硅生产工艺
有机硅生产工艺流程

有机硅生产工艺流程
《有机硅生产工艺流程》
有机硅是一种具有高温稳定性、耐化学腐蚀性和优良的绝缘性能的化合物。
它在许多工业领域中都得到了广泛的应用,例如建材、化工、电子和医药等行业。
有机硅的生产工艺流程主要包括以下几个步骤。
1. 原料准备
有机硅的主要原料是氢氧化硅和有机氯化物,如氯甲烷、二氯甲烷等。
首先需要对原料进行精细的筛选和处理,确保原料的纯度和质量。
2. 合成硅醇
将氢氧化硅和有机氯化物在反应釜中进行反应,生成硅醇。
这一步是有机硅生产工艺中的关键步骤,反应条件需要严格控制,以确保合成硅醇的质量和产率。
3. 硅醇修饰
将合成的硅醇进行修饰处理,使其具有特定的化学结构和性能。
这一步骤通常涉及催化剂的加入和反应条件的调控,以达到预期的材料性能要求。
4. 分离纯化
对修饰后的硅醇进行分离纯化,去除其中的杂质和不纯物质。
这一步骤需要采用物理或化学方法,例如蒸馏、结晶、过滤等,以得到高纯度的有机硅产物。
5. 成品包装
将分离纯化后的有机硅产品进行包装,确保其质量和稳定性。
通常采用密封包装的方式,以防止外界杂质和水分的污染。
以上就是有机硅生产工艺流程的基本步骤,每一步都需要精准的操作和严格的质量控制,才能得到高品质的有机硅产品。
随着科学技术的不断进步,有机硅生产工艺也在不断改进和优化,以满足不同行业对有机硅产品的需求。
如何提炼硅

如何提炼硅&多晶硅生产工艺纯净的硅(Si)是从自然界中的石英矿石(主要成分二氧化硅)中提取出来的,分几步反应:1.二氧化硅和炭粉在高温条件下反应,生成粗硅:SiO2+2C==Si(粗)+2CO2.粗硅和氯气在高温条件下反应生成氯化硅:Si(粗)+2Cl2==SiCl43.氯化硅和氢气在高温条件下反应得到纯净硅:SiCl4+2H2==Si(纯)+4HCl以上是硅的工业制法,在实验室中可以用以下方法制得较纯的硅:1.将细砂粉(SiO2)和镁粉混合加热,制得粗硅:SiO2+2Mg==2MgO+Si(粗)2.这些粗硅中往往含有镁,氧化镁和硅化镁,这些杂质可以用盐酸除去:Mg+2HCl==MgCl2+H2MgO+2HCl==MgCl2+H2OMg2Si+4HCl==2MgCl2+SiH43.过滤,滤渣即为纯硅(一)国内外多晶硅生产的主要工艺技术1,改良西门子法——闭环式三氯氢硅氢还原法改良西门子法是用氯和氢合成氯化氢(或外购氯化氢),氯化氢和工业硅粉在一定的温度下合成三氯氢硅,然后对三氯氢硅进行分离精馏提纯,提纯后的三氯氢硅在氢还原炉内进行CVD反应生产高纯多晶硅。
国内外现有的多晶硅厂绝大部分采用此法生产电子级与太阳能级多晶硅。
2,硅烷法——硅烷热分解法硅烷(SiH4)是以四氯化硅氢化法、硅合金分解法、氢化物还原法、硅的直接氢化法等方法制取。
然后将制得的硅烷气提纯后在热分解炉生产纯度较高的棒状多晶硅。
以前只有日本小松掌握此技术,由于发生过严重的爆炸事故后,没有继续扩大生产。
但美国Asimi和SGS 公司仍采用硅烷气热分解生产纯度较高的电子级多晶硅产品。
3,流化床法以四氯化硅、氢气、氯化氢和工业硅为原料在流化床内(沸腾床)高温高压下生成三氯氢硅,将三氯氢硅再进一步歧化加氢反应生成二氯二氢硅,继而生成硅烷气。
制得的硅烷气通入加有小颗粒硅粉的流化床反应炉内进行连续热分解反应,生成粒状多晶硅产品。
因为在流化床反应炉内参与反应的硅表面积大,生产效率高,电耗低与成本低,适用于大规模生产太阳能级多晶硅。
多晶硅生产工艺流程(3篇)

第1篇一、引言多晶硅是光伏产业和半导体产业的重要原材料,广泛应用于太阳能电池、太阳能热利用、半导体器件等领域。
随着新能源产业的快速发展,对多晶硅的需求量日益增加。
