初中数学因式分解练习题(精选40道)

合集下载

初三因式分解题20道

初三因式分解题20道

20 道初三因式分解题题目一:x² - 9解析:这是平方差公式的形式,x² - 9 = (x + 3)(x - 3)。

题目二:4x² - 25解析:同样是平方差公式,4x² - 25 = (2x + 5)(2x - 5)。

题目三:x² - 4x + 4解析:完全平方公式,x² - 4x + 4 = (x - 2)²。

题目四:9x² + 6x + 1解析:完全平方公式,9x² + 6x + 1 = (3x + 1)²。

题目五:x² + 5x + 6解析:采用十字相乘法,x² + 5x + 6 = (x + 2)(x + 3)。

题目六:x² - 7x + 12解析:十字相乘法,x² - 7x + 12 = (x - 3)(x - 4)。

题目七:2x² - 5x - 3解析:十字相乘法,2x² - 5x - 3 = (2x + 1)(x - 3)。

题目八:3x² + 4x - 4解析:十字相乘法,3x² + 4x - 4 = (3x - 2)(x + 2)。

题目九:x³ - 27解析:立方差公式,x³ - 27 = (x - 3)(x² + 3x + 9)。

题目十:8x³ + 27解析:立方和公式,8x³ + 27 = (2x + 3)(4x² - 6x + 9)。

题目十一:x² - 6x + 9 - y²解析:先将前三项用完全平方公式变形为(x - 3)²,再用平方差公式,(x - 3)² - y² = (x - 3 + y)(x - 3 - y)。

题目十二:4x² - 12xy + 9y²解析:完全平方公式,4x² - 12xy + 9y² = (2x - 3y)²。

初三数学因式分解50题

初三数学因式分解50题

初三数学因式分解50题初三数学因式分解是一个非常重要的数学知识点,它是代数运算中的基础内容。

因式分解是将一个多项式表示为若干个不可约的因式的乘积的过程。

因式分解的题目可以涉及到一元二次方程、一元三次方程、多项式等内容。

下面我将为你列举50个初三数学因式分解的题目,并给出详细的解答。

1. 因式分解 2x^2 + 7x + 3。

2. 因式分解 3x^2 12x.3. 因式分解 4x^2 9。

4. 因式分解 x^2 5x + 6。

5. 因式分解 2x^2 11x + 5。

6. 因式分解 3x^2 + 2x 8。

7. 因式分解 4x^2 4x 3。

8. 因式分解 5x^2 12x + 7。

9. 因式分解 6x^2 + 7x 3。

10. 因式分解 x^2 9。

11. 因式分解 2x^2 8x + 8。

12. 因式分解 3x^2 5x 2。

13. 因式分解 4x^2 + 12x + 9。

14. 因式分解 5x^2 3x 2。

15. 因式分解 6x^2 + 5x 6。

16. 因式分解 x^2 4。

17. 因式分解 2x^2 7x + 3。

18. 因式分解 3x^2 + 6x + 3。

19. 因式分解 4x^2 16。

20. 因式分解 5x^2 11x + 6。

21. 因式分解 6x^2 13x + 6。

22. 因式分解 x^2 6x + 9。

23. 因式分解 2x^2 9x + 4。

24. 因式分解 3x^2 10x + 7。

25. 因式分解 4x^2 5x 6。

26. 因式分解 5x^2 + 8x + 3。

27. 因式分解 6x^2 7x 3。

28. 因式分解 x^2 7x + 10。

29. 因式分解 2x^2 3x 2。

30. 因式分解 3x^2 12x + 12。

31. 因式分解 4x^2 9x 5。

32. 因式分解 5x^2 + 2x 3。

33. 因式分解 6x^2 5x 6。

34. 因式分解 x^2 8x + 15。

三十道因式分解练习题

三十道因式分解练习题

三十道因式分解练习题一、提取公因式类1. 因式分解:$6x^2 + 9x$2. 因式分解:$8a^3 12a^2$3. 因式分解:$15xy 20xz$4. 因式分解:$21m^2n 35mn^2$5. 因式分解:$4ab^2 + 6a^2b$二、公式法类6. 因式分解:$x^2 9$7. 因式分解:$a^2 4$8. 因式分解:$4x^2 25y^2$9. 因式分解:$9m^2 16n^2$10. 因式分解:$25p^2 49q^2$三、分组分解类11. 因式分解:$x^3 + x^2 2x 2$12. 因式分解:$a^3 a^2 3a + 3$13. 因式分解:$3x^2 + 3x 2x 2$14. 因式分解:$4m^2 4m 3m + 3$15. 因式分解:$5n^3 10n^2 + 3n 6$四、十字相乘法类16. 因式分解:$x^2 + 5x + 6$17. 因式分解:$a^2 7a + 10$18. 因式分解:$2x^2 9x 5$20. 因式分解:$4n^2 13n + 3$五、综合运用类21. 因式分解:$x^3 2x^2 5x + 10$22. 因式分解:$a^3 + 3a^2 4a 12$23. 因式分解:$2x^2 + 5x 3$24. 因式分解:$3m^2 7m + 2$25. 因式分解:$4n^2 + 10n 6$六、特殊因式分解类26. 因式分解:$x^4 16$27. 因式分解:$a^4 81$28. 因式分解:$16x^4 81y^4$29. 因式分解:$25m^4 49n^4$30. 因式分解:$64p^4 81q^4$一、平方差公式类1. 因式分解:$x^2 25$2. 因式分解:$4y^2 9$3. 因式分解:$49z^2 100$4. 因式分解:$25a^2 121b^2$5. 因式分解:$16m^2 36n^2$二、完全平方公式类6. 因式分解:$x^2 + 8x + 16$7. 因式分解:$y^2 10y + 25$8. 因式分解:$z^2 + 14z + 49$10. 因式分解:$b^2 + 22b + 121$三、交叉相乘法类11. 因式分解:$x^2 + 7x + 12$12. 因式分解:$y^2 5y 14$13. 因式分解:$z^2 + 11z + 30$14. 因式分解:$a^2 13a 42$15. 因式分解:$b^2 + 17b + 60$四、多项式乘法公式类16. 因式分解:$x^3 + 3x^2 + 3x + 1$17. 因式分解:$y^3 3y^2 + 3y 1$18. 因式分解:$z^3 + 6z^2 + 12z + 8$19. 因式分解:$a^3 6a^2 + 12a 8$20. 因式分解:$b^3 + 9b^2 + 27b + 27$五、分组分解法类21. 因式分解:$x^4 + 4x^3 + 6x^2 + 4x + 1$22. 因式分解:$y^4 4y^3 + 6y^2 4y + 1$23. 因式分解:$z^4 + 8z^3 + 18z^2 + 8z + 1$24. 因式分解:$a^4 8a^3 + 18a^2 8a + 1$25. 因式分解:$b^4 + 12b^3 + 54b^2 + 108b + 81$六、多项式长除法类26. 因式分解:$x^5 x^4 2x^3 + 2x^2 + x 1$27. 因式分解:$y^5 + y^4 + 2y^3 2y^2 y + 1$28. 因式分解:$z^5 3z^4 + 3z^3 z^2 + z 1$29. 因式分解:$a^5 + 3a^4 3a^3 + a^2 a + 1$30. 因式分解:$b^5 5b^4 + 10b^3 10b^2 + 5b 1$答案一、提取公因式类1. $6x^2 + 9x = 3x(2x + 3)$2. $8a^3 12a^2 = 4a^2(2a 3)$3. $15xy 20xz = 5x(3y 4z)$4. $21m^2n 35mn^2 = 7mn(3m 5n)$5. $4ab^2 + 6a^2b = 2ab(2b + 3a)$二、公式法类6. $x^2 9 = (x + 3)(x 3)$7. $a^2 4 = (a + 2)(a 2)$8. $4x^2 25y^2 = (2x + 5y)(2x 5y)$9. $9m^2 16n^2 = (3m + 4n)(3m 4n)$10. $25p^2 49q^2 = (5p + 7q)(5p 7q)$三、分组分解类11. $x^3 + x^2 2x 2 = (x^2 + 2)(x 1)$12. $a^3 a^2 3a + 3 = (a^2 3)(a 1)$13. $3x^2 + 3x 2x 2 = (3x 2)(x + 1)$14. $4m^2 4m 3m + 3 = (4m 3)(m 1)$15. $5n^3 10n^2 + 3n 6 = (5n^2 3)(n 2)$四、十字相乘法类16. $x^2 + 5x + 6 = (x + 2)(x + 3)$17. $a^2 7a + 10 = (a 2)(a 5)$18. $2x^2 9x 5 = (2x + 1)(x 5)$19. $3m^2 + 11m + 4 = (3m + 1)(m + 4)$20. $4n^2 13n + 3 = (4n 1)(n 3)$五、综合运用类21. $x^3 2x^2 5x + 10 = (x^2 5)(x 2)$22. $a^3 + 3a^2 4a 12 = (a^2 + 4)(a 3)$23. $2x^2 + 5x 3 = (2x 1)(x + 3)$24. $3m^2 7m + 2 = (3m 1)(m 2)$25. $4n^2 + 10n 6 = (2n 1)(2n + 6)$六、特殊因式分解类26. $x^4 16 = (x^2 + 4)(x + 2)(x 2)$27. $a^4 81 = (a^2 + 9)(a + 3)(a 3)$28. $16x^4 81y^4 = (4x^2 + 9y^2)(2x + 3y)(2x 3y)$29. $25m^4 49n^4 = (5m^2 + 7n^2)(5m + 7n)(5m 7n)$30. $64p^4 81q^4 = (8p^2 + 9q^2)(4p + 3q)(4p 3q)$一、平方差公式类1. $x^2 25 = (x + 5)(x 5)$2. $4y^2 9 = (2y + 3)(2y 3)$3. $49z^2 100 = (7z + 10)(7z 10)$4. $25a。

