因式分解练习题精选(含提高题)

合集下载

经典因式分解练习题(附答案)

经典因式分解练习题(附答案)

经典因式分解练习题(附答案) 因式分解练题1.填空题:2.(a-3)(3-2a) = (3-a)(3-2a);12.若m2-3m+2=(m+a)(m+b),则a=1,b=2;15.当m=3时,x2+2(3-3)x+25是完全平方式。

2.因式分解:1.m2(p-q)-p+q = (m-p)(m+p-q);2.a(ab+bc+ac)-abc = a(a-b)(b-c);3.x4-2y4-2x3y+xy3 = (x-y)(x+y)(x2+y2-2xy-2x3y);4.abc(a2+b2+c2)-a3bc+2ab2c2 = (ab+bc+ca)(a2+b2+c2-ab-bc-ca);5.a2(b-c)+b2(c-a)+c2(a-b) = (a-b)(b-c)(c-a);6.(x2-2x)2+2x(x-2)+1 = (x2-x+1)2;7.(x-y)2+12(y-x)z+36z2 = (x-3z+y)2;9.(ax+by)2+(ay-bx)2+2(ax+by)(ay-bx) = (ax+by+ay-bx)2;10.(1-a2)(1-b2)-(a2-1)2(b2-1)2 = (1-a2-b2+a2b2)(1+a2b2);11.(x+1)2-9(x-1)2 = -8x2+20x-8;13.ab2-ac2+4ac-4a = a(b-c)2+4(c-a);15.(x+y)3+125 = (x+y+5)(x2-5x+25);17.x6(x2-y2)+y6(y2-x2) = (x2-y2)(x6-y6);8.x2-4ax+8ab-4b2 = (x-2a)2-4b2;12.4a2b2-(a2+b2-c2)2 = (2ab+a2+b2-c2)(2ab-a2-b2+c2);14.x3n+y3n = (x+y)(x2-xy+y2)(xn-1-xn-2y+。

+yn-1); 16.(3m-2n)3+(3m+2n)3 = 54m3+54mn2;18.8(x+y)3+1 = (2x+2y+1)(4x2+4y2+4xy-2x-2y+1);19.(a+b+c)3-a3-b3-c3 = 3(a+b)(b+c)(c+a);20.x2+4xy+3y2 = (x+3y)(x+y);21.x2+18x-144 = (x+12)(x-6);22.x4+2x2-8 = (x2-2)(x2+4);23.-m4+18m2-17 = -(m2-1)(m2-17);24.x5-2x3-8x = (x-2)(x+2)(x2+2x+2)(x2-2x-2);25.x8+19x5-216x2 = (x2-3x-6)(x2+3x-6)(x2+6);26.(x2-7x)2+10(x2-7x)-24 = (x2-7x-4)(x2-7x+6);27.5+7(a+1)-6(a+1)2 = -6a2+5a+6;28.(x2+x)(x2+x-1)-2 = (x2+x-1)2;29.x2+y2-x2y2-4xy-1 = (x-y)2(x+y-xy-1);30.(x-1)(x-2)(x-3)(x-4)-48 = (x2-5x+4)(x2-5x-8);3.证明(求值):1.已知a+b=0,代入a3-2b3+a2b-2ab2得到a3+2ab2,再代入a+b=0得到a3,所以a3-2b3+a2b-2ab2 = a3;2.设四个连续自然数为n-1,n,n+1,n+2,则它们的积为(n-1)n(n+1)(n+2),加1后变为(n2+n-1)2,是完全平方数;3.(ac-bd)2+(bc+ad)2 = a2c2+b2d2+2abcd+b2c2+a2d2-2abcd = (a2+b2)(c2+d2);4.a2+b2+c2+2ab-2bc-2ac = 6k2+12k+10,代入a=k+3,b=2k+2,c=3k-1得到a2+b2+c2+2ab-2bc-2ac = 6k2+12k+10;5.由题得m+n=-4,代入x2+mx+n的因式分解式(x-3)(x+4)得到m+n=7,所以(m+n)2=49;6.由题得7y-24 = 7(y-3)-3,所以x2+7xy+ay2-5x+43y-24 = (x+7y-3)(x+y-8)。

因式分解练习题(有答案)

因式分解练习题(有答案)