本文将详细介绍多晶硅的生产工艺流程,旨在为相关企业和研究人员提供参考。
二、多晶硅生产工艺流程概述多晶硅的生产工艺流程主要包括以下几个阶段:原料处理、还原反应、熔融提纯、铸造、切割、清洗、包装等。
三、多晶硅生产工艺流程详解1. 原料处理多晶硅的生产原料主要是冶金级硅(Si),其含量在98%以上。
首先,将冶金级硅进行破碎、研磨等处理,使其达到一定的粒度要求。
2. 还原反应还原反应是多晶硅生产的关键环节,其主要目的是将冶金级硅中的杂质去除,得到高纯度的多晶硅。
还原反应分为以下几个步骤:(1)将处理后的冶金级硅加入还原炉中。
(2)在还原炉中通入还原剂,如碳、氢气等,与冶金级硅发生还原反应。
(3)在还原过程中,炉内温度保持在约1100℃左右,反应时间为几小时至几十小时。
(4)反应结束后,将还原炉内的物料进行冷却、破碎、研磨等处理。
3. 熔融提纯还原反应得到的粗多晶硅中仍含有一定的杂质,需要通过熔融提纯的方法进一步去除。
熔融提纯主要包括以下几个步骤:(1)将粗多晶硅加入熔融炉中。
(2)在熔融炉中通入提纯剂,如氢气、氯气等,与粗多晶硅发生反应,生成挥发性杂质。
(3)将挥发性杂质通过炉顶排气系统排出,实现提纯。
(4)提纯结束后,将熔融炉内的物料进行冷却、破碎、研磨等处理。
4. 铸造将提纯后的多晶硅熔体倒入铸造炉中,进行铸造。
铸造过程主要包括以下几个步骤:(1)将熔融的多晶硅倒入铸锭模具中。
(2)在铸锭模具中通入冷却水,使多晶硅迅速凝固。
(3)待多晶硅凝固后,将铸锭模具从熔融炉中取出,得到多晶硅铸锭。
5. 切割将多晶硅铸锭切割成所需尺寸的硅片。
切割过程主要包括以下几个步骤:(1)将多晶硅铸锭放置在切割机上。
(2)在切割机上安装切割刀片,将多晶硅铸锭切割成硅片。
有机硅生产工艺

有机硅生产工艺有机硅是一种具有特殊性能的化学物质,在许多工业领域都有广泛应用。
下面将介绍有机硅的一种常见的生产工艺。
有机硅的生产工艺主要包括硅烷法、聚合法和水解法。
硅烷法是一种常用的有机硅生产工艺。
该方法利用硅烷化合物作为原料,通过加热反应产生有机硅。
这种方法通常是在高温和高压条件下进行的。
具体步骤如下:首先,将硅烷原料与催化剂加入反应釜中,加热到一定温度,催化剂开始起作用。
然后,气相反应将硅烷分解为有机硅和氢气。
反应产生的氢气需要及时排放,以保证反应正常进行。
在反应结束后,通过冷却和分离等步骤,将有机硅从反应混合物中分离出来。
聚合法是另一种常用的有机硅生产工艺。
该方法利用环氧硅烷作为原料,通过聚合反应产生有机硅。
该方法通常在常温下进行,相对于硅烷法而言更为简单。
具体步骤如下:首先,将环氧硅烷原料与催化剂加入反应釜中,搅拌均匀。
然后,通过加热反应,环氧硅烷发生聚合反应生成有机硅。
反应结束后,通过冷却和分离等步骤,将有机硅从反应混合物中分离出来。
水解法是一种较为常见的有机硅生产工艺。
该方法利用硅氢化合物作为原料,通过与水反应产生有机硅。
该方法通常在常温下进行,反应简单易操作。
具体步骤如下:首先,将硅氢化合物原料与水混合加入反应釜中。
然后,通过酸催化反应,硅氢化合物与水发生水解反应生成有机硅。
反应结束后,通过分离和干燥等步骤,将有机硅从反应混合物中分离出来。
以上是有机硅的三种常见的生产工艺。
不同的工艺适用于不同的生产需求。
在实际生产中,根据产品的要求和工艺条件的控制,选择合适的生产工艺,可以有效地提高有机硅的生产效率和产品的质量。
总而言之,有机硅的生产工艺涉及硅烷法、聚合法和水解法等方法。
这些工艺在不同的条件下有不同的适用性。
通过合理选择和控制生产工艺,可以生产出高质量的有机硅产品。