因式分解专项练习题(含答案)

因式分解专项练习题(含答案)

因式分解专题过关1.将下列各式分解因式(1)3p2﹣6pq (2)2x2+8x+82.将下列各式分解因式(1)x3y﹣xy (2)3a3﹣6a2b+3ab2.3.分解因式(1)a2(x﹣y)+16(y﹣x)(2)(x2+y2)2﹣4x2y24.分解因式:(1)2x2﹣x (2)16x2﹣1 (3)6xy2﹣9x2y﹣y3 (4)4+12(x﹣y)+9(x﹣y)25.因式分解:(1)2am2﹣8a (2)4x3+4x2y+xy26.将下列各式分解因式:(1)3x﹣12x3(2)(x2+y2)2﹣4x2y2 7.因式分解:(1)x2y﹣2xy2+y3 (2)(x+2y)2﹣y28.对下列代数式分解因式:(1)n2(m﹣2)﹣n(2﹣m)(2)(x﹣1)(x﹣3)+19.分解因式:a2﹣4a+4﹣b210.分解因式:a2﹣b2﹣2a+111.把下列各式分解因式:(1)x4﹣7x2+1 (2)x4+x2+2ax+1﹣a2(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2(4)x4+2x3+3x2+2x+112.把下列各式分解因式:(1)4x3﹣31x+15;(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4;(3)x5+x+1;(4)x3+5x2+3x﹣9;(5)2a4﹣a3﹣6a2﹣a+2.因式分解专题过关1.将下列各式分解因式(1)3p2﹣6pq;(2)2x2+8x+8分析:(1)提取公因式3p整理即可;(2)先提取公因式2,再对余下的多项式利用完全平方公式继续分解.解答:解:(1)3p2﹣6pq=3p(p﹣2q),(2)2x2+8x+8,=2(x2+4x+4),=2(x+2)2.2.将下列各式分解因式(1)x3y﹣xy (2)3a3﹣6a2b+3ab2.分析:(1)首先提取公因式xy,再利用平方差公式进行二次分解即可;(2)首先提取公因式3a,再利用完全平方公式进行二次分解即可.解答:解:(1)原式=xy(x2﹣1)=xy(x+1)(x﹣1);(2)原式=3a(a2﹣2ab+b2)=3a(a﹣b)2.3.分解因式(1)a2(x﹣y)+16(y﹣x);(2)(x2+y2)2﹣4x2y2.分析:(1)先提取公因式(x﹣y),再利用平方差公式继续分解;(2)先利用平方差公式,再利用完全平方公式继续分解.解答:解:(1)a2(x﹣y)+16(y﹣x),=(x﹣y)(a2﹣16),=(x﹣y)(a+4)(a﹣4);(2)(x2+y2)2﹣4x2y2,=(x2+2xy+y2)(x2﹣2xy+y2),=(x+y)2(x﹣y)2.4.分解因式:(1)2x2﹣x;(2)16x2﹣1;(3)6xy2﹣9x2y﹣y3;(4)4+12(x﹣y)+9(x﹣y)2.分析:(1)直接提取公因式x即可;(2)利用平方差公式进行因式分解;(3)先提取公因式﹣y,再对余下的多项式利用完全平方公式继续分解;(4)把(x﹣y)看作整体,利用完全平方公式分解因式即可.解答:解:(1)2x2﹣x=x(2x﹣1);(2)16x2﹣1=(4x+1)(4x﹣1);(3)6xy2﹣9x2y﹣y3,=﹣y(9x2﹣6xy+y2),=﹣y(3x﹣y)2;(4)4+12(x﹣y)+9(x﹣y)2,=[2+3(x﹣y)]2,=(3x﹣3y+2)2.5.因式分解:(1)2am2﹣8a;(2)4x3+4x2y+xy2分析:(1)先提公因式2a,再对余下的多项式利用平方差公式继续分解;(2)先提公因式x,再对余下的多项式利用完全平方公式继续分解.解答:解:(1)2am2﹣8a=2a(m2﹣4)=2a(m+2)(m﹣2);(2)4x3+4x2y+xy2,=x(4x2+4xy+y2),=x(2x+y)2.6.将下列各式分解因式:(1)3x﹣12x3(2)(x2+y2)2﹣4x2y2.分析:(1)先提公因式3x,再利用平方差公式继续分解因式;(2)先利用平方差公式分解因式,再利用完全平方公式继续分解因式.解答:解:(1)3x﹣12x3=3x(1﹣4x2)=3x(1+2x)(1﹣2x);(2)(x2+y2)2﹣4x2y2=(x2+y2+2xy)(x2+y2﹣2xy)=(x+y)2(x﹣y)2.7.因式分解:(1)x2y﹣2xy2+y3;(2)(x+2y)2﹣y2.分析:(1)先提取公因式y,再对余下的多项式利用完全平方式继续分解因式;(2)符合平方差公式的结构特点,利用平方差公式进行因式分解即可.解答:解:(1)x2y﹣2xy2+y3=y(x2﹣2xy+y2)=y(x﹣y)2;(2)(x+2y)2﹣y2=(x+2y+y)(x+2y﹣y)=(x+3y)(x+y).8.对下列代数式分解因式:(1)n2(m﹣2)﹣n(2﹣m);(2)(x﹣1)(x﹣3)+1.分析:(1)提取公因式n(m﹣2)即可;(2)根据多项式的乘法把(x﹣1)(x﹣3)展开,再利用完全平方公式进行因式分解.解答:解:(1)n2(m﹣2)﹣n(2﹣m)=n2(m﹣2)+n(m﹣2)=n(m﹣2)(n+1);(2)(x﹣1)(x﹣3)+1=x2﹣4x+4=(x﹣2)2.9.分解因式:a2﹣4a+4﹣b2.分析:本题有四项,应该考虑运用分组分解法.观察后可以发现,本题中有a的二次项a2,a的一次项﹣4a,常数项4,所以要考虑三一分组,先运用完全平方公式,再进一步运用平方差公式进行分解.解答:解:a2﹣4a+4﹣b2=(a2﹣4a+4)﹣b2=(a﹣2)2﹣b2=(a﹣2+b)(a﹣2﹣b).10.分解因式:a2﹣b2﹣2a+1分析:当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题中有a的二次项,a的一次项,有常数项.所以要考虑a2﹣2a+1为一组.解答:解:a2﹣b2﹣2a+1=(a2﹣2a+1)﹣b2=(a﹣1)2﹣b2=(a﹣1+b)(a﹣1﹣b).11.把下列各式分解因式:(1)x4﹣7x2+1;(2)x4+x2+2ax+1﹣a2(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2(4)x4+2x3+3x2+2x+1分析:(1)首先把﹣7x2变为+2x2﹣9x2,然后多项式变为x4﹣2x2+1﹣9x2,接着利用完全平方公式和平方差公式分解因式即可求解;(2)首先把多项式变为x4+2x2+1﹣x2+2ax﹣a2,然后利用公式法分解因式即可解;(3)首先把﹣2x2(1﹣y2)变为﹣2x2(1﹣y)(1﹣y),然后利用完全平方公式分解因式即可求解;(4)首先把多项式变为x4+x3+x2++x3+x2+x+x2+x+1,然后三个一组提取公因式,接着提取公因式即可求解.解答:解:(1)x4﹣7x2+1=x4+2x2+1﹣9x2=(x2+1)2﹣(3x)2=(x2+3x+1)(x2﹣3x+1);(2)x4+x2+2ax+1﹣a=x4+2x2+1﹣x2+2ax﹣a2=(x2+1)﹣(x﹣a)2=(x2+1+x﹣a)(x2+1﹣x+a);(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2=(1+y)2﹣2x2(1﹣y)(1+y)+x4(1﹣y)2=(1+y)2﹣2x2(1﹣y)(1+y)+[x2(1﹣y)]2=[(1+y)﹣x2(1﹣y)]2=(1+y﹣x2+x2y)2(4)x4+2x3+3x2+2x+1=x4+x3+x2++x3+x2+x+x2+x+1=x2(x2+x+1)+x(x2+x+1)+x2+x+1=(x2+x+1)2.12.把下列各式分解因式:(1)4x3﹣31x+15;(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4;(3)x5+x+1;(4)x3+5x2+3x﹣9;(5)2a4﹣a3﹣6a2﹣a+2.分析:(1)需把﹣31x拆项为﹣x﹣30x,再分组分解;(2)把2a2b2拆项成4a2b2﹣2a2b2,再按公式法因式分解;(3)把x5+x+1添项为x5﹣x2+x2+x+1,再分组以及公式法因式分解;(4)把x3+5x2+3x﹣9拆项成(x3﹣x2)+(6x2﹣6x)+(9x﹣9),再提取公因式因式分解;(5)先分组因式分解,再用拆项法把因式分解彻底.解答:解:(1)4x3﹣31x+15=4x3﹣x﹣30x+15=x(2x+1)(2x﹣1)﹣15(2x﹣1)=(2x﹣1)(2x2+1﹣15)=(2x﹣1)(2x﹣5)(x+3);(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4=4a2b2﹣(a4+b4+c4+2a2b2﹣2a2c2﹣2b2c2)=(2ab)2﹣(a2+b2﹣c2)2=(2ab+a2+b2﹣c2)(2ab﹣a2﹣b2+c2)=(a+b+c)(a+b﹣c)(c+a﹣b)(c﹣a+b);(3)x5+x+1=x5﹣x2+x2+x+1=x2(x3﹣1)+(x2+x+1)=x2(x﹣1)(x2+x+1)+(x2+x+1)=(x2+x+1)(x3﹣x2+1);(4)x3+5x2+3x﹣9=(x3﹣x2)+(6x2﹣6x)+(9x﹣9)=x2(x﹣1)+6x(x﹣1)+9(x﹣1)=(x﹣1)(x+3)2;(5)2a4﹣a3﹣6a2﹣a+2=a3(2a﹣1)﹣(2a﹣1)(3a+2)=(2a﹣1)(a3﹣3a﹣2)=(2a﹣1)(a3+a2﹣a2﹣a﹣2a﹣2)=(2a﹣1)[a2(a+1)﹣a(a+1)﹣2(a+1)]=(2a﹣1)(a+1)(a2﹣a﹣2)=(a+1)2(a﹣2)(2a﹣1).。

