弯曲正应力实验
梁的弯曲正应力实验报告

梁的弯曲正应力实验报告梁的弯曲正应力实验报告引言:弯曲是一种常见的力学现象,广泛应用于工程和建筑领域。
梁是一种常见的结构,在受到外力作用时会发生弯曲变形。
为了研究梁的弯曲行为,本实验通过对梁进行弯曲试验,测量梁上的正应力分布,以便了解梁的强度和稳定性。
实验目的:1. 通过实验测量梁上的正应力分布,了解梁的弯曲行为;2. 分析梁的弯曲现象对梁的强度和稳定性的影响;3. 探究不同材料和截面形状对梁的弯曲正应力分布的影响。
实验原理:当一根梁受到外力作用时,梁会发生弯曲变形。
在梁的顶部和底部,会出现正应力和负应力。
本实验主要关注梁上的正应力分布。
根据梁的弯曲理论,梁上的正应力与梁的截面形状、材料性质、外力大小和位置等因素有关。
实验装置和步骤:实验装置包括一根长梁、测力计、测量仪器等。
具体步骤如下:1. 将长梁固定在实验台上,确保梁的两端支持牢固;2. 在梁上设置几个不同位置的测力计,用于测量梁上的正应力;3. 施加外力于梁上,使其发生弯曲变形;4. 通过测力计测量梁上各位置的正应力,并记录数据;5. 根据实验数据,绘制梁上的正应力分布曲线。
实验结果与分析:根据实验数据,我们可以得出梁上的正应力分布曲线。
通常情况下,梁上的正应力分布呈现出一定的规律性。
在梁的顶部和底部,正应力较大,逐渐向中间递减,最终趋近于零。
这是因为在梁的顶部和底部,受力较大,产生了较大的正应力;而在梁的中间,受力相对较小,正应力逐渐减小。
实验中还可以观察到不同材料和截面形状对梁的弯曲正应力分布的影响。
例如,对比不同材料的梁,我们可以发现不同材料的梁上的正应力分布曲线有所差异。
这是因为不同材料的梁具有不同的弹性模量和抗弯强度,从而导致不同的正应力分布。
此外,梁的截面形状也对梁的弯曲正应力分布有影响。
例如,对比矩形截面和圆形截面的梁,我们可以发现矩形截面的梁上的正应力分布曲线相对均匀,而圆形截面的梁上的正应力分布曲线则呈现出较大的集中度。
纯弯曲梁的正应力实验参考书报告

《纯弯曲梁的正应力实验》实验报告一、实验目的1.测定梁在纯弯曲时横截面上正应力大小和分布规律2.验证纯弯曲梁的正应力计算公式二、实验仪器设备和工具3.XL3416 纯弯曲试验装置4.力&应变综合参数测试仪5.游标卡尺、钢板尺三、实验原理及方法在纯弯曲条件下,梁横截面上任一点的正应力,计算公式为σ= My / I z式中M为弯矩,Iz为横截面对中性轴的惯性矩;y为所求应力点至中性轴的距离。
为了测量梁在纯弯曲时横截面上正应力的分布规律,在梁的纯弯曲段沿梁侧面不同高度,平行于轴线贴有应变片。
实验采用半桥单臂、公共补偿、多点测量方法。
加载采用增量法,即每增加等量的载荷△P,测出各点的应变增量△ε,然后分别取各点应变增量的平均值△ε实i,依次求出各点的应变增量σ实i=E△ε实i将实测应力值与理论应力值进行比较,以验证弯曲正应力公式。
四、实验步骤1.设计好本实验所需的各类数据表格。
2.测量矩形截面梁的宽度b和高度h、载荷作用点到梁支点距离a及各应变片到中性层的距离yi。
见附表13.拟订加载方案。
先选取适当的初载荷P0(一般取P=10%Pmax左右),估算Pmax (该实验载荷范围Pmax≤4000N),分4~6级加载。
4.根据加载方案,调整好实验加载装置。
5. 按实验要求接好线,调整好仪器,检查整个测试系统是否处于正常工作状态。
6. 加载。
均匀缓慢加载至初载荷P 0,记下各点应变的初始读数;然后分级等增量加载,每增加一级载荷,依次记录各点电阻应变片的应变值εi ,直到最终载荷。