有机硅生产工艺流程图

有机硅生产工艺流程图有机硅是一种化学合成材料,具有许多优良的特性,如优异的导电性、耐高温性和化学稳定性等。
它被广泛应用于电子、光电、光学、能源等领域。
下面将介绍有机硅的生产工艺流程。
有机硅的生产通常采用硅烷法和聚合法两种方法。
硅烷法是通过硅烷化合物与二氧化硅反应制备有机硅。
聚合法则是通过有机硅单体的聚合反应合成有机硅。
以下是一种常用的硅烷法生产有机硅的工艺流程图:1. 原料准备:工艺开始时,需要准备合适的原料,包括硅烷化合物和二氧化硅。
2. 硅烷化反应:将硅烷化合物与二氧化硅在反应釜中进行硅烷化反应。
这个反应过程需要控制适当的温度和反应时间,以促进硅烷化合物与二氧化硅的反应。
3. 硅烷化产物处理:硅烷化反应结束后,得到的硅烷化产物需要经过一系列的处理步骤,如过滤、洗涤、脱水等,以去除杂质和不溶性物质。
4. 合成有机硅:将经过处理的硅烷化产物与其他有机硅单体进行聚合反应。
这个过程需要控制适当的温度和反应时间,以获得高分子量和理想的分子结构。
5. 产品后处理:合成有机硅后,需要对产品进行后处理,包括洗涤、脱溶剂、干燥等。
这个过程旨在去除余留的溶剂和杂质,并使产品具有适当的形态和纯度。
6. 产品检测和质量控制:生产出的有机硅产品需要进行质量测试和检测,以确保其符合相关的标准和要求。
常见的检测指标包括分子量、化学成分、热性能等。
7. 包装和储存:经过质量检测合格的有机硅产品将被包装,并进行标签和储存,以便后续的销售和使用。
以上是有机硅生产的一种常见工艺流程,不同的生产厂家和产品可能会有一些差异。
在实际生产过程中,还需要根据具体的情况和要求进行工艺调整和优化,以提高产量和产品质量。
工业硅生产工艺流程

工业硅生产工艺流程简介硅石及炭质还原剂按一定的配比称量自动加到矿热炉内,将炉料加热到2000摄氏度以上,二氧化硅被炭质还原剂还原生成工业硅液体和一氧化碳(CO)气体,CO气体通过料层逸出。
在硅水包底部通入氧气、空气混合气体,以除去钙、铝等其他杂质。
通过电动包车将硅水包运到浇铸间浇铸成硅锭。
硅锭冷却后进行破碎、分级、称量、包装、入库得到成品硅块。
烟气经炉口烟罩进入烟道,经空冷器、风机进入布袋除尘器除尘等环保设施处理后,达到国家规定排放标准排放。
一、原材料及电力(一)硅石:储量丰富,但整体质量不高硅在地壳中资源极为丰富,仅次于氧,占地壳比重超四分之一,主要以二氧化硅或硅酸盐形式存在于岩石、砂砾、尘土之中。
其中,硅石的主要成分是二氧化硅,种类包括石英岩、石英砂岩、天然石英砂、脉石英等。
我国硅石矿资源丰富,保有矿石储量超过40亿吨,但整体质量不高。
石英岩、石英砂岩、天然石英砂岩是国内常见的硅石资源,三者占我国硅石矿资源的99.07%,而高品质的脉石英仅占我国石英矿资源的0.93%。
每生产1吨工业硅大约需要2.7-3吨硅石,大约占比成本10%左右。
国内工业硅使用的硅石矿主产地集中在新疆、云南、湖北、江西、广西等地。
其中湖北、江西硅石质量较高,云南硅石供应充足但质量较普通,新疆硅石供给在品位上则较为复杂。
在考虑经济成本的情况下,硅石品位的高低直接决定了产成品工业硅的品质,具体而言:纯净的硅(Si)是从自然界中的石英矿石(主要成分二氧化硅)中提取出来的,分几步反应:1.二氧化硅和炭粉在高温条件下反应,生成粗硅:SiO2+2C=Si(粗)+2CO2.粗硅和氯气在高温条件下反应生成氯化硅:Si(粗)+2Cl2=SiCl43.氯化硅和氢气在高温条件下反应得到纯净硅:SiCl4+2H2=Si(纯)+4HCl以上是硅的工业制法,在实验室中可以用以下方法制得较纯的硅:1.将细砂粉(SiO2)和镁粉混合加热,制得粗硅:SiO2+2Mg=2MgO+Si(粗)2.