=N 1D =4,继而求得OM 1= 8,由此即可求得答案.【详解】(1)抛物线2y ax bx c =++经过点A (-2,0),B (4,0), ∴426016460a b a b -+=⎧⎨++=⎩,解得3432a b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴抛物线的函数表达式为233642y x x =-++;(2)作直线DE ⊥x 轴于点E ,交BC 于点G ,作CF ⊥DE ,垂足为F , ∵点A 的坐标为(-2,0),∴OA =2,由0x =,得6y =,∴点C 的坐标为(0,6),∴OC =6,∴S △OAC =1126622OA OC ⋅⋅=⨯⨯=, ∵S △BCD =34S △AOC , ∴S △BCD =39642⨯=, 设直线BC 的函数表达式为y kx n =+,由B ,C 两点的坐标得406k n n +=⎧⎨=⎩,解得326k n ⎧=-⎪⎨⎪=⎩, ∴直线BC 的函数表达式为362y x =-+, ∴点G 的坐标为3(,6)2m m -+, ∴2233336(6)34224DG m m m m m =-++--+=-+, ∵点B 的坐标为(4,0),∴OB =4,∵S △BCD =S △CDG +S △BDG =1111()2222DG CF DG BE DG CF BE DG BO ⋅⋅+⋅⋅=⋅+=⋅⋅, ∴S △BCD =22133346242m m m m -+⨯=-+(), ∴239622m m -+=, 解得11m =(舍),23m =,∴m 的值为3;(3)存在,如下图所示,以BD 为边或者以BD 为对角线进行平行四边形的构图,以BD 为边时,有3种情况,∵D 点坐标为15(3,)4,∴点N 点纵坐标为±154, 当点N 的纵坐标为154时,如点N 2, 此时233156424x x -++=,解得:121,3x x =-=(舍), ∴215(1,)4N -,∴2(0,0)M ; 当点N 的纵坐标为154-时,如点N 3,N 4,此时233156424x x -++=-,解得:1211x x ==∴315(1)4N +-,415(1)4N -,∴3M ,4(M ; 以BD 为对角线时,有1种情况,此时N 1点与N 2点重合, ∵115(1,)4N -,D (3,154),∴N 1D =4,∴BM 1=N 1D =4,∴OM 1=OB +BM 1=8, ∴M 1(8,0),综上,点M 的坐标为:1234(80)(00)(M M M M ,,,,.【点睛】本题考查的是二次函数的综合题,涉及了待定系数法、三角形的面积、解一元二次方程、平行四边形的性质等知识,运用了数形结合思想、分类讨论思想等数学思想,熟练掌握和灵活运用相关知识是解题的关键.最新模拟试题5.(2020年湖北省枣阳市太平一中中考数学模拟题)如图已知点A (﹣2,4)和点B (1,0)都在抛物线y =mx 2+2mx +n 上.(1)求m 、n ;(2)向右平移上述抛物线,记平移后点A 的对应点为A ′,点B 的对应点为B ′,若四边形A A ′B ′B 为菱形,求平移后抛物线的表达式;(3)记平移后抛物线的对称轴与直线AB ′的交点为点C ,试在x 轴上找点D ,使得以点B ′、C 、D 为顶点的三角形与△ABC 相似.【答案】(1)4,43m n =-=(2)2416(4)33y x '=--+(3)13,03D ⎛⎫ ⎪⎝⎭【解析】【分析】 (1)已知了抛物线图象上A 、B 两点的坐标,将它们代入抛物线的解析式中,即可求得m 、n 的值.(2)根据A 、B 的坐标,易求得AB 的长;根据平移的性质知:四边形A A ′B ′B 一定为平行四边形,若四边形A A ′B ′B 为菱形,那么必须满足AB =BB ′,由此可确定平移的距离,根据“左加右减”的平移规律即可求得平移后的抛物线解析式.(3)易求得直线AB ′的解析式,联立平移后的抛物线对称轴,可得到C 点的坐标,进而可求出AB 、BC 、AC 、B ′C 的长;在(2)题中已经证得AB =BB ′,那么∠BAC =∠BB ′C ,即A 、B ′对应,若以点B ′、C 、D 为顶点的三角形与△ABC 相似,可分两种情况考虑:①∠B ′CD =∠ABC ,此时△B ′CD ∽△ABC ,②∠B ′DC =∠ABC ,此时△B ′DC ∽△ABC ;根据上述两种不同的相似三角形所得不同的比例线段,即可求得不同的BD 长,进而可求得D 点的坐标.【详解】解:(1)由于抛物线经过A (﹣2,4)和点B (1,0),则有:44420m m n m m n -+=⎧⎨++=⎩,解得434m n ⎧=-⎪⎨⎪=⎩; 故m =﹣43,n =4.