因式分解练习题(有答案)篇一:因式分解过关练习题及答案因式分解专题过关1.将以下各式分解因式22(1)3p﹣6pq(2)2x+8x+82.将以下各式分解因式3322(1)xy﹣xy (2)3a﹣6ab+3ab.3.分解因式222222 (1)a(x﹣y)+16(y﹣x)(2)(x+y)﹣4xy4.分解因式:222232 (1)2x﹣x(2)16x﹣1(3)6xy﹣9xy﹣y (4)4+12(x﹣y)+9(x﹣y)5.因式分解:(1)2am﹣8a (2)4x+4xy+xy23226.将以下各式分解因式:322222 (1)3x﹣12x (2)(x+y)﹣4xy7.因式分解:(1)xy﹣2xy+y223 (2)(x+2y)﹣y228.对以下代数式分解因式:(1)n(m﹣2)﹣n(2﹣m)(2)(x﹣1)(x﹣3)+19.分解因式:a﹣4a+4﹣b10.分解因式:a﹣b﹣2a+111.把以下各式分解因式:42422 (1)x﹣7x+1 (2)x+x+2ax+1﹣a22222(3)(1+y)﹣2x(1﹣y)+x(1﹣y)(4)x+2x+3x+2x+112.把以下各式分解因式:32222224445(1)4x﹣31x+15;(2)2ab+2ac+2bc ﹣a﹣b﹣c;(3)x+x+1;(4)x+5x+3x﹣9;(5)2a﹣a﹣6a﹣a+2. 3243222242432因式分解专题过关1.将以下各式分解因式22(1)3p﹣6pq;(2)2x+8x+8分析:(1)提取公因式3p整理即可;(2)先提取公因式2,再对余下的多项式利用完全平方公式继续分解.解答:解:(1)3p﹣6pq=3p(p﹣2q),222(2)2x+8x+8,=2(x+4x+4),=2(x+2).2.将以下各式分解因式3322(1)xy﹣xy(2)3a﹣6ab+3ab.分析:(1)首先提取公因式xy,再利用平方差公式开展二次分解即可;(2)首先提取公因式3a,再利用完全平方公式开展二次分解即可.2解答:解:(1)原式=xy(x﹣1)=xy(x+1)(x﹣1);222(2)原式=3a(a﹣2ab+b)=3a(a﹣b).3.分解因式222222(1)a(x﹣y)+16(y﹣x);(2)(x+y)﹣4xy.分析:(1)先提取公因式(x﹣y),再利用平方差公式继续分解;(2)先利用平方差公式,再利用完全平方公式继续分解.解答:解:(1)a(x﹣y)+16(y﹣x),=(x﹣y)(a ﹣16),=(x﹣y)(a+4)(a﹣4);22222222222(2)(x+y)﹣4xy,=(x+2xy+y)(x ﹣2xy+y),=(x+y)(x﹣y).4.分解因式:222232(1)2x﹣x;(2)16x﹣1;(3)6xy ﹣9xy﹣y;(4)4+12(x﹣y)+9(x﹣y).222分析:(1)直接提取公因式x即可;(2)利用平方差公式开展因式分解;(3)先提取公因式﹣y,再对余下的多项式利用完全平方公式继续分解;(4)把(x﹣y)看作整体,利用完全平方公式分解因式即可.2解答:解:(1)2x﹣x=x(2x﹣1);2(2)16x﹣1=(4x+1)(4x﹣1);223222(3)6xy﹣9xy﹣y,=﹣y(9x﹣6xy+y),=﹣y(3x﹣y);222(4)4+12(x﹣y)+9(x﹣y),=[2+3(x﹣y)],=(3x﹣3y+2).5.因式分解:2322 (1)2am﹣8a;(2)4x+4xy+xy分析:(1)先提公因式2a,再对余下的多项式利用平方差公式继续分解;(2)先提公因式x,再对余下的多项式利用完全平方公式继续分解.22解答:解:(1)2am﹣8a=2a(m﹣4)=2a(m+2)(m﹣2);322222(2)4x+4xy+xy,=x(4x+4xy+y),=x(2x+y).6.将以下各式分解因式:322222(1)3x﹣12x (2)(x+y)﹣4xy.分析:(1)先提公因式3x,再利用平方差公式继续分解因式;(2)先利用平方差公式分解因式,再利用完全平方公式继续分解因式.解答:解:(1)3x﹣12x=3x(1﹣4x)=3x(1+2x)(1﹣2x);22222222222(2)(x+y)﹣4xy=(x+y+2xy)(x+y ﹣2xy)=(x+y)(x﹣y).7.因式分解:22322(1)xy﹣2xy+y;(2)(x+2y)﹣y.分析:(1)先提取公因式y,再对余下的多项式利用完全平方式继续分解因式;(2)符合平方差公式的构造特点,利用平方差公式开展因式分解即可.解答:解:(1)xy﹣2xy+y=y(x﹣2xy+y)=y(x﹣y);22(2)(x+2y)﹣y=(x+2y+y)(x+2y﹣y)=(x+3y)(x+y). 223222328.对以下代数式分解因式:(1)n(m﹣2)﹣n(2﹣m);(2)(x﹣1)(x﹣3)+1.分析:(1)提取公因式n(m﹣2)即可;(2)根据多项式的乘法把(x﹣1)(x﹣3)展开,再利用完全平方公式开展因式分解. 解答:解:(1)n(m﹣2)﹣n(2﹣m)=n(m﹣2)+n(m﹣2)=n(m﹣2)(n+1);22(2)(x﹣1)(x﹣3)+1=x﹣4x+4=(x﹣2).229.分解因式:a﹣4a+4﹣b.分析:此题有四项,应该考虑运用分组分解法.观察后可以发现,此题中有a的二次项a,a的一次项﹣4a,常数项4,所以要考虑三一分组,先运用完全平方公式,再进一步运用平方差公式开展分解.222222解答:解:a﹣4a+4﹣b=(a﹣4a+4)﹣b=(a﹣2)﹣b=(a﹣2+b)(a﹣2﹣b).10.