这些粗硅中往往含有镁,氧化镁和硅化镁,这些杂质可以用盐酸除去:Mg+2HCl=MgCl2+H2MgO+2HCl=MgCl2+H2OMg2Si+4HCl=2MgCl2+SiH4(二)太阳能级多晶硅新工艺技术(1)改良西门子法—闭环式三氯氢硅氢还原法改良西门子法是用氯和氢合成氯化氢(或外购氯化氢),氯化氢和工业硅粉在一定的温度下合成三氯氢硅,然后对三氯氢硅进行分离精馏提纯,提纯后的三氯氢硅在氢还原炉内进行CVD反应生产高纯多晶硅。
硅片生产流程

硅片生产流程
硅片是集成电路的基础材料,其生产过程经历了多道工序,包
括原料准备、硅棒制备、硅片切割、清洗和检测等环节。
下面将详
细介绍硅片的生产流程。
首先,原料准备是硅片生产的第一步。
硅片的主要原料是硅石,经过精炼和提纯后,制成高纯度的硅块。
这些硅块被熔炼成硅棒,
然后通过拉丝等工艺,将硅棒拉制成长而细的圆柱形。
这些硅棒将
成为后续制备硅片的原料。
其次,硅棒制备完成后,需要进行硅片的切割工序。
硅棒被切
割成薄片,这些薄片被称为晶圆。
晶圆的制备需要高精度的切割设备,确保切割出的晶圆表面平整,无裂纹和缺陷。
接下来,硅片需要进行清洗和表面处理。
在清洗工序中,硅片
表面的杂质和污垢会被去除,以确保硅片的纯净度。
而表面处理则
是为了增强硅片的性能,比如在硅片表面涂覆一层光敏胶,用于制
作集成电路的光刻工艺。
最后,硅片需要进行检测和质量控制。
通过各种仪器和设备的
检测,可以确保硅片的质量达到要求。
这些检测包括对硅片的尺寸、表面平整度、杂质含量等方面的检测,以确保硅片符合集成电路制
造的要求。
总的来说,硅片生产流程经历了原料准备、硅棒制备、硅片切割、清洗和检测等多道工序。
每个环节都需要高精度的设备和严格
的工艺控制,以确保最终生产出的硅片质量达到要求。
硅片作为集
成电路的基础材料,其生产流程的完善和质量的稳定对于整个电子
行业具有重要意义。
化学工业用金属硅的冶炼工艺

化学工业用金属硅的冶炼工艺化学用硅的工艺流程包括炉料准备,电炉熔炼,硅的精制和浇铸,除去熔渣夹杂而进行的破碎。
在炉料配制之前,所有原料都要进行必要的处理。
硅石在颚式破碎机中破碎到块度不大于100mm,筛出小于5mm的碎块,并用水冲洗洁净。
因为熔炉中碎块在炉膛上部熔融,从而降低了炉料的透气性,使生产过程难以进行。
石油焦有较高的导电系数,要破碎到块度不大于10mm,又要控制石油焦的粉末量。
因其在炉膛口上直接燃烧,会造成还原剂不足。
1.化学用硅生产中,烟煤完全可以取代木炭,如湖南株洲精洗烟煤,固定炭达77.19%,挥发分为19.4%,灰分含量3.41%,fe2o3含量0.22%,al2o3含量0.99%,cao含量0.17%。
经生产实践,采用此种烟煤冶炼化学用硅是可行的。
2.生产化学用硅用的木块和木片是用截材机和木片削片机加工的。
炉料中碳质还原剂主要以石油焦和烟煤为主,木块和木片的用量要视炉况来决定。
生产中不用木质,反而产品质量还更稳定。
炉料的配比根据要求所生产的产品级别来定。
石油焦和烟煤的配比按每批矿硅需要的碳量来确定。
石油焦和烟煤的比例对炉料的工作电阻影响较大。
炉料各组分经称量后,将炉料混合均匀,待捣炉后,将混合均匀的炉料集中加入炉内。
保持一定的料面高度,加料均匀。
3.化学硅生产是连续不断进行的。
炉内的状况也不是永恒不变的。
化学硅生产在电炉内是以电能转换成热能,然后再用热能直接加热物料而产生化学反应的过程。
所以炉内的电气特性是非常重要的,熔炼实行闭弧操作,保持高温炉,提高热效率,提高电炉利用率,在研究中使用容量为6300kVA和12500kVA金属硅炉各一台。