(2)由(1)得:y =﹣43x 2﹣83x +4=﹣43(x +1)2+163;由A (﹣2,4)、B (1,0),可得AB =5;若四边形A A ′B ′B 为菱形,则AB =BB ′=5,即B ′(6,0);故抛物线需向右平移5个单位,即:y =﹣43(x +1﹣5)2+163=﹣43(x ﹣4)2+163.(3)由(2)得:平移后抛物线的对称轴为:x =4;∵A (﹣2,4),B ′(6,0),∴直线AB ′:y =﹣12x +3; 当x =4时,y =1,故C (4,1);所以:AC B ′C BC ;由(2)知:AB =BB ′=5,即∠BAC =∠BB ′C ;若以点B ′、C 、D 为顶点的三角形与△ABC 相似,则:①∠B ′CD =∠ABC ,则△B ′CD ∽△ABC ,可得:B CAB ''=B D AC'',B ′D =3, 此时D (3,0);②∠B ′DC =∠ABC ,则△B ′DC ∽△ABC ,可得:B CAC '=B D AB '=5B D ',B ′D =53, 此时D (133,0);综上所述,存在符合条件的D点,且坐标为:D(3,0)或(133,0).【点睛】此题考查了二次函数解析式的确定、函数图象的平移、菱形的判定和性质、相似三角形的判定和性质等知识;(3)题中,在相似三角形的对应角和对应边不确定的情况下,一定要分类讨论,以免漏解.6.(河南省外国语中学2019届九年级中招适应性测试卷数学试题)如图,在平面直角坐标系xOy中,已知抛物线y=ax2-2x+c与直线y=kx+b都经过A(0,-3)、B(3,0)两点,该抛物线的顶点为C.(1)求此抛物线和直线AB的解析式;(2)设直线AB与该抛物线的对称轴交于点E,在射线EB上是否存在一点M,过M作x轴的垂线交抛物线于点N,使点M、N、C、E是平行四边形的四个顶点?若存在,求点M的坐标;若不存在,请说明理由;(3)设点P是直线AB下方抛物线上的一动点,当△P AB面积最大时,求点P的坐标,并求△P AB面积的最大值.【答案】(1) 抛物线的解析式为y=x2-2x-3,直线AB的解析式为y=x-3;(2) M点的坐标为(2,-1)或,(3) 当m=32时,△P AB面积的最大值是278,此时P点坐标为(32,−32).【解析】(1)将A(0,-3)、B(3,0)两点坐标分别代入二次函数的解析式和一次函数解析式即可求解;(2)先求出C点坐标和E点坐标,则CE=2,分两种情况讨论:①若点M在x轴下方,四边形CEMN为平行四边形,则CE=MN,②若点M在x轴上方,四边形CENM为平行四边形,则CE=MN,设M(a,a-3),则N(a,a2-2a-3),可分别得到方程求出点M的坐标;(3)如图,作PG∥y轴交直线AB于点G,设P(m,m2-2m-3),则G(m,m-3),可由S△P AB=12 PG•OB,得到m的表达式,利用二次函数求最值问题配方即可.【详解】(1)∵抛物线y=ax2-2x+c经过A(0,-3)、B(3,0)两点,∴9603a cc-+⎧⎨-⎩==,∴13 ac⎧⎨-⎩==,∴抛物线的解析式为y=x2-2x-3,∵直线y=kx+b经过A(0,-3)、B(3,0)两点,∴303k bb+⎧⎨-⎩==,解得:13kb⎧⎨-⎩==,∴直线AB的解析式为y=x-3,(2)∵y=x2-2x-3=(x-1)2-4,∴抛物线的顶点C的坐标为(1,-4),∵CE∥y轴,∴E(1,-2),∴CE=2,①如图,若点M在x轴下方,四边形CEMN为平行四边形,则CE=MN,设M(a,a-3),则N(a,a2-2a-3),∴MN=a-3-(a2-2a-3)=-a2+3a,∴-a2+3a=2,解得:a=2,a=1(舍去),∴M(2,-1),②如图,若点M在x轴上方,四边形CENM为平行四边形,则CE=MN,设M (a ,a -3),则N (a ,a 2-2a -3),∴MN =a 2-2a -3-(a -3)=a 2-3a ,∴a 2-3a =2,解得:a ,a (舍去),∴M ,2-),综合可得M 点的坐标为(2,-1 (3)如图,作PG ∥y 轴交直线AB 于点G ,设P (m ,m 2-2m -3),则G (m ,m -3),∴PG =m -3-(m 2-2m -3)=-m 2+3m ,∴S △P AB =S △PGA +S △PGB =12PG •OB =12×(−m 2+3m )×3=−32m 2+92m =-32 (m −32)2+278, ∴当m =32时,△P AB 面积的最大值是278,此时P 点坐标为(32,−32). 【点睛】本题是二次函数综合题,考查了待定系数法求函数解析式,二次函数求最值问题,以及二次函数与平行四边形、三角形面积有关的问题.7.(河南省洛阳市2019-2020学年九年级上学期期中数学试题)如图,抛物线2y x bx c =-++交x 轴于A ,B 两点,交y 轴于点C .