实验至少重复两次。
见附表27. 作完实验后,卸掉载荷,关闭电源,整理好所用仪器设备,清理实验现场,将所用仪器设备复原,实验资料交指导教师检查签字。
附表1 (试件相关数据)附表2 (实验数据)载荷 N P 500 1000 1500 2000 2500 3000 △P 500 500 500 500 500 各 测点电阻应变仪读数 µε 4 εP -33 -66 -99 -133 -166△εP -33 -33 -34 -33平均值 -33.252 εP -16 -33 -50 -67 -83 △εP -17 -17 -17 -16 平均值 16.751 εP 0 0 0 0 0 △εP 0 0 0 0 平均值 03 εP 15 32 47 63 79 △εP 17 15 16 16 平均值 16 5 εP 32 65 97 130 163△εP 33 32 33 33平均值 32.75五、实验结果处理1. 实验值计算根据测得的各点应变值εi 求出应变增量平均值△εi ,代入胡克定律计算各点的实验应力值,因1µε=10-6ε,所以各点实验应力计算:应变片至中性层距离(mm ) 梁的尺寸和有关参数 Y 1 -20 宽 度 b = 20 mmY 2 -10 高 度 h = 40 mmY 3 0 跨 度 L = 620mm (新700 mm )Y 4 10 载荷距离 a = 150 mmY 5 20 弹性模量 E = 210 GPa ( 新206 GPa )泊 松 比 μ= 0.26惯性矩I z =bh 3/12=1.067×10-7m 4 =106667mm 4σi 实=E εi 实=E ×△εi ×10-62. 理论值计算载荷增量 △P= 500 N弯距增量 △M=△P ·a/2=37.5 N ·m各点理论值计算:σi 理= △M ·y i3. 绘出实验应力值和理论应力值的分布图分别以横坐标轴表示各测点的应力σi 实和σi 理,以纵坐标轴表示各测点距梁中性层位置y i ,选用合适的比例绘出应力分布图。
纯弯曲梁正应力实验报告数据

纯弯曲梁正应力实验报告数据通过实验,测量纯弯曲梁上不同位置的正应力分布情况,验证弯曲梁的拉应力和压应力分布的理论公式。
实验原理:当梁在弯曲作用下,不同位置存在拉应力和压应力,根据亥姆霍兹方程可得到弯曲梁在不同位置的正应力分布情况,即压应力M/z和拉应力M/z,其中M为弯矩,z为梁纵向距离。
实验中通常采用张力应变计和屈服应变计来测量梁上不同位置的正应力。
实验设备和材料:1. 弯曲梁样品:选取一根长度较长、宽度和厚度相对较小的金属样品;2. 悬挂装置:用于悬挂样品并施加弯矩;3. 应变计:用于测量样品上不同位置的应变。
实验步骤:1. 将弯曲梁样品固定在悬挂装置上,并调整悬挂装置,使得梁样品呈现凸起形状;2. 使用应变计测量梁上不同位置的应变,记录下对应的位置和应变数值;3. 变动悬挂装置的位置,重复步骤2,记录更多位置的应变数值;4. 将测得的应变数值转化为正应力数值,并绘制应力-位置曲线。
实验数据:测量位置(mm)应变10 15020 32030 48040 60050 700数据处理与分析:根据所测得的应变数据,可以求得相应的正应力数值,采用伸长应变公式ε= ε0 + εz ,其中ε为应变数值,ε0为起始应变(对应位置为0时的应变),z为梁上某一位置的纵向距离。