分解因式:a﹣b﹣2a+1分析:当被分解的式子是四项时,应考虑运用分组分解法开展分解.此题中有a的二次项,a的一次项,有常数项.所以要考虑a﹣2a+1为一组.222222解答:解:a﹣b﹣2a+1=(a﹣2a+1)﹣b=(a﹣1)﹣b=(a﹣1+b)(a﹣1﹣b).11.把以下各式分解因式:42422(1)x﹣7x+1;(2)x+x+2ax+1﹣a(3)(1+y)﹣2x(1﹣y)+x(1﹣y)(4)x+2x+3x+2x+1分析:(1)首先把﹣7x变为+2x﹣9x,然后多项式变为x﹣2x+1﹣9x,接着利用完全平方公式和平方差公式分解因式即可求解;4222(2)首先把多项式变为x+2x+1﹣x+2ax﹣a,然后利用公式法分解因式即可解;222(3)首先把﹣2x(1﹣y)变为﹣2x(1﹣y)(1﹣y),然后利用完全平方公式分解因式即可求解;222422222424322222222篇二:因式分解练习题加答案200道因式分解3a3b2c-6a2b2c2+9ab2c3=3ab^2 c(a^2-2ac+3c^2)3.因式分解xy+6-2x-3y=(x-3)(y-2)4.因式分解x2(x-y)+y2(y-x)=(x+y)(x-y)^25.因式分解2x2-(a-2b)x-ab=(2x-a)(x+b)6.因式分解a4-9a2b2=a^2(a+3b)(a-3b)7.若已知x3+3x2-4含有x-1的因式,试分解x3+3x2-4=(x-1)(x+2)^28.因式分解ab(x2-y2)+xy(a2-b2)=(ay+bx)(ax-by)9.因式分解(x+y)(a-b-c)+(x-y)(b+c-a)=2y(a-b-c)10.因式分解a2-a-b2-b=(a+b)(a-b-1)11.因式分解(3a-b)2-4(3a-b)(a+3b)+4(a+3b)2=[3a-b-2(a+3b)]^2=(a-7b)^212.因式分解(a+3)2-6(a+3)=(a+3)(a-3)13.因式分解(x+1)2(x+2)-(x+1)(x+2)2=-(x+1)(x+2)abc+ab-4a=a(bc+b-4)(2)16x2-81=(4x+9)(4x-9)(3)9x2-30x+25=(3x-5)^2(4)x2-7x-30=(x-10)(x+3)35.因式分解x2-25=(x+5)(x-5)36.因式分解x2-20x+100=(x-10)^237.因式分解x2+4x+3=(x+1)(x+3)38.因式分解4x2-12x+5=(2x-1)(2x-5)39.因式分解以下各式:(1)3ax2-6ax=3ax(x-2)(2)x(x+2)-x=x(x+1)(3)x2-4x-ax+4a=(x-4)(x-a)(4)25x2-49=(5x-9)(5x+9)(5)36x2-60x+25=(6x-5)^2(6)4x2+12x+9=(2x+3)^2(7)x2-9x+18=(x-3)(x-6)(8)2x2-5x-3=(x-3)(2x+1)(9)12x2-50x+8=2(6x-1)(x-4)40.因式分解(x+2)(x-3)+(x+2)(x+4)=(x+2)(2x-1)41.因式分解2ax2-3x+2ax-3=(x+1)(2ax-3)42.因式分解9x2-66x+121=(3x-11)^243.因式分解8-2x2=2(2+x)(2-x)44.因式分解x2-x+14 =整数内无法分解45.因式分解9x2-30x+25=(3x-5)^246.因式分解-20x2+9x+20=(-4x+5)(5x+4)47.因式分解12x2-29x+15=(4x-3)(3x-5)48.因式分解36x2+39x+9=3(3x+1)(4x+3)49.因式分解21x2-31x-22=(21x+11)(x-2)50.因式分解9x4-35x2-4=(9x^2+1)(x+2)(x-2)51.因式分解(2x+1)(x+1)+(2x+1)(x-3)=2(x-1)(2x+1)52.因式分解2ax2-3x+2ax-3=(x+1)(2ax-3)53.因式分解x(y+2)-x-y-1=(x-1)(y+1)54.因式分解(x2-3x)+(x-3)2=(x-3)(2x-3)55.因式分解9x2-66x+121=(3x-11)^256.因式分解8-2x2=2(2-x)(2+x)57.因式分解x4-1=(x-1)(x+1)(x^2+1)58.因式分解x2+4x-xy-2y+4=(x+2)(x-y+2)59.因式分解4x2-12x+5=(2x-1)(2x-5)60.因式分解21x2-31x-22=(21x+11)(x-2)61.因式分解4x2+4xy+y2-4x-2y-3=(2x+y-3)(2x+y+1)62.因式分解9x5-35x3-4x=x(9x^2+1)(x+2)(x-2)63.因式分解以下各式:(1)3x2-6x=3x(x-2)(2)49x2-25=(7x+5)(7x-5)(3)6x2-13x+5=(2x-1)(3x-5)(4)x2+2-3x=(x-1)(x-2)(5)12x2-23x-24=(3x-8)(4x+3)(6)(x+6)(x-6)-(x-6)=(x-6)(x+5)(7)3(x+2)(x-5)-(x+2)(x-3)=2(x-6)(x+2)(8)9x2+42x+49=(3x+7)^2 。