直线122y x =-+经过点B ,C .(1)求抛物线的解析式;(2)点P 是直线BC 上方抛物线上一动点,设点P 的横坐标为m .①求PBC ∆面积最大值和此时m 的值;②Q 是直线BC 上一动点,是否存在点P ,使以A 、B 、P 、Q 为顶点的四边形是平行四边形,若存在,直接写出点P 的坐标.【答案】(1)2722y x x =-++;(2)①当2m =时max 8∆=PBC S ,②P ⎝⎭,41324⎛+ ⎝⎭【解析】(1)求出点B 、C 的坐标,将点B 、C 的坐标代入抛物线表达式,即可求解;(2)①过点P 作y 轴的平行线交直线BC 于点H ,根据△PBC 面积=12×PH ×OB ,利用二次函数的性质即可求解;②分AB 是平行四边形的边,AB 是平行四边形的对角线两种情况,分别求解即可.【详解】解:(1)∵直线122y x =-+经过点B ,C , ∴点B 、C 的坐标分别为:(4,0)、(0,2),将点B 、C 的坐标代入抛物线表达式,得01642b c c =-++⎧⎨=⎩,解得:722b c ⎧=⎪⎨⎪=⎩, ∴抛物线的表达式为:2722y x x =-++; (2)①过点P 作y 轴的平行线交直线BC 于点H ,则点P (m ,2722m m -++),点H (m ,122m -+), ∴△PBC 面积=12×PH ×OB =12×4×(2722221m m m -+++-)=−2m 2+8m =−2(m -2)2+8, ∴当m =2时,面积存在最大值8;②设点P (m ,2722m m -++),点Q (n ,122n -+), 令27202y x x =-++=,解得:12124x x ⎧=-⎪⎨⎪=⎩, ∴点A 的坐标为:(12-,0), 当AB 是平行四边形的边时,点A 向右平移92个单位得到B , 同样点P (Q )向右平移92个单位得到Q (P ), 则m ±92=n ,2722m m -++=122n -+, 解得:m =12-(舍去)或92∴此时P 点坐标为⎝⎭或⎝⎭; 当AB 是平行四边形的对角线时,由中点公式得:m +n =72,27122022m m n -++-+=, 解得:m =12-或92(重复,舍去);综上点P 的坐标为:⎝⎭或⎝⎭.【点睛】本题考查的是二次函数综合运用,涉及到一次函数、平行四边形性质、图形的面积计算等,其中(2)②,要注意分类求解,避免遗漏.8.(河南省濮阳市县区2019-2020学年九年级上学期期末数学试题)如图,已知抛物线23)0(y a bx a =++≠经过点1,0A 和点()3,0B ,与y 轴交于点C .(1)求此抛物线的解析式;(2)若点P 是直线BC 下方的抛物线上一动点(不点B ,C 重合),过点P 作y 轴的平行线交直线BC 于点D ,设点P 的横坐标为m .①用含m 的代数式表示线段PD 的长;②连接PB ,PC ,求PBC ∆的面积最大时点P 的坐标;(3)设抛物线的对称轴与BC 交于点E ,点M 是抛物线的对称轴上一点,N 为y 轴上一点,是否存在这样的点M 和点N ,使得以点C 、E 、M 、N 为顶点的四边形是菱形?如果存在,请直接写出点M 的坐标;如果不存在,请说明理由.【答案】(1)y =x 2﹣4x +3;(2)①用含m 的代数式表示线段PD 的长为﹣m 2+3m ;②△PBC 的面积最大时点P 的坐标为(32,﹣34);(3)存在这样的点M 和点N ,使得以点C 、E 、M 、N 为顶点的四边形是菱形.点M 的坐标为M 1(2,3),M 2(2,1﹣),M 3(2,).【解析】(1)根据已知抛物线y=ax2+bx+3(a≠0)经过点A(1,0)和点B(3,0)代入即可求解;(2)①先确定直线BC解析式,根据过点P作y轴的平行线交直线BC于点D,即可用含m的带上书表示出P和D的坐标进而求解;②用含m的代数式表示出△PBC的面积,可得S是关于m的二次函数,即可求解;(3)根据(1)中所得二次函数图象和对称轴先得点E的坐标即可写出点三个位置的点M的坐标.【详解】(1)∵抛物线y=ax2+bx+3(a≠0)经过点A(1,0)和点B(3,0),与y轴交于点C,∴309330a ba b++=⎧⎨++=⎩,解得14ab=⎧⎨=-⎩,∴抛物线解析式为y=x2﹣4x+3;(2)①设P(m,m2﹣4m+3),将点B(3,0)、C(0,3)代入得直线BC解析式为y BC=﹣x+3.∵过点P作y轴的平行线交直线BC于点D,∴D(m,﹣m+3),∴PD=(﹣m+3)﹣(m2﹣4m+3)=﹣m2+3m.答:用含m的代数式表示线段PD的长为﹣m2+3m.②S△PBC=S△CPD+S△BPD=12OB•PD=﹣32m2+92m=﹣32(m﹣32)2+278.∴当m=32时,S有最大值.当m=32时,m2﹣4m+3=﹣34.