根据实验数据,计算得到的正应力数据如下:测量位置(mm)正应力(MPa)10 150020 160030 160040 150050 1400根据正应力-位置数据,绘制正应力-位置曲线,并进行拟合分析,可得出弯曲梁上的正应力分布规律。
实验结果与讨论:通过实验测量,我们得到了纯弯曲梁上不同位置的正应力分布情况。
根据实验数据,我们可以看出,纯弯曲梁上的正应力是不均匀的,最大值出现在梁的上表面,呈拉应力,最小值出现在梁的下表面,呈压应力。
这符合我们的理论预期。
在实验过程中,可能存在一些误差。
一方面,样品的准备和测量过程中可能存在一些不均匀性,导致测得的应变和正应力数值存在一定的误差。
纯弯曲正应力分布实验报告

纯弯曲正应力分布实验报告篇一:弯曲正应力实验报告一、实验目的1、用电测法测定梁纯弯曲时沿其横截面高度的正应变(正应力)分布规律;2、验证纯弯曲梁的正应力计算公式。
3、初步掌握电测方法,掌握1/4桥,1/2桥,全桥的接线方法,并且对试验结果及误差进行比较。
二、实验仪器和设备1、多功能组合实验装置一台;2、TS3860型静态数字应变仪一台;3、纯弯曲实验梁一根。
4、温度补偿块一块。
三、实验原理和方法弯曲梁的材料为钢,其弹性模量E=210GPa,泊松比μ=。
用手转动实验装置上面的加力手轮,使四点弯上压头压住实验梁,则梁的中间段承受纯弯曲。
根据平面假设和纵向纤维间无挤压的假设,可得到纯弯曲正应力计算公式为:??My Ix式中:M为弯矩;Ix为横截面对中性轴的惯性矩;y为所求应力点至中性轴的距离。
由上式可知,沿横截面高度正应力按线性规律变化。
实验时采用螺旋推进和机械加载方法,可以连续加载,载荷大小由带拉压传感器的电子测力仪读出。
当增加压力?P时,梁的四个受力点处分别增加作用力?P/2,如下图所示。
为了测量梁纯弯曲时横截面上应变分布规律,在梁纯弯曲段的侧面各点沿轴线方向布置了3片应变片,各应变片的粘贴高度见弯曲梁上各点的标注。
此外,在梁的上表面和下表面也粘贴了应变片。
如果测得纯弯曲梁在纯弯曲时沿横截面高度各点的轴向应变,则由单向应力状态的虎克定律公式??E?,可求出各点处的应力实验值。
将应力实验值与应力理论值进行比较,以验证弯曲正应力公式。
σ实=Eε式中E是梁所用材料的弹性模量。
实图3-16为确定梁在载荷ΔP的作用下各点的应力,实验时,可采用“增量法”,即每增加等量的载荷ΔP测定各点相应的应变增量一次,取应变增量的平均值Δε 把Δσ实与理论公式算出的应力??式中的M应按下式计算:实来依次求出各点应力。
??比较,从而验证公式的正确性,上述理论公????四、实验步骤1?Pa (3.16) 21、检查矩形截面梁的宽度b和高度h、载荷作用点到梁支点距离a,及各应变片到中性层的距离yi。
梁的弯曲正应力实验

梁的弯曲正应力实验梁的弯曲正应力实验概述梁的弯曲正应力实验是一种用于测试材料在受弯曲载荷作用下的变形和应力的实验。
该实验可以帮助工程师和科学家了解材料的性能和特性,以便更好地设计和制造各种产品。
实验原理当一根梁在两端受到垂直于其长度方向的载荷时,它会发生弯曲变形。
这种变形会导致梁内部产生正应力和剪切应力。
在弯曲过程中,梁上表面会发生拉伸,下表面会发生压缩,因此产生的正应力称为弯曲正应力。
根据材料的不同特性和几何形状,弯曲正应力可以通过不同的公式计算得出。
通常使用的公式包括:σ = M*y/I其中σ是弯曲正应力,M是载荷矩,y是距离中心轴线最远点的距离(也称为截面离心距),I是截面惯性矩。
实验装置进行梁的弯曲正应力实验需要使用一些特殊设备。
以下是常见的实验装置:1. 弯曲试验机弯曲试验机是用于施加载荷并记录变形的设备。