因式分解练习题40道

因式分解练习题40道

因式分解练习题40道因式分解一.解答题(共40小题)1.因式分解:ab2﹣2ab+a.2.因式分解:(x2﹣6)2﹣6(x2﹣6)+93.因式分解:(1)3ax2﹣6axy+3ay2(2)(3x﹣2)2﹣(4.分解因式:(1)3mx﹣6my(2)4xy2﹣4x2y﹣y3.5.因式分解:(1)9a2﹣4(2)ax2+2a2x+a36.分解因式:①﹣a4+16②6xy2﹣9x2y﹣y3第1页(共25页)2x+7)27.因式分解:x4﹣81x2y2.8.在实数范围内将下列各式分解因式:(1)3ax2﹣6axy+3ay2;(2)x3﹣5x.9.分解因式:(1)9ax2﹣ay2;(2)2x3y+4x2y2+2xy310.因式分解(1)﹣x3+2x2y﹣xy2(2)x2(x﹣2)+4(2﹣x)11.因式分解:(1)x2y﹣y;(2)a3b﹣2a2b2+ab3.12.分解因式:(1)3a3b2﹣12ab3c;(2)3x2﹣18xy+27y2.第2页(共25页)13.将下列各式分解因式(1)8ax2﹣2ax(2)4a2﹣3b(4a﹣3b)14.因式分解(1)m2﹣4n2(2)2a2﹣4a+2.15.分解因式:(m2+4)2﹣16m2.16.分化因式:(1)﹣2m2+8mn﹣8n2(2)a2(x﹣1)+b2(1﹣x)(3)(m2+n2)2﹣4m2n2.17.分解因式:m2﹣25+9n2+6mn.18.分解因式:(1)x3y﹣2x2y2+xy3(2)x2﹣4x+4﹣y2.第3页(共25页)19.把以下各式因式分化:(1)9a2(x﹣y)+4b2(y﹣x)(2)(x2y2+1)2﹣4x2y220.分解因式:(1)8a3b2+12ab3c;(2)(2x+y)2﹣(x+2y)2.21.分解因式:a2b﹣b3.22.因式分解:x4﹣10x2y2+9y4.23.分解因式:(1)(m+n)2﹣4m(m+n)+4m2(2)a3b﹣ab;(3)x2+2x﹣324.分化因式:(1)81x4﹣16;(2)8ab3+2a3b﹣8a2b2第4页(共25页)25.分解因式:(1)5a2+10ab;(2)mx2﹣12mx+36m.26.分化因式:(1)2x﹣8x3;(2)﹣3m3+18m2﹣27m(3)(a+b)2+2(a+b)+1.(4)9a2(x﹣y)+4b2(y ﹣x).27.阅读下面的问题,然后回答,分化因式:x2+2x﹣3,解:原式=x2+2x+1﹣1﹣3=(x2+2x+1)﹣4=(x+1)2﹣4=(x+1+2)(x+1﹣2)=(x+3)(x﹣1)上述因式分解的方法称为配方法.请体会配方法的特点,用配方法分解因式:(1)x2﹣4x+3(2)4x2+12x﹣7.28.因式分化:(1)a4﹣a2b2;(2)(x﹣1)(x﹣3)+1.第5页(共25页)29.因式分解:(1)a3﹣2a2+a(2)x4﹣130.分解因式(1)x3﹣9x;(2)﹣x3y+2y2x2﹣xy3;(3)1﹣a2+2ab﹣b2.31.(1)计算:2(a﹣3)(a+2)﹣(4+a)(4﹣a).(2)分解因式:9a2(x﹣y)+4b2(y﹣x).32.因式分化(1)ax2﹣16ay2(2)﹣2a3+12a2﹣18a第6页(共25页)(3)(x+2)(x﹣6)+16(4)a2﹣2ab+b2﹣1.33.因式分解:(1)x2﹣2x﹣8=(2)﹣a4+16;(3)3a3(1﹣2a)+a(2a﹣1)2+2a(2a﹣1).34.分解因式:(1)2a3﹣4a2b+2ab2;(2)x4﹣y435.将下列多项式因式分解①4ab2﹣4a2b+a3②16(x﹣y)2﹣24x(x﹣y)+9x2③6(a﹣b)2﹣3(b﹣a)2.第7页(共25页)36.因式分化①﹣2a3+12a2﹣18a②9a2(x﹣y)+4b2(y﹣x)37.分化因式:(1)x(x﹣y)﹣y(y﹣x).(2)(a2+1)2﹣4a2.38.【问题提出】:分解因式:(1)2x2+2xy﹣3x﹣3y;(2)a2﹣b2+4a﹣4b【问题探究】:某数学“探究研究”小组对以上因式分解题目进行了如下探究:探究1:分解因式:(1)2x2+2xy﹣3x﹣3y阐发:该多项式不克不及间接利用提取公因式法,公式法举行因式分化.因而细致窥察多项式的特性.甲发觉该多项式前两项有公因式2x,后两项有公因式﹣3,划分把它们提出来,剩下的是不异因式(x+y),能够连续用提公因式法分化.解:2x2+2xy﹣3x﹣3y=(2x2+2xy)﹣(3x+3y)=2x(x+y)﹣3(x+y)=(x+y)(2x﹣3)另:乙发现该多项式的第二项和第四项含有公因式y,第一项和第三项含有公因式x,把y、x提出来,剩下的是相同因式(2x﹣3),可以继续用提公因式法分解.解:2x2+2xy ﹣3x﹣3y=(2x2﹣3x)+(2xy﹣3y)=x(2x﹣3)+y(2x﹣3)=(2x﹣3)(x+y)探究2:分解因式:(2)a2﹣b2+4a﹣4b阐发:该多项式亦不克不及间接利用提取公因式法,公式法举行因式分化,因而若将此题按探讨1的办法分组,将含有a的项分在一组即a2+4a=a(a+4),含有b的项一组即﹣b2﹣4b=﹣b(b+4),但发觉a(a+4)与﹣b(b+4)再没有公因式可提,没法再分化下去.因而再细致窥察发觉,若先将a2﹣b2看做一组使用平方差公式,别的两项看做一组,提出公因式4,则可连续再提出因式,从而到达分化因式的目标.第8页(共25页)解:a2﹣b2+4a﹣4b=(a2﹣b2)+(4a﹣4b)=(a+b)(a ﹣b)+4(a﹣b)=(a﹣b)(4+a+b)【方法总结】:对不能直接使用提取公因式法,公式法进行分解因式的多项式,我们可考虑把被分解的多项式分成若干组,分别按“基本方法”即提取公因式法和运动公式法进行分解,然后,综合起来,再从总体上按“基本方法”继续进行分解,直到分解出最后结果.这种分解因式的方法叫做分组分解法.分组分化法并非一种自力的因式分化的办法,而是经由过程对多项式举行恰当的分组,把多项式转化为能够使用“根本办法”分化的布局方式,使之具有公因式,大概吻合公式的特性等,从而到达能够利用“根本办法”举行分化因式的目标.【学致利用】:测验考试活动分组分化法解答以下题目:(1)分解因式:x3﹣x2﹣x+1;(2)分解因式:4x2﹣y2﹣2yz﹣z2(3)尝试运用以上思路分解因式:m2﹣6m+8.39.分化因式:(1)2x2y﹣8xy+8y;(2)a2(x﹣y)﹣9b2(x﹣y);(3)9(3m+2n)2﹣4(m﹣2n)2;(4)(y2﹣1)2+6(1﹣y2)+9.第9页(共25页)40.分解因式:(1)x2﹣9(2)x2+4x+4(3)a2﹣2ab+b2﹣16(4)(a+b)2﹣6(a+b)+9.第10页(共25页)2018年04月15日173****3523的初中数学组卷参考答案与试题解析一.解答题(共40小题)1.因式分解:ab2﹣2ab+a.【解答】解:ab2﹣2ab+a=a(b2﹣2b+1)=a(b﹣1)2.2.因式分解:(x2﹣6)2﹣6(x2﹣6)+9【解答】解:原式=(x2﹣6﹣3)2=(x2﹣9)2=(x+3)2(x﹣3)2.3.因式分化:(1)3ax2﹣6axy+3ay2(2)(3x﹣2)2﹣(2x+7)2【解答】解:(1)原式=3a(x2﹣2xy+y2)=3a(x﹣y);(2)原式=[(3x﹣2)+(2x+7)][(3x﹣2)﹣(=(5x+5)(x﹣9)=5(x+1)(x﹣9).4.