∴P(32,﹣34).答:△PBC的面积最大时点P的坐标为(32,﹣34).(3)存在这样的点M和点N,使得以点C、E、M、N为顶点的四边形是菱形.根据题意,点E(2,1),∴EF=CF=2,∴EC=2,根据菱形的四条边相等,∴ME=EC,∴M(2,1-)或(2,)当EM=EF=2时,M(2,3)∴点M的坐标为M1(2,3),M2(2,1﹣),M3(2,).【点睛】本题考查了二次函数与方程、几何知识综合应用,解这类问题关键是善于将函数问题转化为方程问题,善于利用几何图形的有关性质、定理和二次函数的知识,并注意挖掘题目中的一些隐含条件.9.(2019年河南中考原创卷A卷)如图,抛物线y=﹣x2+2x+3与x轴相交的于A,B两点(点A在点B的左侧),与y轴相交于点C,顶点为D.(1)直接写出A,B,C三点的坐标和抛物线的对称轴;(2)连接BC,与抛物线的对称轴交于点E,点P为线段BC上的一个动点(P不与C,B两点重合),过点P作PF∥DE交抛物线于点F,设点P的横坐标为m.①用含m的代数式表示线段PF的长,并求出当m为何值时,四边形PEDF为平行四边形.②设△BCF的面积为S,求S与m的函数关系式;当m为何值时,S有最大值.【解析】解:(1)对于抛物线y=﹣x2+2x+3,令x=0,得到y=3;令y=0,得到﹣x2+2x+3=0,即(x﹣3)(x+1)=0,解得:x=﹣1或x=3,则A(﹣1,0),B(3,0),C(0,3),抛物线对称轴为直线x=1;(2)①设直线BC的函数解析式为y=kx+b,把B(3,0),C(0,3)分别代入得:,解得:k=﹣1,b=3,∴直线BC的解析式为y=﹣x+3,当x=1时,y=﹣1+3=2,∴E(1,2),当x=m时,y=﹣m+3,∴P(m,﹣m+3),令y=﹣x2+2x+3中x=1,得到y=4,∴D(1,4),当x=m时,y=﹣m2+2m+3,∴F(m,﹣m2+2m+3),∴线段DE=4﹣2=2,∵0<m<3,∴y F>y P,∴线段PF=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m,连接DF,由PF∥DE,得到当PF=DE时,四边形PEDF为平行四边形,由﹣m2+3m=2,得到m=2或m=1(不合题意,舍去),则当m=2时,四边形PEDF为平行四边形;②连接BF,设直线PF与x轴交于点M,由B(3,0),O(0,0),可得OB=OM+MB=3,∵S=S△BPF+S△CPF= PF•BM+PF•OM=PF(BM+OM)=PF•OB,∴S=×3(﹣m2+3m)=﹣m2+m(0<m<3),的则当m =时,S 取得最大值.10.(2019年河南中考原创卷B 卷)如图,一次函数y =-12x +2的图象分别交y 轴、x 轴于A 、B 两点,抛物线y =-x 2+bx +c 过A 、B 两点.(1)求该抛物线的解析式;(2)作垂直于x 轴的直线x =t,在第一象限内交直线AB 于M,交抛物线于N .当t 取何值时,MN 有最大值,最大值是多少?(3)在(2)的情况下,以A 、M 、N 、D 为顶点作平行四边形,求第四个顶点D 的坐标.【解析】解: (1)∵y =-12x +2的图象分别交y 轴、x 轴于A 、B 两点,∴A (0,2),B (4,0), 将A (0,2),B (4,0)代入抛物线y =-x 2+bx +c 中,得2,1640,c b c =⎧⎨-++=⎩ 解得7,22,b c ⎧=⎪⎨⎪=⎩∴该抛物线的解析式为y =-x 2+72x +2. (2)如图1,设MN 交x 轴于点E,图1则E(t,0),BE=4-t.∵tan∠ABO=OAOB=24=12,∴ME=BE·tan∠ABO=(4-t)×12=2-12t.又N点在抛物线上,且xN =t,∴yN=-t2+72t+2,NE=yN,∴MN=NE-ME=-t2+72t+2-122t⎛⎫-⎪⎝⎭=-t2+4t=-(t-2)2+4,∴当t=2时,MN有最大值,最大值为4.(3)由(2)可知,A(0,2),M(2,1),N(2,5).以A、M、N、D为顶点作平行四边形,D点的位置分三种情况,如图2所示.图2(i)当D在y轴上时,设D的坐标为(0,a),由AD=MN,得|a-2|=4,解得a1=6,a2=-2,所以D 1(0,6),D 2(0,-2), (ii )当D 不在y 轴上时,由图可知3D 为N D 1延长线与M D 2延长线的交点,易得N D 1的方程为y =-12x +6,M D 2的方程为y =32x -2, 由两方程联立解得3D (4,4),故所求的D 点坐标为(0,6),(0,-2)或(4,4).11.(2020年广东省初中学业水平考试数学模拟试题)如图,在平面直角坐标系中,已知抛物线220y ax bx a =++≠()与x 轴交于A (-1,0),B (3,0)两点,与y 轴交于点C .