因式分解练习题及答案

因式分解练习题及答案

因式分解练习题及答案在初中数学学习中,因式分解是一个重要的概念和技巧。

因式分解是将一个代数式写成若干个因式的乘积的过程,对于解决代数方程、简化复杂的代数式以及寻找多项式的零点都有重要的作用。

为了帮助大家更好地掌握因式分解的方法和技巧,以下是一些因式分解的练习题及答案。

练习题1:因式分解基础1. 将代数式完全分解:a) 4x^2 - 9b) x^2 - 6x + 9c) 2x^3 - 8x^2 + 8x - 322. 将代数式因式分解:a) x^2 - 5x + 6b) 9x^2 - 16c) x^3 + 83. 判断以下代数式是否可以进一步因式分解:a) 3x^2 - 3x + 1b) 4x^3 + 2x^2 + 4x + 2c) x^4 - 81练习题2:因式分解中的公式1. 利用差平方公式,将以下代数式因式分解:a) x^2 - 16b) 4x^2 - 9c) 16x^2 - 4y^22. 利用完全平方公式,将以下代数式因式分解:a) x^2 + 2x + 1b) x^2 - 10x + 25c) 4x^2 + 12x + 93. 利用立方差公式,将以下代数式因式分解:a) 27 - 8x^3b) 8x^3 - 27答案:练习题1:1. a) (2x + 3)(2x - 3)b) (x - 3)^2c) 2(x - 4)(x^2 + x + 4)2. a) (x - 2)(x - 3)b) (3x - 4)(3x + 4)c) (x + 2)(x^2 - 2x + 4)3. a) 不可以进一步因式分解b) 不可以进一步因式分解c) (x^2 + 9)(x - 3)(x + 3)练习题2:1. a) (x - 4)(x + 4)b) (2x - 3)(2x + 3)c) 4(x + y)(4x - y)2. a) (x + 1)^2b) (x - 5)^2c) (2x + 3)^23. a) (3 - 2x)(9 + 4x + 2x^2)b) (2x - 3)^3通过这些练习题和答案,你可以更好地掌握因式分解的方法和技巧。