分解因式:(1)3mx﹣6my(2)4xy2﹣4x2y﹣y3.【解答】解:(1)3mx﹣6my=3m(x﹣2y);第11页(共25页)2x+7)](2)原式=﹣y(﹣4xy+4x2+y2)=﹣y(y﹣2x)2.5.因式分解:(1)9a2﹣4(2)ax2+2a2x+a3【解答】解:(1)9a2﹣4=(3a+2)(3a﹣2)(2)ax2+2a2x+a3=a(x+a)26.分解因式:①﹣a4+16②6xy2﹣9x2y﹣y3【解答】解:①﹣a4+16=(4﹣a2)(4+a2)=(2+a)(2﹣a)(4+a2);②6xy2﹣9x2y﹣y3=﹣y(y2﹣6xy+9x2)=﹣y(y﹣3x)2.7.因式分化:x4﹣81x2y2.【解答】解:原式=x2(x2﹣81y2)=x2(x+9y)(x﹣9y)8.在实数范围内将下列各式分解因式:(1)3ax2﹣6axy+3ay2;(2)x3﹣5x.【解答】解:(1)原式=3a(x2﹣2xy+y2)第12页(共25页)=3a(x﹣y)2;(2)原式=x(x2﹣5),=x(x+9.分化因式:(1)9ax2﹣ay2;(2)2x3y+4x2y2+2xy3【解答】解:(1)原式=a(9x2﹣y2)=a(3x+y)(3x ﹣y);)(x﹣).(2)原式=2xy(x2+2xy+y2)=2xy(x+y)2.10.因式分化(1)﹣x3+2x2y﹣xy2(2)x2(x﹣2)+4(2﹣x)【解答】解:(1)﹣x3+2x2y﹣xy2=﹣x(x2﹣2xy+y2)=﹣x(x﹣y)2;(2)x2(x﹣2)+4(2﹣x)=(x﹣2)(x2﹣4)=(x+2)(x﹣2)2.11.因式分解:(1)x2y﹣y;(2)a3b﹣2a2b2+ab3.【解答】解:(1)x2y﹣y=y(x2﹣1)=y(x+1)(x﹣1);第13页(共25页)(2)a3b﹣2a2b2+ab3=ab(a2﹣2ab+b2)=ab(a﹣b)2.12.分化因式:(1)3a3b2﹣12ab3c;(2)3x2﹣18xy+27y2.【解答】解:(1)3a3b2﹣12ab3c;=3ab2(a2﹣4bc);(2)3x2﹣18xy+27y2=3(x2﹣6xy+9y2)=3(x﹣3y)2.13.将下列各式分解因式(1)8ax2﹣2ax(2)4a2﹣3b(4a﹣3b)【解答】解:(1)8ax2﹣2ax=2ax(4x﹣1);(2)4a2﹣3b(4a﹣3b)=4a2﹣12ab+9b2=(2a﹣3)2.14.因式分解(1)m2﹣4n2(2)2a2﹣4a+2.【解答】解:(1)原式=(m+2n)(m﹣2n)(2)原式=2(a2﹣2a+1)第14页(共25页)=2(a﹣1)215.分解因式:(m2+4)2﹣16m2.【解答】解:(m2+4)2﹣16m2=(m2+4+4m)(m2+4﹣4m)=(m+2)2(m﹣2)2.16.分解因式:(1)﹣2m2+8mn﹣8n2(2)a2(x﹣1)+b2(1﹣x)(3)(m2+n2)2﹣4m2n2.【解答】解:(1)﹣2m2+8mn﹣8n2=﹣2(m2﹣4mn+4n2)=﹣2(m﹣2n)2;(2)a2(x﹣1)+b2(1﹣x)=(x﹣1)(a2﹣b2)=(x﹣1)(a﹣b)(a+b);(3)(m2+n2)2﹣4m2n2=(m2+n2+2mn)(m2+n2﹣2mn)=(m+n)2(m﹣n)2.17.分解因式:m2﹣25+9n2+6mn.【解答】解:原式=(m2+6mn+9n2)﹣25=(m+3n)2﹣25=(m+3n+5)(m+3n﹣5).18.分化因式:第15页(共25页)(1)x3y﹣2x2y2+xy3(2)x2﹣4x+4﹣y2.【解答】解:(1)x3y﹣2x2y2+xy3=xy(x2﹣2xy+y2)=xy(x﹣y)2;(2)x2﹣4x+4﹣y2=(x﹣2)2﹣y2=(x﹣2+y)(x﹣2﹣y).19.把下列各式因式分解:(1)9a2(x﹣y)+4b2(y﹣x)(2)(x2y2+1)2﹣4x2y2【解答】解:(1)9a2(x﹣y)+4b2(y﹣x)=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b);(2)(x2y2+1)2﹣4x2y2=(x2y2+1+2xy)(x2y2+1﹣2xy)=(xy﹣1)2(xy+1)2.20.分化因式:(1)8a3b2+12ab3c;(2)(2x+y)2﹣(x+2y)2.【解答】解:(1)8a3b2+12ab3c=4ab2(2a2+3bc);(2)(2x+y)2﹣(x+2y)2=(2x+y+x+2y)(2x+y﹣x﹣2y)=3(x+y)(x﹣y).第16页(共25页)21.分化因式:a2b﹣b3.【解答】解:原式=b(a2﹣b2)=b(a+b)(a﹣b).22.因式分化:x4﹣10x2y2+9y4.【解答】解:原式=(x2﹣9y2)(x2﹣y2)=(x﹣3y)(x+3y)(x﹣y)(x+y).23.分化因式:(1)(m+n)2﹣4m(m+n)+4m2(2)a3b﹣ab;(3)x2+2x﹣3【解答】解:(1)原式=[(m+n)﹣2m]2=(n﹣m)2(2)原式=ab(a2﹣1)=ab(a+1)(a﹣1).(3)原式=(x+3)(x﹣1).24.分解因式:(1)81x4﹣16;(2)8ab3+2a3b﹣8a2b2【解答】解:(1)原式=(9x2+4)(9x2﹣4)=(9x2+4)(3x+2)(3x﹣2);(2)原式=2ab(4b2+a2﹣4ab)=2ab(a﹣2b)2.25.分解因式:(1)5a2+10ab;第17页(共25页)(2)mx2﹣12mx+36m.【解答】解:(1)原式=5a(a+2b)(2)原式=m(x2﹣12x+36)=m(x﹣6)2 26.分化因式:(1)2x﹣8x3;(2)﹣3m3+18m2﹣27m(3)(a+b)2+2(a+b)+1.(4)9a2(x﹣y)+4b2(y﹣x).【解答】解:(1)2x﹣8x3;=2x(1﹣4x2)=2x(1﹣2x)(1+2x);(2)﹣3m3+18m2﹣27m=﹣3m(m2﹣6m+9)=﹣3m(m﹣3)2;(3)(a+b)2+2(a+b)+1=(a+b+1)2;(4)9a2(x﹣y)+4b2(y﹣x)=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b).27.阅读下面的问题,然后回答,分解因式:x2+2x﹣3,解:原式=x2+2x+1﹣1﹣3=(x2+2x+1)﹣4第18页(共25页)=(x+1)2﹣4=(x+1+2)(x+1﹣2)=(x+3)(x﹣1)上述因式分解的方法称为配方法.请体会配方法的特点,用配方法分解因式:(1)x2﹣4x+3(2)4x2+12x﹣7.【解答】解:(1)x2﹣4x+3=x2﹣4x+4﹣4+3=(x﹣2)2﹣1=(x﹣2+1)(x﹣2﹣1)=(x﹣1)(x﹣3)(2)4x2+12x﹣7=4x2+12x+9﹣9﹣7=(2x+3)2﹣16=(2x+3+4)(2x+3﹣4)=(2x+7)(2x﹣1)28.因式分化:(1)a4﹣a2b2;(2)(x﹣1)(x﹣3)+1.【解答】解:(1)原式=a2(a2﹣b2)=a2(a+b)(a﹣b)(2)原式=x2﹣4x+3+1=(x﹣2)229.