(1)求该抛物线的解析式;(2)如图①,若点D 是抛物线上一动点,设点D 的横坐标为m (0<m <3),连接CD ,BD ,BC ,AC ,当△BCD 的面积等于△AOC 面积的2倍时,求m 的值;(3)若点N 为抛物线对称轴上一点,请在图②中探究抛物线上是否存在点M ,使得以B ,C ,M ,N 为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点M 的坐标;若不存在,请说明理由.【答案】(1)224233y x x =-++(2)1或2(3)存在;M 1(2,2)M 2(-2,10-3)M 3(4,10-3) 【解析】【分析】 (1)将A 、B 两点坐标代入抛物线解析式求出a 、b 即可得到解析式;(2)过点D 作y 轴平行线交BC 于点E ,用m 表示出D 、E 的坐标,求出DE 线段的表达式,再利用面积关系建立方程求解;(3)根据平行四边形对角线互相平分,可知对角线上的两个点的中点相同,可用中点坐标公式建立方程求解,设N (1,n ),M (x,y ),分3种情况讨论即可.【详解】(1)把A (-1,0),B (3,0)代入22y ax bx =++中,得:209320a b a b -+=⎧⎨++=⎩解得:2343a b ⎧=-⎪⎪⎨⎪=⎪⎩∴抛物线解析式为224233y x x =-++ (2)过点D 作y 轴平行线交BC 于点E把0x =代入224233y x x =-++中,得:2y =, ∴C 点坐标是(0,2),又B (3,0)∴直线BC 的解析式为223y x =-+ ∵224,233⎛⎫-++ ⎪⎝⎭D m m m ∴2,23⎛⎫-+ ⎪⎝⎭E m m ∴2242(2)(2)333DE m m m =-++--+ 2223m m =-+ 由2BCD AOC S S =得:11222=⨯DE OB OA OC ∴212123212232m m -+⨯=⨯⨯⨯() 整理得:2320m m -+=解得 11m =,22m =∵0<m <3∴m 的值为1或2(3)存在点M 使得以B ,C ,M ,N 为顶点的四边形是平行四边形,设N (1,n ),M (x,y ),四边形CMNB 是平行四边形时,CN 、MB 为对角线, ∴103=22++x ∴x =−2,代入抛物线得()()22410222=333=-⨯-+⨯-+-y ∴M (-2,10-3); 四边形CNBM 时平行四边形时,CB 、MN 为对角线, ∴301=22++x , ∴x =2,代入抛物线得224222=233=-⨯+⨯+y ∴M (2,2); 四边形CNMB 时平行四边形时,CM 、BN 为对角线, ∴130=22++x , ∴x =4,代入抛物线得22410442=333=-⨯+⨯+-y ∴M (4,10-3); 综上所述:存在M 1(2,2)M 2(-2,10-3)M 3(4,10-3) 【点睛】本题考查二次函数的综合问题,包含待定系数法求解析式,面积问题和平行四边形存在性问题,属于中考常考类型题,需要掌握抛物线的图像与性质,特殊几何图形的性质,注意数形结合.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

72x =B(0,4) A(6,0)E FxyO二次函数与四边形综合压轴题专题汇编一.二次函数与四边形的形状例1.(浙江义乌市) 如图,抛物线223y x x =--与x 轴交A 、B 两点(A 点在B 点左侧),直线l 与抛物线交于A 、C 两点,其中C 点的横坐标为2.(1)求A 、B 两点的坐标及直线AC 的函数表达式; (2)P 是线段AC 上的一个动点,过P 点作y 轴的平 行线交抛物线于E 点,求线段PE 长度的最大值;(3)点G 是抛物线上的动点,在x 轴上是否存在点F ,使A 、C 、F 、G 这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F 点坐标;如果不存在,请说明理由.练习1.(河南省实验区) 23.如图,对称轴为直线72x =的抛物线经过点 A (6,0)和 B (0,4). (1)求抛物线解析式及顶点坐标;(2)设点E (x ,y )是抛物线上一动点,且位于第四象限,四边形OEAF是以OA 为对角线的平行四边形.求平行四边形OEAF 的面积S 与x 之间的函数关系式,并写出自变量x 的取值范围;①当平行四边形OEAF 的面积为24时,请判断平行四边形OEAF 是否为菱形?②是否存在点E ,使平行四边形OEAF 为正方形?若存在,求出点E的坐标;若不存在,请说明理由.A练习 2.(四川省德阳市)25.如图,已知与x 轴交于点(10)A ,和(50)B ,的抛物线1l 的顶点为(34)C ,,抛物线2l 与1l 关于x 轴对称,顶点为C '.