熔炼采用一定时间的焖烧和定期集中加料的操作方法进行。
正常情况下炉料难以自动下沉,一般需强制沉料。
炉况容易波动,较难控制。
因此,在生产中必须正确判断,及时处理。
每4小时出一次炉,进行精练浇铸,破碎挑渣整理入库。
4、电炉操作化学硅熔炼是在埋弧状态下进行的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多晶硅生产工艺学绪论一、硅材料的发展概况半导体材料是电子技术的基础,早在十九世纪末,人们就发现了半导体材料,而真正实用还是从二十世纪四十年代开始的,五十年代以后锗为主,由于锗晶体管大量生产、应用,促进了半导体工业的出现,到了六十年代,硅成为主要应用的半导体材料,到七十年代随着激光、发光、微波、红外技术的发展,一些化合物半导体和混晶半导体材料:如砷化镓、硫化镉、碳化硅、镓铝砷的应用有所发展。
一些非晶态半导休和有机半导休材料(如萘、蒽、以及金属衍生物等)在一定范围内也有其半导休特性,也开始得到了应用。
半导休材料硅的生产历史是比较年青的,约30年。
美国是从1949~1951年从事半导体硅的制取研究和生产的。
几年后其产量就翻了几翻,日本、西德、捷克斯洛伐克,丹麦等国家的生产量也相当可观的。
从多晶硅产量来看,就79年来说,美国产量1620~1670吨。
日本420~440吨。
西德700~800吨。
预计到85年美国的产量将达到2700吨、日本1040吨、西德瓦克化学电子有限公司的产量将达到3000吨。
我国多晶硅生产比较分散,真正生产由58年有色金属研究院开始研究,65年投入生产。
从产量来说是由少到多,到七七年产量仅达70~80吨,预计到85年达到300吨左右。
二、硅的应用半导体材料之所以被广泛利用的原因是:耐高压、硅器件体积小,效率高,寿命长,及可靠性好等优点,为此硅材料越来越多地应用在半导体器件上。
硅的用途:1、作电子整流器和可控硅整流器,用于电气铁道机床,电解食盐,有色金属电解、各种机床的控制部分、汽车等整流设备上,用以代替直流发电机组,水银整流器等设备。
2、硅二极管,用于电气测定仪器,电子计算机装置,微波通讯装置等。
3、晶体管及集成电路,用于各种无线电装置,自动电话交换台,自动控制系统,电视摄相机的接收机,计测仪器髟来代替真空管,在各种无线电设备作为放大器和振荡器。
4、太阳能电池,以单晶硅做成的太阳能电池,可以直接将太阳能转变为电能。
三、提高多晶硅质量的措施和途径:为了满足器件的要求,硅材料的质量好坏,直接关系到晶体管的合格率与电学性能,随着大规模集成电路和MOS集成电路的发展而获得电路的高可靠性,适应性。
因此对半导体材料硅的要求越来越高。
1、提高多晶硅产品质量的措施:在生产过程中,主要矛盾是如何稳定产品的质量问题,搞好工艺卫生是一项最重要的操作技术,在生产实践中要树立“超纯”观念,养成严格的工艺卫生操作习惯,注意操作者,操作环境及设备材料等方面夺产品的污染和影响,操作环境最好有洁净室。
洁净室一般分为三级,它是以0。
5U以上和5U以下的粒子在单位容积中的个数来分级的。
a 、100级,平均每单位体积(立方英尺)(1英尺=30。
48㎝)中以0。
5U以上大小粒子,不超过100个,5U以上的粒子全部没有。
b 、10000级:平均单位体积(立方英尺)中,0。
5U以上的大小粒子个数不超过10000个,5U以上的粒子在65个以小。
c 、100000级:平均单位体积中0。
5U以上的大小粒子不超过100000个,5U以上的粒子在700个以小。
2、提高原料纯度:决定产品质量的因素很多,其中原料,中间化合物如硅铁、液氯、氢气、三氯氢硅等的杂质的存在,对产品的质量好坏是起决定性的因素。