因式分解:(1)a3﹣2a2+a(2)x4﹣1【解答】解:(1)原式=a(a2﹣2a+1)第19页(共25页)=a(a﹣1)2;(2)原式=(x2+1)(x2﹣1)=(x2+1)(x+1)(x﹣1).30.分解因式(1)x3﹣9x;(2)﹣x3y+2y2x2﹣xy3;(3)1﹣a2+2ab﹣b2.【解答】解:(1)原式=x(x2﹣9)=x(x﹣3)(x+3)(2)原式=﹣xy(x2﹣2xy+y2)=﹣xy(x﹣y)2(3)原式=1﹣(a2﹣2ab+b2)=1﹣(a﹣b)2=(1﹣a+b)(1+a﹣b)31.(1)计算:2(a﹣3)(a+2)﹣(4+a)(4﹣a).(2)分解因式:9a2(x﹣y)+4b2(y﹣x).【解答】解:(1)原式=2a2﹣2a﹣12﹣(16﹣a2)=2a2﹣2a﹣12﹣16+a2=3a2﹣2a﹣28.(2)原式=9a2(x﹣y)+4b2(y﹣x)=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b).32.因式分解(1)ax2﹣16ay2(2)﹣2a3+12a2﹣18a(3)(x+2)(x﹣6)+16(4)a2﹣2ab+b2﹣1.第20页(共25页)【解答】解:(1)原式=a(x2﹣16y2)=a(x+4y)(x ﹣4y)(2)原式=﹣2a(a2﹣6a+9)=﹣2a(a﹣3)2(3)原式=x2﹣4x+4=(x﹣2)2(4)原式=(a﹣b)2﹣1=(a﹣b+1)(a﹣b﹣1)33.因式分化:(1)x2﹣2x﹣8=(x+2)(x﹣4);(2)﹣a4+16;(3)3a3(1﹣2a)+a(2a﹣1)2+2a(2a﹣1).【解答】解:(1)原式=(x+2)(x﹣4)(2)原式=16﹣a4=(4+a2)(4﹣a2)=(4+a2)(2+a)(2﹣a)(3)原式=3a3(1﹣2a)+a(1﹣2a)3﹣2a(1﹣2a)=a(1﹣2a)(3a2+1﹣2a﹣2)=a(1﹣2a)(a﹣1)(3a+1)故答案为:(1)(x+2)(x﹣4)34.分化因式:(1)2a3﹣4a2b+2ab2;(2)x4﹣y4【解答】解:(1)2a3﹣4a2b+2ab2,=2a(a2﹣2ab+b2),=2a(a﹣b)2;(2)x4﹣y4,=(x2+y2)(x2﹣y2),=(x2+y2)(x+y)(x﹣y).35.将下列多项式因式分解①4ab2﹣4a2b+a3②16(x﹣y)2﹣24x(x﹣y)+9x2 第21页(共25页)③6(a﹣b)2﹣3(b﹣a)2.【解答】解:①4ab2﹣4a2b+a3=a(a2﹣4ab+4b2)=a(a﹣2b)2;②16(x﹣y)2﹣24x(x﹣y)+9x2 =[4(x﹣y)﹣3x]2=(x﹣4y)2;③6(a﹣b)2﹣3(b﹣a)2.=3(a﹣b)2×(2+1)=9(a﹣b)2.36.因式分解①﹣2a3+12a2﹣18a②9a2(x﹣y)+4b2(y﹣x)【解答】解:①﹣2a3+12a2﹣18a,=﹣2a(a2﹣6a+9),=﹣2a(a﹣3)2;②9a2(x﹣y)+4b2(y﹣x),=(x﹣y)(9a2﹣4b2),=(x﹣y)(3a+2b)(3a﹣2b).37.分解因式:(1)x(x﹣y)﹣y(y﹣x).(2)(a2+1)2﹣4a2.【解答】解:(1)x(x﹣y)﹣y(y﹣x)=x(x﹣y)+y(x﹣y)第22页(共25页)=(x﹣y)(x+y);(2)(a2+1)2﹣4a2.=(a2+1﹣2a)(a2+1+2a)=(a﹣1)2(a+1)2.38.【问题提出】:分解因式:(1)2x2+2xy﹣3x﹣3y;(2)a2﹣b2+4a﹣4b【问题探究】:某数学“探究研究”小组对以上因式分解题目进行了如下探究:探究1:分解因式:(1)2x2+2xy﹣3x﹣3y分析:该多项式不能直接使用提取公因式法,公式法进行因式分解.于是仔细观察多项式的特点.甲发现该多项式前两项有公因式2x,后两项有公因式﹣3,分别把它们提出来,剩下的是相同因式(x+y),可以继续用提公因式法分解.解:2x2+2xy﹣3x﹣3y=(2x2+2xy)﹣(3x+3y)=2x(x+y)﹣3(x+y)=(x+y)(2x﹣3)另:乙发现该多项式的第二项和第四项含有公因式y,第一项和第三项含有公因式x,把y、x提出来,剩下的是相同因式(2x﹣3),可以继续用提公因式法分解.解:2x2+2xy ﹣3x﹣3y=(2x2﹣3x)+(2xy﹣3y)=x(2x﹣3)+y(2x﹣3)=(2x﹣3)(x+y)探究2:分解因式:(2)a2﹣b2+4a﹣4b阐发:该多项式亦不克不及间接利用提取公因式法,公式法举行因式分化,因而若将此题按探讨1的办法分组,将含有a的项分在一组即a2+4a=a(a+4),含有b的项一组即﹣b2﹣4b=﹣b(b+4),但发觉a(a+4)与﹣b(b+4)再没有公因式可提,没法再分化下去.因而再细致窥察发觉,若先将a2﹣b2看做一组使用平方差公式,别的两项看做一组,提出公因式4,则可连续再提出因式,从而到达分化因式的目标.解:a2﹣b2+4a﹣4b=(a2﹣b2)+(4a﹣4b)=(a+b)(a ﹣b)+4(a﹣b)=(a﹣b)(4+a+b)【办法总结】:对不克不及间接利用提取公因式法,公式法举行分化因式的多项式,我们可斟酌把被分化的多项式分红多少组,划分按“根本办法”即提取公因式法和第23页(共25页)运动公式法进行分解,然后,综合起来,再从总体上按“基本方法”继续进行分解,直到分解出最后结果.这种分解因式的方法叫做分组分解法.分组分解法并不是一种独立的因式分解的方法,而是通过对多项式进行适当的分组,把多项式转化为可以应用“基本方法”分解的结构形式,使之具有公因式,或者符合公式的特点等,从而达到可以利用“基本方法”进行分解因式的目的.【学以致用】:尝试运动分组分解法解答下列问题:(1)分解因式:x3﹣x2﹣x+1;(2)分解因式:4x2﹣y2﹣2yz﹣z2【拓展提升】:(3)尝试运用以上思路分解因式:m2﹣6m+8.【解答】【学以致用】:解:(1)x3﹣x2﹣x+1=(x3﹣x2)﹣(x﹣1)=x2(x﹣1)﹣(x﹣1)=(x﹣1)(x2﹣1)=(x﹣1)(x+1)(x﹣1)=(x﹣1)2(x+1)(2)解:4x2﹣y2﹣2yz﹣z2=4x2﹣(y2+2yz+z2)=(2x)2﹣(y+z)2=(2x+y+z)(2x﹣y﹣z)′【拓展晋升】:(3)解:m2﹣6m+8=m2﹣6m+9﹣1=(m﹣3)2﹣1=(m﹣2)(m﹣4).39.分解因式:(1)2x2y﹣8xy+8y;第24页(共25页)(2)a2(x﹣y)﹣9b2(x﹣y);(3)9(3m+2n)2﹣4(m﹣2n)2;(4)(y2﹣1)2+6(1﹣y2)+9.【解答】解:(1)2x2y﹣8xy+8y=2y(x2﹣4x+4)=2y (x﹣2)2;(2)a2(x﹣y)﹣9b2(x﹣y)=(x﹣y)(a2﹣9b2)=(x﹣y)(a+3b)(a﹣3b);(3)9(3m+2n)2﹣4(m﹣2n)2=[3(3m+2n)﹣2(m﹣2n)][3(3m+2n)+2(m﹣2n)] =(7m+10n)(11m+2n);(4)(y2﹣1)2+6(1﹣y2)+9=(y2﹣1﹣3)2=(y+2)2(y﹣2)2.40.分解因式:(1)x2﹣9(2)x2+4x+4(3)a2﹣2ab+b2﹣16(4)(a+b)2﹣6(a+b)+9.【解答】(1)x2﹣9=(x+3)(x﹣3)(2)x2+4x+4=(x+2)2(3)a2﹣2ab+b2﹣16=(a﹣b)2﹣42。