(1)求抛物线2l 的函数关系式;(2)已知原点O ,定点(04)D ,,2l 上的点P 与1l 上的点P '始终关于x 轴对称,则当点P 运动到何处时,以点D O P P ',,,为顶点的四边形是平行四边形?(3)在2l 上是否存在点M ,使ABM △是以AB 为斜边且一个角为30的直角三角形?若存,求出点M 的坐标;若不存在,说明理由.练习3.(山西卷)如图,已知抛物线1C 与坐标轴的交点依次是(40)A -,,(20)B -,,(08)E ,. (1)求抛物线1C 关于原点对称的抛物线2C 的解析式; (2)设抛物线1C 的顶点为M ,抛物线2C 与x 轴分别交于C D ,两点(点C 在点D 的左侧),顶点为N ,四边形MDNA 的面积为S .若点A ,点D 同时以每秒1个单位的速度沿水平方向分别向右、向左运动;与此同时,点M ,点N 同时以每秒2个单位的速度沿坚直方向分别向下、向上运动,直到点A 与点D 重合为止.求出四边形MDNA 的面积S 与运动时间t 之间的关系式,并写出自变量t 的取值范围;(3)当t 为何值时,四边形MDNA 的面积S 有最大值,并求出此最大值;(4)在运动过程中,四边形MDNA 能否形成矩形?若能,求出此时t 的值;若不能,请说明理由.5-4- 3-2-1- 1 2 3 455 4 3 2 1 A EBC '1- O2l 1lx y二.二次函数与四边形的面积例1.(资阳市)25.如图10,已知抛物线P:y=ax2+bx+c(a≠0) 与x轴交于A、B两点(点A在x 轴的正半轴上),与y轴交于点C,矩形DEFG的一条边DE在线段AB上,顶点F、G分别在线段BC、AC上,抛物线P上部分点的横坐标对应的纵坐标如下:x …-3 -2 1 2 …y …-52-4 -520 …(1) 求A、B、C三点的坐标;(2) 若点D的坐标为(m,0),矩形DEFG的面积为S,求S与m的函数关系,并指出m的取值范围;(3) 当矩形DEFG的面积S取最大值时,连接DF并延长至点M,使FM=k·DF,若点M不在抛物线P上,求k的取值范围.练习1.(辽宁省十二市2007年第26题).如图,平面直角坐标系中有一直角梯形OMNH,点H的坐标为(-8,0),点N的坐标为(-6,-4).(1)画出直角梯形OMNH绕点O旋转180°的图形OABC,并写出顶点A,B,C的坐标(点M的对应点为A,点N的对应点为B,点H的对应点为C);(2)求出过A,B,C三点的抛物线的表达式;(3)截取CE=OF=AG=m,且E,F,G分别在线段CO,OA,AB上,求四边形BEFG的面积S与m之间的函数关系式,并写出自变量m的取值范围;面积S是否存在最小值?若存在,请求出这个最小值;若不存在,请说明理由;(4)在(3)的情况下,四边形BEFG是否存在邻边相等的情况,若存在,请直接写出此时m的值,并指出相等的邻边;若不存在,说明理由.图10练习3.(吉林课改卷)如图,正方形ABCD 的边长为2cm ,在对称中心O 处有一钉子.动点P ,Q 同时从点A 出发,点P 沿A B C →→方向以每秒2cm 的速度运动,到点C 停止,点Q 沿A D →方向以每秒1cm 的速度运动,到点D 停止.P ,Q 两点用一条可伸缩的细橡皮筋联结,设x 秒后橡皮筋扫过的面积为2cm y .(1)当01x ≤≤时,求y 与x 之间的函数关系式; (2)当橡皮筋刚好触及钉子时,求x 值;(3)当12x ≤≤时,求y 与x 之间的函数关系式,并写出橡皮筋从触及钉子到运动停止时POQ ∠的变化范围;(4)当02x ≤≤时,请在给出的直角坐标系中画出y 与x 之间的函数图象.练习4.(四川资阳卷)如图,已知抛物线l 1:y =x 2-4的图象与x 轴相交于A 、C 两点,B 是抛物线l 1上的动点(B 不与A 、C 重合),抛物线l 2与l 1关于x 轴对称,以AC 为对角线的平行四边形ABCD 的第四个顶点为D .(1) 求l 2的解析式;(2) 求证:点D 一定在l 2上;(3) □ABCD 能否为矩形?如果能为矩形,求这些矩形公共部分的面积(若只有一个矩形符合条件,则求此矩形的面积);如果不能为矩形,请说明理由. 注:计算结果不取近似值.B CPO D QA BPCO DQ Ay321 O1 2 x三.二次函数与四边形的动态探究例1.(荆门市)28. 如图1,在平面直角坐标系中,有一张矩形纸片OABC ,已知O (0,0),A (4,0),C (0,3),点P 是OA 边上的动点(与点O 、A 不重合).现将△PAB 沿PB 翻折,得到△PDB ;再在OC 边上选取适当的点E ,将△POE 沿PE 翻折,得到△PFE ,并使直线PD 、PF 重合.