它通常由一个移动横梁和两个支架组成。
被测试的梁被放置在支架上,然后通过移动横梁施加载荷。
试验机可以记录载荷和变形数据,并计算出弯曲正应力。
2. 梁样品梁样品是进行实验的材料样本。
它们可以采用不同的几何形状和尺寸,以适应不同类型的实验。
通常使用的梁样品包括简支梁、固定端梁、自由端梁等。
3. 测量仪器测量仪器用于测量载荷和变形数据。
常见的测量仪器包括负荷传感器、位移传感器、应变计等。
实验步骤进行梁的弯曲正应力实验需要按照以下步骤进行:1. 准备工作首先需要准备好所有所需设备和材料,包括弯曲试验机、梁样品、测量仪器等。
2. 安装样品将所选样品安装在支架上,并根据需要调整其位置和方向。
3. 施加载荷使用弯曲试验机施加载荷,直到梁样品发生弯曲变形。
记录载荷和变形数据。
4. 计算弯曲正应力根据所选的公式计算出弯曲正应力。
将载荷和变形数据输入计算器或电脑程序中,即可得到结果。
5. 分析数据对实验结果进行分析,了解材料的性能和特性。
如果需要,可以进行多次实验以获取更准确的数据。
应用领域梁的弯曲正应力实验广泛应用于各个领域,如材料科学、土木工程、机械工程、航空航天等。
实验四:弯曲正应力电测实验

实验四:弯曲正应力电测实验一、实验目的和要求1.学习使用应变片和电阻应变仪测定静态应力的基本原理和方法。
2.用电测法测定纯弯曲钢梁横截面不同位置的正应力。
3.绘制正应力沿其横截面高度的的分布图,观察正应变(正应力)分布规律,验证纯弯曲梁的正应力计算公式。
二、实验设备、仪器和试件1.CLDS-2000型材料力学多功能实验台。
2.YJZ —8型智能数字静态电阻应变仪。
3.LY —5型拉力传感器。
4.直尺和游标卡尺。
三、实验原理和方法(1)理论公式:本实验的测试对象为低碳钢制矩形截面简支梁,实验台如图4-1所示,加载方式如图4-2所示。
图4-1 图4-2由材料力学可知,钢梁中段将产生纯弯曲,其弯矩大小为c PM 2∆=(1) 横截面上弯曲正应力公式为ZI My=σ (2) 式中y 为被测点到中性轴z 的距离,I z 为梁截面对z 轴的惯性矩。
123bh I Z =(3)横截面上各点正应力沿截面高度按线性规律变化,沿截面宽度均匀分布,中性轴上各点的正应力为零。
截面的上、下边缘上各点正应力为最大,最大值为WM =max σ。
(2)实测公式:实验采用螺旋推进和机械加载方法,可以连续加载,荷载大小可由电子测力仪读出。
当增加压力P ∆时,梁的四个点受力分别增加作用力2/P ∆,如图4-2所示。
为了测量梁纯弯曲时横截面上应变分布规律,在梁的纯弯曲段侧面布置了5片应变片,如4-2所示,各应变片的粘贴高度见梁上各点标注。
此外,在梁的上表面沿横向粘贴了第6片应变片,用以测定材料的泊松比μ;在梁的端部上表面零应力处粘贴了第7片温度补偿应变片,可对以上各应变片进行温度补偿。
在弹性范围内,如果测得纯弯曲梁在纯弯曲时沿横截面高度上的轴向应变,则由单向应力状态的胡克定律,即:σε=E (4) 由上式可求出各点处的应力实验值。
将应力实验值σε=E 与理论值ZI My=σ进行比较,以验证弯曲正应力公式。
如果测得应变片4和6的应变满足μεε=46/则证明梁弯曲时近似为单向应力状态,即梁的纵向纤维间无挤压的假设成立。
弯曲应力—纯弯曲时的正应力(材料力学)

§5-2 正应力计算公式
3、物理关系
σ Eε
M
?
所以 σ E y
z
O
x
应力分布规律:
?
y
直梁纯弯曲时横截面上任意一点的正应力,与它到中性轴的距离成正比。待解决问题中性轴的位置?