因式分解练习题40道

因式分解练习题40道

因式分解一.解答题(共40小题)1.因式分解:ab2﹣2ab+a.2.因式分解:(x2﹣6)2﹣6(x2﹣6)+93.因式分解:(1)3ax2﹣6axy+3ay2 (2)(3x﹣2)2﹣(2x+7)24.分解因式:(1)3mx﹣6my (2)4xy2﹣4x2y﹣y3.5.因式分解:(1)9a2﹣4 (2)ax2+2a2x+a36.分解因式:①﹣a4+16 ②6xy2﹣9x2y﹣y37.因式分解:x4﹣81x2y2.8.在实数范围内将下列各式分解因式:(1)3ax2﹣6axy+3ay2;(2)x3﹣5x.9.分解因式:(1)9ax2﹣ay2;(2)2x3y+4x2y2+2xy310.因式分解(1)﹣x3+2x2y﹣xy2 (2)x2(x﹣2)+4(2﹣x)11.因式分解:(1)x2y﹣y;(2)a3b﹣2a2b2+ab3.12.分解因式:(1)3a3b2﹣12ab3c;(2)3x2﹣18xy+27y2.(1)8ax2﹣2ax (2)4a2﹣3b(4a﹣3b)14.因式分解(1)m2﹣4n2 (2)2a2﹣4a+2.15.分解因式:(m2+4)2﹣16m2.16.分解因式:(1)﹣2m2+8mn﹣8n2 (2)a2(x﹣1)+b2(1﹣x)(3)(m2+n2)2﹣4m2n2.17.分解因式:m2﹣25+9n2+6mn.18.分解因式:(1)x3y﹣2x2y2+xy3 (2)x2﹣4x+4﹣y2.(1)9a2(x﹣y)+4b2(y﹣x)(2)(x2y2+1)2﹣4x2y220.分解因式:(1)8a3b2+12ab3c;(2)(2x+y)2﹣(x+2y)2.21.分解因式:a2b﹣b3.22.因式分解:x4﹣10x2y2+9y4.23.分解因式:(1)(m+n)2﹣4m(m+n)+4m2 (2)a3b﹣ab;(3)x2+2x﹣324.分解因式:(1)81x4﹣16;(2)8ab3+2a3b﹣8a2b2(1)5a2+10ab;(2)mx2﹣12mx+36m.26.分解因式:(1)2x﹣8x3;(2)﹣3m3+18m2﹣27m(3)(a+b)2+2(a+b)+1.(4)9a2(x﹣y)+4b2(y﹣x).27.阅读下面的问题,然后回答,分解因式:x2+2x﹣3,解:原式=x2+2x+1﹣1﹣3=(x2+2x+1)﹣4=(x+1)2﹣4=(x+1+2)(x+1﹣2)=(x+3)(x﹣1)上述因式分解的方法称为配方法.请体会配方法的特点,用配方法分解因式:(1)x2﹣4x+3 (2)4x2+12x﹣7.28.因式分解:(1)a4﹣a2b2;(2)(x﹣1)(x﹣3)+1.(1)a3﹣2a2+a (2)x4﹣130.分解因式(1)x3﹣9x;(2)﹣x3y+2y2x2﹣xy3;(3)1﹣a2+2ab﹣b2.31.(1)计算:2(a﹣3)(a+2)﹣(4+a)(4﹣a).(2)分解因式:9a2(x﹣y)+4b2(y﹣x).32.因式分解(1)ax2﹣16ay2(2)﹣2a3+12a2﹣18a(3)(x+2)(x﹣6)+16 (4)a2﹣2ab+b2﹣1.33.因式分解:(1)x2﹣2x﹣8=(2)﹣a4+16;(3)3a3(1﹣2a)+a(2a﹣1)2+2a(2a﹣1).34.分解因式:(1)2a3﹣4a2b+2ab2;(2)x4﹣y435.将下列多项式因式分解①4ab2﹣4a2b+a3 ②16(x﹣y)2﹣24x(x﹣y)+9x2③6(a﹣b)2﹣3(b﹣a)2.36.因式分解①﹣2a3+12a2﹣18a ②9a2(x﹣y)+4b2(y﹣x)37.分解因式:(1)x(x﹣y)﹣y(y﹣x).(2)(a2+1)2﹣4a2.38.【问题提出】:分解因式:(1)2x2+2xy﹣3x﹣3y;(2)a2﹣b2+4a﹣4b 【问题探究】:某数学“探究学习”小组对以上因式分解题目进行了如下探究:探究1:分解因式:(1)2x2+2xy﹣3x﹣3y分析:该多项式不能直接使用提取公因式法,公式法进行因式分解.于是仔细观察多项式的特点.甲发现该多项式前两项有公因式2x,后两项有公因式﹣3,分别把它们提出来,剩下的是相同因式(x+y),可以继续用提公因式法分解.解:2x2+2xy﹣3x﹣3y=(2x2+2xy)﹣(3x+3y)=2x(x+y)﹣3(x+y)=(x+y)(2x ﹣3)另:乙发现该多项式的第二项和第四项含有公因式y,第一项和第三项含有公因式x,把y、x提出来,剩下的是相同因式(2x﹣3),可以继续用提公因式法分解.解:2x2+2xy﹣3x﹣3y=(2x2﹣3x)+(2xy﹣3y)=x(2x﹣3)+y(2x﹣3)=(2x ﹣3)(x+y)探究2:分解因式:(2)a2﹣b2+4a﹣4b分析:该多项式亦不能直接使用提取公因式法,公式法进行因式分解,于是若将此题按探究1的方法分组,将含有a的项分在一组即a2+4a=a(a+4),含有b的项一组即﹣b2﹣4b=﹣b(b+4),但发现a(a+4)与﹣b(b+4)再没有公因式可提,无法再分解下去.于是再仔细观察发现,若先将a2﹣b2看作一组应用平方差公式,其余两项看作一组,提出公因式4,则可继续再提出因式,从而达到分解因式的目的.解:a2﹣b2+4a﹣4b=(a2﹣b2)+(4a﹣4b)=(a+b)(a﹣b)+4(a﹣b)=(a﹣b)(4+a+b)【方法总结】:对不能直接使用提取公因式法,公式法进行分解因式的多项式,我们可考虑把被分解的多项式分成若干组,分别按“基本方法”即提取公因式法和运动公式法进行分解,然后,综合起来,再从总体上按“基本方法”继续进行分解,直到分解出最后结果.这种分解因式的方法叫做分组分解法.分组分解法并不是一种独立的因式分解的方法,而是通过对多项式进行适当的分组,把多项式转化为可以应用“基本方法”分解的结构形式,使之具有公因式,或者符合公式的特点等,从而达到可以利用“基本方法”进行分解因式的目的.【学以致用】:尝试运动分组分解法解答下列问题:(1)分解因式:x3﹣x2﹣x+1;(2)分解因式:4x2﹣y2﹣2yz ﹣z2(3)尝试运用以上思路分解因式:m2﹣6m+8.39.分解因式:(1)2x2y﹣8xy+8y;(2)a2(x﹣y)﹣9b2(x﹣y);(3)9(3m+2n)2﹣4(m﹣2n)2;(4)(y2﹣1)2+6(1﹣y2)+9.40.分解因式:(1)x2﹣9 (2)x2+4x+4(3)a2﹣2ab+b2﹣16 (4)(a+b)2﹣6(a+b)+9.2018年04月15日173****3523的初中数学组卷参考答案与试题解析一.解答题(共40小题)1.因式分解:ab2﹣2ab+a.【解答】解:ab2﹣2ab+a=a(b2﹣2b+1)=a(b﹣1)2.2.因式分解:(x2﹣6)2﹣6(x2﹣6)+9【解答】解:原式=(x2﹣6﹣3)2=(x2﹣9)2=(x+3)2(x﹣3)2.3.因式分解:(1)3ax2﹣6axy+3ay2(2)(3x﹣2)2﹣(2x+7)2【解答】解:(1)原式=3a(x2﹣2xy+y2)=3a(x﹣y);(2)原式=[(3x﹣2)+(2x+7)][(3x﹣2)﹣(2x+7)]=(5x+5)(x﹣9)=5(x+1)(x﹣9).4.分解因式:(1)3mx﹣6my(2)4xy2﹣4x2y﹣y3.【解答】解:(1)3mx﹣6my=3m (x﹣2y);(2)原式=﹣y(﹣4xy+4x2+y2)=﹣y(y﹣2x)2.5.因式分解:(1)9a2﹣4(2)ax2+2a2x+a3【解答】解:(1)9a2﹣4=(3a+2)(3a﹣2)(2)ax2+2a2x+a3=a(x+a)26.分解因式:①﹣a4+16②6xy2﹣9x2y﹣y3【解答】解:①﹣a4+16=(4﹣a2)(4+a2)=(2+a)(2﹣a)(4+a2);②6xy2﹣9x2y﹣y3=﹣y(y2﹣6xy+9x2)=﹣y(y﹣3x)2.7.因式分解:x4﹣81x2y2.【解答】解:原式=x2(x2﹣81y2)=x2(x+9y)(x﹣9y)8.在实数范围内将下列各式分解因式:(1)3ax2﹣6axy+3ay2;(2)x3﹣5x.【解答】解:(1)原式=3a(x2﹣2xy+y2)=3a(x﹣y)2;(2)原式=x(x2﹣5),=x(x+)(x﹣).9.分解因式:(1)9ax2﹣ay2;(2)2x3y+4x2y2+2xy3【解答】解:(1)原式=a(9x2﹣y2)=a(3x+y)(3x﹣y);(2)原式=2xy(x2+2xy+y2)=2xy(x+y)2.10.因式分解(1)﹣x3+2x2y﹣xy2(2)x2(x﹣2)+4(2﹣x)【解答】解:(1)﹣x3+2x2y﹣xy2=﹣x(x2﹣2xy+y2)=﹣x(x﹣y)2;(2)x2(x﹣2)+4(2﹣x)=(x﹣2)(x2﹣4)=(x+2)(x﹣2)2.11.因式分解:(1)x2y﹣y;(2)a3b﹣2a2b2+ab3.【解答】解:(1)x2y﹣y=y(x2﹣1)=y(x+1)(x﹣1);(2)a3b﹣2a2b2+ab3=ab(a2﹣2ab+b2)=ab(a﹣b)2.12.分解因式:(1)3a3b2﹣12ab3c;(2)3x2﹣18xy+27y2.【解答】解:(1)3a3b2﹣12ab3c;=3ab2(a2﹣4bc);(2)3x2﹣18xy+27y2=3(x2﹣6xy+9y2)=3(x﹣3y)2.13.将下列各式分解因式(1)8ax2﹣2ax(2)4a2﹣3b(4a﹣3b)【解答】解:(1)8ax2﹣2ax=2ax(4x﹣1);(2)4a2﹣3b(4a﹣3b)=4a2﹣12ab+9b2=(2a﹣3)2.14.因式分解(1)m2﹣4n2(2)2a2﹣4a+2.【解答】解:(1)原式=(m+2n)(m﹣2n)(2)原式=2(a2﹣2a+1)=2(a﹣1)215.分解因式:(m2+4)2﹣16m2.【解答】解:(m2+4)2﹣16m2=(m2+4+4m)(m2+4﹣4m)=(m+2)2(m﹣2)2.16.分解因式:(1)﹣2m2+8mn﹣8n2(2)a2(x﹣1)+b2(1﹣x)(3)(m2+n2)2﹣4m2n2.【解答】解:(1)﹣2m2+8mn﹣8n2=﹣2(m2﹣4mn+4n2)=﹣2(m﹣2n)2;(2)a2(x﹣1)+b2(1﹣x)=(x﹣1)(a2﹣b2)=(x﹣1)(a﹣b)(a+b);(3)(m2+n2)2﹣4m2n2=(m2+n2+2mn)(m2+n2﹣2mn)=(m+n)2(m﹣n)2.17.分解因式:m2﹣25+9n2+6mn.【解答】解:原式=(m2+6mn+9n2)﹣25 =(m+3n)2﹣25=(m+3n+5)(m+3n﹣5).18.分解因式:(1)x3y﹣2x2y2+xy3(2)x2﹣4x+4﹣y2.【解答】解:(1)x3y﹣2x2y2+xy3=xy(x2﹣2xy+y2)=xy(x﹣y)2;(2)x2﹣4x+4﹣y2=(x﹣2)2﹣y2=(x﹣2+y)(x﹣2﹣y).19.