(1)设P (x ,0),E (0,y ),求y 关于x 的函数关系式,并求y 的最大值;(2)如图2,若翻折后点D 落在BC 边上,求过点P 、B 、E 的抛物线的函数关系式;(3)在(2)的情况下,在该抛物线上是否存在点Q ,使△PEQ 是以PE 为直角边的直角三角形?若不存在,说明理由;若存在,求出点Q 的坐标.例2.(2010年沈阳市第26题)、已知抛物线y =ax2+bx +c 与x 轴交于A 、B 两点,与y 轴交于点C ,其中点B 在x 轴的正半轴上,点C 在y 轴的正半轴上,线段OB 、OC 的长(OB <OC )是方程x 2-10x +16=0的两个根,且抛物线的对称轴是直线x =-2.(1)求A 、B 、C 三点的坐标; (2)求此抛物线的表达式;(3)连接AC 、BC ,若点E 是线段AB 上的一个动点(与点A 、点B 不重合),过点E 作EF ∥AC 交BC 于点F ,连接CE ,设AE 的长为m ,△CEF 的面积为S ,求S 与m 之间的函数关系式,并写出自变量m 的取值范围;(4)在(3)的基础上试说明S 是否存在最大值,若存在,请求出S的最大值,并求出此时点E 的坐标,判断此时△BCE 的形状;若不存在,请说明理由.图2OC A Bxy DPE F 图1FE PD y xBA C O例3..(湖南省郴州) 27.如图,矩形ABCD 中,AB =3,BC =4,将矩形ABCD 沿对角线A 平移,平移后的矩形为EFGH (A 、E 、C 、G 始终在同一条直线上),当点E 与C 重时停止移动.平移中EF 与BC 交于点N ,GH 与BC 的延长线交于点M ,EH 与DC 交于点P ,FG 与DC 的延长线交于点Q .设S 表示矩形PCMH 的面积,S '表示矩形NFQC 的面积.(1) S 与S '相等吗?请说明理由.(2)设AE =x ,写出S 和x 之间的函数关系式,并求出x 取何值时S 有最大值,最大值是多少? (3)如图11,连结BE ,当AE 为何值时,ABE ∆是等腰三角形.练习1.(07年河池市)如图12, 四边形OABC 为直角梯形,A (4,0),B (3,4),C (0,4). 点M 从O 出发以每秒2个单位长度的速度向A 运动;点N 从B 同时出发,以每秒1个单位长度的速度向C 运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N 作NP 垂直x 轴于点P ,连结AC 交NP 于Q ,连结MQ .(1)点 (填M 或N )能到达终点;(2)求△AQM 的面积S 与运动时间t 的函数关系式,并写出自 变量t 的取值范围,当t 为何值时,S 的值最大;(3)是否存在点M ,使得△AQM 为直角三角形?若存在,求出点M 的坐标,若不存在,说明理由.xN MQ PHGFEDCBA图11QPN M HGFED CBA图10图12练习2..(江西省) 25.实验与探究(1)在图1,2,3中,给出平行四边形ABCD 的顶点A B D ,,的坐标(如图所示),写出图1,2,3中的顶点C 的坐标,它们分别是(52),, , ;(2)在图4中,给出平行四边形ABCD 的顶点A B D ,,的坐标(如图所示),求出顶点C 的坐标(C 点坐标用含a b c d e f ,,,,,的代数式表示);归纳与发现(3)通过对图1,2,3,4的观察和顶点C 的坐标的探究,你会发现:无论平行四边形ABCD 处于直角坐标系中哪个位置,当其顶点坐标为()()()()A a b B c d C m n D e f ,,,,,,,(如图4)时,则四个顶点的横坐标a c m e ,,,之间的等量关系为 ;纵坐标b d n f ,,,之间的等量关系为 (不必证明);运用与推广(4)在同一直角坐标系中有抛物线2(53)y x c x c =---和三个点15192222G c c S c c ⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭,,,,(20)H c ,(其中0c >).问当c 为何值时,该抛物线上存在点P ,使得以G S H P ,,,为顶点的四边形是平行四边形?并求出所有符合条件的P 点坐标.x图1x图2x图3)x图4答案:一.二次函数与四边形的形状例1.解:(1)令y=0,解得11x =-或23x =∴A (-1,0)B (3,0);将C 点的横坐标x=2代入223y x x =--得y=-3,∴C (2,-3)∴直线AC 的函数解析式是y=-x-1 (2)设P 点的横坐标为x (-1≤x ≤2)则P 、E 的坐标分别为:P (x ,-x-1), E (2(,23)x x x --∵P 点在E 点的上方,PE=22(1)(23)2x x x x x -----=-++ ∴当12x =时,PE 的最大值=94(3)存在4个这样的点F ,分别是1234(1,0),(3,0),(4(4F F F F - 练习 1.