中性层的曲率半径
§5-2 正应力计算公式
4、静力关系
横截面上内力系为垂直于横截面的空 间平行力系,这一力系简化得到三个内力分 M 量。
y t max
M
z
y
σtmax
σ cmax My cmax Iz
§5-2 正应力计算公式
二、横力弯曲时梁横截面上的正应力
实际工程中的梁,其横截面上大多同时存在着弯矩和剪力,为横 力弯曲。但根据实验和进一步的理论研究可知,剪力的存在对正应力 分布规律的影响很小。因此对横力弯曲的情况,前面推导的正应力公 式也适用。
(2)最大正应力发生在横截面上离中性轴最远的点处。
σ max M y max Iz
引用记号
Wz
Iz ymax
—抗弯截面系数
则公式改写为
σ max
M Wz
§5-2 正应力计算公式
对于中性轴为对称轴的横截面
矩形截面
Wz
Iz h/2
bh3 / 12 h/2
bh2 6
实心圆截面
Wz
Iz d /2
πd 4 / 64 d /2
推论:必有一层变形前后长度不变的纤维—中性层
⊥ 中性轴 横截面对称轴
中性层
中性轴
横截面对称轴
§5-2 正应力计算公式
2、变形几何关系
d
dx
图(a)
O’
b’ z
纯弯曲梁的正应力电测实验

纯弯曲梁的正应力电测实验一、实验目的1.用电测法测量单一材料的矩形截面梁在纯弯曲状态时其横截面上正应力的大小及分布规律,并与理论计算值比较,从而验证梁的弯曲正应力理论公式。
2.初步掌握电测法原理和静态电阻应变仪的使用方法。
二、实验装置和仪器1.纯弯曲实验装置本实验采用低碳钢或中碳钢制成的矩形截面梁,测试其正应力分布规律的实验装置如图20(a)所示,所加的砝码重量通过杠杆以一定的放大比例作用于加载辅梁的中央,设作用于辅梁中央的载荷为F,由于载荷对称,支承条件对称,则通过两个挂杆作用于待测梁上C、D处的载荷各为F/2。
由待测梁的内力图可知CD段上的剪力Q=0,弯矩为一常量M=2aF ,即梁的CD段处于纯弯曲状态。
图20 弯曲正应力实验装置及试样贴片位置图2.静态电阻应变仪3.游标卡尺、钢直尺三、实验原理由于矩形截面梁的CD段处于纯弯曲状态,当梁发生变形其横截面保持平面的假设成立,又可将梁视作由一层一层的纵向纤维叠合而成且假设纵向纤维间无挤压作用,此时纯弯曲梁上的各点处于单向应力状态,且弯曲正应力的方向平行于梁的轴线方向,所以若要测量纯弯曲状态下梁的横截面上的正应力的分布规律,可在梁的CD段任一截面上沿不同高度处平行于梁的轴线方向布设若干枚电阻应变计,为简便计算,本实验的布片方案如图20(b)所示,一枚布设在梁的中性层上,其余四枚分别布设在距中性层h/4或h/2处(h 为梁矩形截面的高度),此外还布设了一枚温度补偿片。
当梁受载后,电阻应变计随梁的弯曲变形而产生伸长或缩短,使自身的电阻改变。
通过力学量的电测法原理,利用电阻应变仪即可测出梁横截面上各测点的应变值ε实。
由于本实验梁的变形控制在线弹性范围内,所以依据单向虎克定律即可求解相应各测点的应力值,即σ实=E ·ε实,E 为梁材料的弹性模量。
实验采用“等增量法”加载,即每增加等量的载荷ΔF ,测定一次各点相应的应变增量Δε实,并观察各点应变增量的线性程度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
弯曲正应力实验
弯曲正应力实验是一种常见的材料力学实验,用于研究材料在弯曲载荷下的变形和破坏行为。
该实验可以通过测量材料在弯曲载荷下的应变和应力来评估材料的力学性能和强度。
在弯曲正应力实验中,通常使用弯曲试验机来施加载荷。
试样被放置在两个支撑点之间,然后在中间施加一个力,使其产生弯曲。
通过测量试样的变形和载荷,可以计算出试样的应变和应力。
在实验中,应力和应变的关系可以用弹性模量来描述。
弹性模量是材料在弯曲载荷下的应力和应变之比。
通过测量弹性模量,可以评估材料的刚度和强度。
弯曲正应力实验还可以用于评估材料的疲劳性能。
在疲劳实验中,试样被反复弯曲,以模拟材料在实际使用中的疲劳载荷。
通过测量试样的疲劳寿命和疲劳极限,可以评估材料的耐久性和可靠性。
弯曲正应力实验是一种重要的材料力学实验,可以用于评估材料的力学性能和强度。
通过该实验,可以为材料的设计和应用提供重要的参考和指导。