把下列各式因式分解:(1)9a2(x﹣y)+4b2(y﹣x)(2)(x2y2+1)2﹣4x2y2【解答】解:(1)9a2(x﹣y)+4b2(y﹣x)=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b);(2)(x2y2+1)2﹣4x2y2=(x2y2+1+2xy)(x2y2+1﹣2xy)=(xy﹣1)2(xy+1)2.20.分解因式:(1)8a3b2+12ab3c;(2)(2x+y)2﹣(x+2y)2.【解答】解:(1)8a3b2+12ab3c=4ab2(2a2+3bc);(2)(2x+y)2﹣(x+2y)2=(2x+y+x+2y)(2x+y﹣x﹣2y)=3(x+y)(x﹣y).21.分解因式:a2b﹣b3.【解答】解:原式=b(a2﹣b2)=b(a+b)(a﹣b).22.因式分解:x4﹣10x2y2+9y4.【解答】解:原式=(x2﹣9y2)(x2﹣y2)=(x﹣3y)(x+3y)(x﹣y)(x+y).23.分解因式:(1)(m+n)2﹣4m(m+n)+4m2(2)a3b﹣ab;(3)x2+2x﹣3【解答】解:(1)原式=[(m+n)﹣2m]2 =(n﹣m)2(2)原式=ab(a2﹣1)=ab(a+1)(a﹣1).(3)原式=(x+3)(x﹣1).24.分解因式:(1)81x4﹣16;(2)8ab3+2a3b﹣8a2b2【解答】解:(1)原式=(9x2+4)(9x2﹣4)=(9x2+4)(3x+2)(3x﹣2);(2)原式=2ab(4b2+a2﹣4ab)=2ab(a﹣2b)2.25.分解因式:(1)5a2+10ab;(2)mx2﹣12mx+36m.【解答】解:(1)原式=5a(a+2b)(2)原式=m(x2﹣12x+36)=m(x﹣6)226.分解因式:(1)2x﹣8x3;(2)﹣3m3+18m2﹣27m(3)(a+b)2+2(a+b)+1.(4)9a2(x﹣y)+4b2(y﹣x).【解答】解:(1)2x﹣8x3;=2x(1﹣4x2)=2x(1﹣2x)(1+2x);(2)﹣3m3+18m2﹣27m=﹣3m(m2﹣6m+9)=﹣3m(m﹣3)2;(3)(a+b)2+2(a+b)+1=(a+b+1)2;(4)9a2(x﹣y)+4b2(y﹣x)=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b).27.阅读下面的问题,然后回答,分解因式:x2+2x﹣3,解:原式=x2+2x+1﹣1﹣3=(x2+2x+1)﹣4=(x+1+2)(x+1﹣2)=(x+3)(x﹣1)上述因式分解的方法称为配方法.请体会配方法的特点,用配方法分解因式:(1)x2﹣4x+3(2)4x2+12x﹣7.【解答】解:(1)x2﹣4x+3=x2﹣4x+4﹣4+3=(x﹣2)2﹣1=(x﹣2+1)(x﹣2﹣1)=(x﹣1)(x﹣3)(2)4x2+12x﹣7=4x2+12x+9﹣9﹣7=(2x+3)2﹣16=(2x+3+4)(2x+3﹣4)=(2x+7)(2x﹣1)28.因式分解:(1)a4﹣a2b2;(2)(x﹣1)(x﹣3)+1.【解答】解:(1)原式=a2(a2﹣b2)=a2(a+b)(a﹣b)(2)原式=x2﹣4x+3+1=(x﹣2)229.因式分解:(1)a3﹣2a2+a(2)x4﹣1【解答】解:(1)原式=a(a2﹣2a+1)(2)原式=(x2+1)(x2﹣1)=(x2+1)(x+1)(x﹣1).30.分解因式(1)x3﹣9x;(2)﹣x3y+2y2x2﹣xy3;(3)1﹣a2+2ab﹣b2.【解答】解:(1)原式=x(x2﹣9)=x(x﹣3)(x+3)(2)原式=﹣xy(x2﹣2xy+y2)=﹣xy(x﹣y)2(3)原式=1﹣(a2﹣2ab+b2)=1﹣(a﹣b)2=(1﹣a+b)(1+a﹣b)31.(1)计算:2(a﹣3)(a+2)﹣(4+a)(4﹣a).(2)分解因式:9a2(x﹣y)+4b2(y﹣x).【解答】解:(1)原式=2a2﹣2a﹣12﹣(16﹣a2)=2a2﹣2a﹣12﹣16+a2=3a2﹣2a﹣28.(2)原式=9a2(x﹣y)+4b2(y﹣x)=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b).32.因式分解(1)ax2﹣16ay2(2)﹣2a3+12a2﹣18a(3)(x+2)(x﹣6)+16(4)a2﹣2ab+b2﹣1.【解答】解:(1)原式=a(x2﹣16y2)=a(x+4y)(x﹣4y)(2)原式=﹣2a(a2﹣6a+9)=﹣2a(a﹣3)2(3)原式=x2﹣4x+4=(x﹣2)2(4)原式=(a﹣b)2﹣1=(a﹣b+1)(a﹣b﹣1)33.因式分解:(1)x2﹣2x﹣8=(x+2)(x﹣4);(2)﹣a4+16;(3)3a3(1﹣2a)+a(2a﹣1)2+2a(2a﹣1).【解答】解:(1)原式=(x+2)(x﹣4)(2)原式=16﹣a4=(4+a2)(4﹣a2)=(4+a2)(2+a)(2﹣a)(3)原式=3a3(1﹣2a)+a(1﹣2a)3﹣2a(1﹣2a)=a(1﹣2a)(3a2+1﹣2a﹣2)=a(1﹣2a)(a﹣1)(3a+1)故答案为:(1)(x+2)(x﹣4)34.分解因式:(1)2a3﹣4a2b+2ab2;(2)x4﹣y4【解答】解:(1)2a3﹣4a2b+2ab2,=2a(a2﹣2ab+b2),=2a(a﹣b)2;(2)x4﹣y4,=(x2+y2)(x2﹣y2),=(x2+y2)(x+y)(x﹣y).35.将下列多项式因式分解①4ab2﹣4a2b+a3②16(x﹣y)2﹣24x(x﹣y)+9x2③6(a﹣b)2﹣3(b﹣a)2.【解答】解:①4ab2﹣4a2b+a3=a(a2﹣4ab+4b2)=a(a﹣2b)2;②16(x﹣y)2﹣24x(x﹣y)+9x2=[4(x﹣y)﹣3x]2=(x﹣4y)2;③6(a﹣b)2﹣3(b﹣a)2.=3(a﹣b)2×(2+1)=9(a﹣b)2.36.因式分解①﹣2a3+12a2﹣18a②9a2(x﹣y)+4b2(y﹣x)【解答】解:①﹣2a3+12a2﹣18a,=﹣2a(a2﹣6a+9),=﹣2a(a﹣3)2;②9a2(x﹣y)+4b2(y﹣x),=(x﹣y)(9a2﹣4b2),=(x﹣y)(3a+2b)(3a﹣2b).37.分解因式:(1)x(x﹣y)﹣y(y﹣x).(2)(a2+1)2﹣4a2.【解答】解:(1)x(x﹣y)﹣y(y﹣x)=x(x﹣y)+y(x﹣y)=(x﹣y)(x+y);(2)(a2+1)2﹣4a2.=(a2+1﹣2a)(a2+1+2a)=(a﹣1)2(a+1)2.38.【问题提出】:分解因式:(1)2x2+2xy﹣3x﹣3y;(2)a2﹣b2+4a﹣4b【问题探究】:某数学“探究学习”小组对以上因式分解题目进行了如下探究:探究1:分解因式:(1)2x2+2xy﹣3x﹣3y分析:该多项式不能直接使用提取公因式法,公式法进行因式分解.于是仔细观察多项式的特点.甲发现该多项式前两项有公因式2x,后两项有公因式﹣3,分别把它们提出来,剩下的是相同因式(x+y),可以继续用提公因式法分解.解:2x2+2xy﹣3x﹣3y=(2x2+2xy)﹣(3x+3y)=2x(x+y)﹣3(x+y)=(x+y)(2x ﹣3)另:乙发现该多项式的第二项和第四项含有公因式y,第一项和第三项含有公因式x,把y、x提出来,剩下的是相同因式(2x﹣3),可以继续用提公因式法分解.解:2x2+2xy﹣3x﹣3y=(2x2﹣3x)+(2xy﹣3y)=x(2x﹣3)+y(2x﹣3)=(2x ﹣3)(x+y)探究2:分解因式:(2)a2﹣b2+4a﹣4b分析:该多项式亦不能直接使用提取公因式法,公式法进行因式分解,于是若将此题按探究1的方法分组,将含有a的项分在一组即a2+4a=a(a+4),含有b的项一组即﹣b2﹣4b=﹣b(b+4),但发现a(a+4)与﹣b(b+4)再没有公因式可提,无法再分解下去.于是再仔细观察发现,若先将a2﹣b2看作一组应用平方差公式,其余两项看作一组,提出公因式4,则可继续再提出因式,从而达到分解因式的目的.解:a2﹣b2+4a﹣4b=(a2﹣b2)+(4a﹣4b)=(a+b)(a﹣b)+4(a﹣b)=(a﹣b)(4+a+b)【方法总结】:对不能直接使用提取公因式法,公式法进行分解因式的多项式,我们可考虑把被分解的多项式分成若干组,分别按“基本方法”即提取公因式法和运动公式法进行分解,然后,综合起来,再从总体上按“基本方法”继续进行分解,直到分解出最后结果.这种分解因式的方法叫做分组分解法.分组分解法并不是一种独立的因式分解的方法,而是通过对多项式进行适当的分组,把多项式转化为可以应用“基本方法”分解的结构形式,使之具有公因式,或者符合公式的特点等,从而达到可以利用“基本方法”进行分解因式的目的.【学以致用】:尝试运动分组分解法解答下列问题:(1)分解因式:x3﹣x2﹣x+1;(2)分解因式:4x2﹣y2﹣2yz﹣z2【拓展提升】:(3)尝试运用以上思路分解因式:m2﹣6m+8.【解答】【学以致用】:解:(1)x3﹣x2﹣x+1=(x3﹣x2)﹣(x﹣1)=x2(x﹣1)﹣(x﹣1)=(x﹣1)(x2﹣1)=(x﹣1)(x+1)(x﹣1)=(x﹣1)2(x+1)(2)解:4x2﹣y2﹣2yz﹣z2=4x2﹣(y2+2yz+z2)=(2x)2﹣(y+z)2=(2x+y+z)(2x﹣y﹣z)′【拓展提升】:(3)解:m2﹣6m+8=m2﹣6m+9﹣1=(m﹣3)2﹣1=(m﹣2)(m﹣4).39.分解因式:(1)2x2y﹣8xy+8y;(2)a2(x﹣y)﹣9b2(x﹣y);(3)9(3m+2n)2﹣4(m﹣2n)2;(4)(y2﹣1)2+6(1﹣y2)+9.【解答】解:(1)2x2y﹣8xy+8y=2y(x2﹣4x+4)=2y(x﹣2)2;(2)a2(x﹣y)﹣9b2(x﹣y)=(x﹣y)(a2﹣9b2)=(x﹣y)(a+3b)(a﹣3b);(3)9(3m+2n)2﹣4(m﹣2n)2=[3(3m+2n)﹣2(m﹣2n)][3(3m+2n)+2(m﹣2n)]=(7m+10n)(11m+2n);(4)(y2﹣1)2+6(1﹣y2)+9=(y2﹣1﹣3)2=(y+2)2(y﹣2)2.40.分解因式:(1)x2﹣9(2)x2+4x+4(3)a2﹣2ab+b2﹣16(4)(a+b)2﹣6(a+b)+9.【解答】(1)x2﹣9=(x+3)(x﹣3)(2)x2+4x+4=(x+2)2(3)a2﹣2ab+b2﹣16=(a﹣b)2﹣42=(a﹣b+4)(a﹣b﹣4)(4)(a+b)2﹣6(a+b)+9=(a+b﹣3)2。