解:(1)由抛物线的对称轴是72x =,可设解析式27(2y a x k =-+.把A 、B 两点坐标代入上式,得227(6)0,27(0) 4.2a k a k ⎧-+=⎪⎪⎨⎪-+=⎪⎩ 解之,得225,.36a k ==- 故抛物线解析式为22725(326y x =--,顶点为725(,).26- (2)∵点(,)E x y 在抛物线上,位于第四象限,且坐标适合22725(326y x =--,∴y<0,即 -y>0,-y 表示点E 到OA 的距离.∵OA 是OEAF 的对角线, ∴2172264()2522OAES SOA y y ==⨯⨯⋅=-=--+.因为抛物线与x 轴的两个交点是(1,0)的(6,0),所以,自变量x 的 取值范围是1<x <6. ①根据题意,当S = 24时,即274()25242x --+=.化简,得271().24x -=解之,得123, 4.x x == 故所求的点E 有两个,分别为E 1(3,-4),E 2(4,-4). 点E 1(3,-4)满足OE = AE ,所以OEAF 是菱形; 点E 2(4,-4)不满足OE = AE ,所以OEAF 不是菱形. ② 当OA ⊥EF ,且OA = EF 时,OEAF 是正方形,此时点E 的 坐标只能是(3,-3).而坐标为(3,-3)的点不在抛物线上,故不存在这样的点E5-4-3-2-1-12 3D554 32 1 ACEM BC '1-O 2l 1l xy使OEAF 为正方形.练习2.解:(1)由题意知点C '的坐标为(34)-,.设2l 的函数关系式为2(3)4y a x =--. 又点(10)A ,在抛物线2(3)4y a x =--上,2(13)40a ∴--=,解得1a =.∴抛物线2l 的函数关系式为2(3)4y x =--(或265y x x =-+).(2)P 与P '始终关于x 轴对称, PP '∴与y 轴平行.设点P 的横坐标为m ,则其纵坐标为265m m -+,4OD =,22654m m ∴-+=,即2652m m -+=±.当2652m m -+=时,解得36m =±.当2652m m -+=-时,解得32m =±.∴当点P 运动到(362)-,或(362)+,或(322)--,或(322)+-,时, P P OD ' ∥,以点D O P P ',,,为顶点的四边形是平行四边形.(3)满足条件的点M 不存在.理由如下:若存在满足条件的点M 在2l 上,则90AMB ∠=,30BAM ∠=(或30ABM ∠=),114222BM AB ∴==⨯=.过点M 作ME AB ⊥于点E ,可得30BME BAM ∠=∠=.112122EB BM ∴==⨯=,3EM =,4OE =. ∴点M 的坐标为(43)-,. 但是,当4x =时,246451624533y =-⨯+=-+=-≠-.∴不存在这样的点M 构成满足条件的直角三角形.练习3. [解] (1)点(40)A -,,点(20)B -,,点(08)E ,关于原点的对称点分别为(40)D ,,(20)C ,,(08)F -,. 设抛物线2C 的解析式是2(0)y ax bx c a =++≠,则16404208a b c a b c c ++=⎧⎪++=⎨⎪=-⎩,,.解得168a b c =-⎧⎪=⎨⎪=-⎩,,.所以所求抛物线的解析式是268y x x =-+-.(2)由(1)可计算得点(31)(31)M N --,,,. 过点N 作NH AD ⊥,垂足为H .当运动到时刻t 时,282AD OD t ==-,12NH t =+.根据中心对称的性质OA ODOM ON ==,,所以四边形MDNA是平行四边形.所以2ADN S S =△.所以,四边形MDNA 的面积2(82)(12)4148S t t t t =-+=-++. 因为运动至点A 与点D 重合为止,据题意可知04t <≤.所以,所求关系式是24148S t t =-++,t 的取值范围是04t <≤. (3)781444S t ⎛⎫=--+ ⎪⎝⎭,(04t <≤). 所以74t =时,S 有最大值814. 提示:也可用顶点坐标公式来求.(4)在运动过程中四边形MDNA 能形成矩形. 由(2)知四边形MDNA 是平行四边形,对角线是AD MN ,,所以当AD MN =时四边形MDNA 是矩形.所以OD ON =.所以2222OD ON OH NH ==+.所以22420t t +-=.解之得1222t t ==,(舍).所以在运动过程中四边形MDNA 可以形成矩形,此时2t =.[点评]本题以二次函数为背景,结合动态问题、存在性问题、最值问题,是一道较传统的压轴题,能力要求较高。

相关文档
最新文档