(原料纯度越高,在制备过程中尽量减少沾污,就能制得高质量的多品硅。
)因此,在制备过程中尽量减少杂质的沾污,提高原料有纯度。
3、强化精馏效果:在工业生产中,原料的提纯几乎成为提高产品纯度的唯一手段。
精馏法是化学提纯领域的重点,如何提高精馏效果和改进精馏设备,乃是精馏提纯的中心课题,近年来发展了加压精馏,固体吸附等化学提纯方法。
采用加压精馏右明显降低三氯氢硅中磷的含量、络合提纯效果明显,鉴于络合剂的提纯及经济效果尚未很好的解决,因此至今未能投入大规模生产之中。
在改进精馏设备方面,国内外也作了相当研究,为了强化汽、液传热、传质的效果,采用高效率的塔板结构如浮动塔板,柱孔式塔板的精馏塔等。
为了减少设备材质对产品的沾污,采用含钼低磷不锈钢塔内壁喷涂或内衬F4~6及氟塑料材质,最近我国以采用了耐腐蚀性能更好的镍基合金,来提高产品质量。
4、氢还原过程的改进及发展趋势:在三氯氢硅氢还原中,用优质多晶硅细棒作沉积硅的载体,这对提高多晶硅的质量有很重要的作用。
采用钯管或钯膜净化器获得高纯氢,除去其中的水和其它有害杂质,降低多晶硅中氧含量和其它杂质含量。
为了防止在还原过程中引进杂质而沾污产品,采用含钼低磷不锈钢或镍基合金不锈钢,或炉内设置石英钟罩来防止不锈钢对产品的沾污。
5、加强分析手段提高分析灵敏度:为了保证多晶桂的质量,就必须要保证原料的纯度,就得要加强化学、物理的分析检测,一般采用光普、极普、质普和气相色普等分析手段进行检测。
随着原料纯度的提高,分析检测的灵敏度也要相应地提高。
如何了解高纯物质的纯度呢?高纯物质的纯度常用主体物质占总物料的重量的百分数来表示。
如99。
999%的高纯三氯氢硅,就是每单位重量物质中占三氯氢硅99。
999%,在分析过程中,是从物料中取出小量的物料来测定其中的杂质含量,因此高纯物质的纯度可用下式来表示:纯度=试料重量-杂质的重量/试料重量×100%在分析中,同一物质硅中若要求分析的杂质越多,相对分析检出来的杂质元素越少,其纯度就越高。
表示纯度的方法形式不外乎下列几种:a 、重量百分含量:纯度=(体积×比重-杂质重量)/体积×比重×100%b 、ppm=10-4%=1/1000000(可以是重量比也可以是体积比)百万分之一。
c 、ppb=10-7%=1/1000000000(十亿万分之一)d、ppba是用杂质原子数与主体原子数的比来表示纯度的。
四、硅的物理化学性质;1、硅的物理性质:硅是周期表中的四族元素,在自然界中含量非常丰富,仅次于氧而居二位。
由于硅氧键很稳定,在自然界中硅无自由状态,主要以SiO2及硅酸盐的形式存在。
硅有结晶型和无定型两种,结晶硅是一种有灰色金属光泽的晶体,与金刚石具有类似的晶格,性质硬而脆,有微弱的导电性,属于半导体,硅的固有物理性质。
见表1表1 硅的物理性质2.硅的化学性质:硅一般呈四价状态,其正电性较金属低,在某些硅化合物中硅呈阴离子状态,硅的许多化合物及在许多化学反应中的行为与磷很相似。
硅极易与卤素化合,生成SiX4型的化合物,硅在红热温度下与氧反应生成SiO2,在1000℃以上与氮反应,生成氮化硅。
晶体硅的化学性质很不活泼,在常温下很稳定,不溶于所有的酸(包括氢氟酸在内)。
但能溶于HNO3~HF的混合溶液中。
其反应如下:Si+4HNO3→SiO2+4NO2↑+2H2OSiO2+6HF→H2SiF6+2H2O综合反应式为Si+4HNO3+6HF=H2SiF6+4NO2+4H2O硅和烧碱反应则生成偏硅酸钠和氢。
Si+2NaOH+H2O→Na2SiO3+2H2↑硅在高温下,化学活泼性大大增加。
硅和熔融的金属如Mg、Cu、Fe、N2等化合形成硅化物。