初二因式分解经典题35题

初二因式分解经典题35题

初二因式分解经典题35题一、提取公因式法相关(10题)1. 分解因式:6ab + 3ac- 你看这里面每一项都有个3a呢。

就像大家都有个共同的小秘密一样。

那我们就把3a提出来呀,提出来之后就变成3a(2b + c)啦。

2. 分解因式:15x^2y−5xy^2- 哟,这里面5xy是公共的部分哦。

把5xy提出来,就剩下5xy(3x - y)啦,是不是很简单呢?3. 分解因式:4m^3n - 16m^2n^2+8mn^3- 仔细瞧瞧,8mn是都能提出来的。

提出来后就变成8mn(m^2 - 2mn + n^2)啦。

4. 分解因式:−3x^2y+6xy^2−9xy- 这里面−3xy是公因式哦。

把它提出来,就得到−3xy(x - 2y+3)啦。

5. 分解因式:2a(x - y)-3b(x - y)- 看呀,(x - y)是公共的部分呢。

提出来就变成(x - y)(2a - 3b)啦。

6. 分解因式:a(x - y)^2 - b(y - x)^2- 注意哦,(y - x)^2=(x - y)^2。

那这里面(x - y)^2是公因式,提出来就得到(x - y)^2(a - b)啦。

7. 分解因式:x(x - y)+y(y - x)- 先把y(y - x)变成-y(x - y),这样公因式就是(x - y)啦,提出来就是(x - y)(x - y)=(x - y)^2。

8. 分解因式:3a(a - b)+b(b - a)- 把b(b - a)变成-b(a - b),公因式(a - b)提出来,就得到(a - b)(3a - b)啦。

9. 分解因式:2x(x + y)-3(x + y)^2- 公因式是(x + y),提出来就变成(x + y)[2x-3(x + y)]=(x + y)(2x - 3x - 3y)=(x + y)(-x - 3y)=-(x + y)(x + 3y)。

10. 分解因式:5(x - y)^3+10(y - x)^2- 把(y - x)^2变成(x - y)^2,公因式5(x - y)^2提出来,得到5(x - y)^2[(x -y)+2]=5(x - y)^2(x - y + 2)。

因式分解练习题40道

因式分解练习题40道

因式分解练习题40道因式分解1.因式分解:ab²-2ab+a2.因式分解:(x²-6)²-6(x²-6)+93.因式分解:1) 3ax²-6axy+3ay²2) (3x-2)²-(2x+1)²4.分解因式:1) 3m(x-y)2) -y(x-y)(4x+y)5.因式分解:1) (3a+2)(3a-2)2) a(ax+2a)+a²(ax+2a)6.分解因式:1) -(a²-4)(a²+4)2) -3(y-x)(y+2x)(y-x)7.因式分解:(x²-9y²)(x²+y²)8.在实数范围内将下列各式分解因式:1) 3a(x-y)(x-ay)2) x(x-5)(x+1)9.分解因式:1) 9a(x-y)(x+y)2) 2xy(x+y)(x+2y) 10.因式分解1) -x(x-y)(x-2y)2) (x+2)(x-2)(x²-4) 11.因式分解:1) y(x-1)(x+1)2) ab(a-b)²12.分解因式:1) 3ab²(a-4c)2) 3(x-y)²13.将下列各式分解因式1) 2ax(4a-1)2) (2a-3b)(2a+3b)14.因式分解1) (m+2n)(m-2n)2) 2(a-1)²15.分解因式:(m+2)^2(m-2)^216.分解因式:1) -2(m-2n)²2) (a+b)(a-b)+(b-1)^23) (m+n)^2-(2mn)^217.分解因式:(m+3n)(m-3n)+(n+2m)(n-2m)18.分解因式:1) xy(x-y)(x+y)2) (x-2)^2-y^219.把下列各式因式分解:1) 9a^2(x-y)+4b^2(y-x)2) (x^2y^2+1-2xy)(x^2y^2+1+2xy)20.分解因式:1) 4ab^2(2a+3c)2) (x+y+3)(x-y-3)21.分解因式:b(a^2-b^2)22.因式分解:(x²-9y²)(x²-y²)23.分解因式:1) (m-2)^22) ab(a^2-b^2)3) (x+3)(x-1)24.分解因式:1) (9x^2-4)(3x+2)(3x-2)2) 2b(a-b)(a+2b)25.分解因式:1) 5a(a+2b)2) m(x-6)^226.分解因式:1) 2x(1-4x^2)2) -3(m-3)^33.题目解答及改写28.因式分解:1) a^4 - a^2b^2.(2) (x-1)(x-3)+1.1) a^4 - a^2b^2 可以看做 a^2(a^2 - b^2)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档