第一章气体的净化§1-1常用气体及气体净化的意义在半导体材料中,最常用的气体是氢气、氮气、氩气。
制备半导体材料生产过程中,材料的质量好坏,取决于气体净化的好坏,是一个重要的因素。
而硅材料生产中常常用气体作为载流气体及利用氢气做还原剂,不公需要的量大,而且对气体的纯度要求也越来越高,在多晶硅生产中一般要求气体的纯度在99。
999%以上。
其中含氧量要小于5ppm,水的露点要低于-50℃以下,(39ppm),硅外延生长对气体纯度的要求更高。
目前工业气体的纯度都有比较低,杂质含水量量较高,中很多工厂生产的氢气几乎都是用电解水的方法,其纯正度一般只有98%,还有2%的杂质如水、氧、二氧化碳、一氧化碳等杂质。
这些杂质的存在对多、单晶硅及外延影响很大,某些分析证明,氢气中含氧大于20ppm,水的露点大于-30℃时,在硅棒的生长方向(径向)上生成了数量不等的分层结构,即多晶硅夹层现象,严重者用肉眼可以直接从硅棒的横断面上看到一圈一圈的象树木生长“年轮”一样的明显图像,这些夹层的存在对单晶硅的生长带来大的影响,在真空条件下生长单晶硅时,会造成熔融硅从熔区(或坩埚)中溅出,轻者有“火焰”一样往外冒花(即所谓的“放花”现象),严重者会崩坏加热线圈(或加热器和石英坩埚),甚至造成生产无法进行下去(这些现象称为硅跳现象),而一般常见现象为熔区表面(或熔体表面)浮渣很多,致使多次引晶不成等等。
对硅外延层的影响,当氢气中含氧量为75ppm时,生长出质地低劣的多坑外延层。
而氢中含水量在100ppm时(即露点-42℃),将使外延层生长多晶材料。
氢中含有CO2、CO时使衬底氧化,硅在氧化的衬底上沉积生长成多晶硅。
在硅材料生产中,常用氮气和氩气作保护气体或载流气体。
其工业气体的纯度比较低,这些气体中的的杂质存在,同样会造成硅材料的氧化。
由上所述,气体的净化对于提高半导体材料的质量是有着十分重要的意义的。
§1-2常用气体的种类及简单性质一、气体的种类及简单性质在半导体工业中,常用的气体有氢气、氮气、氩气等。
其简单性质见表2表2 几种常用气体的简单性质*空气的冷凝温度**组成相同的液态空气的沸点常用气体中,氢气是最常用的气体之一。
在自然界中,主要以化合物状态存在,是一种无色无嗅的气体,在元素周期表中排第一位,比一切元素轻,能被金属吸收,透过炽热的铁、铂等。
在240℃时能透过钯,常温下能透过带孔和橡皮而放出,还能透过过玻璃;在镍、钯和铂内溶解度大,一个体积的钯能溶解几百体积的氢气,具有较大的扩散速度和很高的导热性。
氢气能自然,但不助燃,在高温时能燃烧,易爆炸,遇火或700℃高温时产生爆炸,产生大量的热。
二、氢气的制备制取氢气的方法较多,一般用电解水和电解食盐水来制得氢气,用此两种方法所得的氢气其杂质含量各不相同。
详见表3、表4。
表3 电解水制得的氢中杂质含量表4 电解食盐水制得的氢中杂质含量从3、4表看出电解水水制得的氢其杂质含量少。
三、气瓶的存放及安全使用1、气瓶标记:为了安全的使用和更快的识别气体,对于不同的气体,所用气瓶的类型及瓶的输气管道的标记也不同。
其规定如表5。
表5 几种气体的气瓶类型及气瓶管道标记2、气瓶的存放及安全使用对于装有相互接触时能够引起燃烧或爆炸的气体(如氢、氧气瓶),必须分别存放在单独房间内;严禁在存放气瓶附近处堆放易燃物及使用明火,在夏季时,不应将气瓶放在日光下曝晒。
室内温度不宜太高,应定时的排风。
在堆放气瓶时不应有大的振动。
使用气瓶之前,必须装好氢气表(或氧气表),使气体通过表而输送到使用地方;气瓶嘴上不应沾染油脂;在开关气瓶时人应站在氢气表的侧面,瓶内气体不应用完,乖余气体的压力应保持在0.5~5Kg/cm2。