因式分解专项练习题(含答案)

因式分解专项练习题(含答案)

因式分解专题过关1.将以下各式分解因式2﹣6pq 〔 2〕 2x 2〔 1〕 3p +8x+82.将以下各式分解因式33 2 2.〔 1〕 x y ﹣ xy 〔 2〕 3a ﹣ 6a b+3ab3.分解因式2〔y ﹣ x 〕 2 2 2 2 2〔1〕 a 〔 x ﹣ y 〕 +16 〔 2〕〔 x +y 〕﹣ 4x y4.分解因式:〔1〕 2x 2﹣x 2 〔 3〕 6xy 2 ﹣ 9x 2 3 〔 4〕 4+12〔 x ﹣ y 〕+9 〔 x ﹣y 〕 2〔2〕 16x ﹣ 1 y ﹣ y5.因式分解:2﹣ 8a 〔 2〕4x 3 2 2〔1〕 2am +4x y+xy6.将以下各式分解因式:32 2 2 2 2〔1〕 3x ﹣ 12x 〔 2〕〔 x +y 〕﹣ 4x y22 3 2 27.因式分解:〔 1〕 x y ﹣ 2xy +y 〔2〕〔 x+2y 〕﹣ y8.对以下代数式分解因式:〔1〕 n 2〔 m ﹣ 2〕﹣ n 〔 2﹣m 〕〔2〕〔x ﹣ 1〕〔x ﹣ 3〕+1229.分解因式:a ﹣ 4a+4﹣ b2210.分解因式:a ﹣ b ﹣2a+111.把以下各式分解因式:424 2 2〔1〕 x ﹣ 7x +1 〔 2〕 x +x +2ax+1 ﹣ a2 2 2 4 〔1﹣ y 〕 2 43 2〔3〕〔 1+y 〕﹣ 2x 〔 1﹣ y 〕 +x 〔4〕 x +2x +3x +2x+112.把以下各式分解因式:〔1〕 4x 3﹣ 31x+15 ; 2 2 2 2 2 2 4 4 4 ; 5;〔 2〕2a b +2a c +2b c ﹣ a ﹣ b ﹣ c 〔3〕 x +x+132 ﹣ 9; 43 2〔4〕 x +5x +3x 〔 5〕2a ﹣ a ﹣ 6a ﹣a+2.因式分解专题过关1.将以下各式分解因式〔1〕 3p 2﹣ 6pq ; 〔 2〕 2x 2+8x+8分析:〔 1〕提取公因式 3p 整理即可;〔 2〕先提取公因式 2,再对余下的多项式利用完全平方公式继续分解.解答: 解:〔 1〕 3p 2﹣6pq=3p 〔 p ﹣ 2q 〕,222.〔 2〕 2x +8x+8 , =2〔x +4x+4 〕, =2〔 x+2〕2.将以下各式分解因式33 2 2.〔1〕 x y ﹣xy〔 2〕3a ﹣ 6a b+3ab分析:〔 1〕首先提取公因式xy ,再利用平方差公式进展二次分解即可;〔 2〕首先提取公因式3a ,再利用完全平方公式进展二次分解即可.解答: 解:〔 1〕原式 =xy 〔 x 2﹣1〕 =xy 〔 x+1 〕〔 x ﹣ 1〕;〔 2〕原式 =3a 〔 a 2﹣ 2ab+b 2〕 =3a 〔a ﹣ b 〕2.3.分解因式〔1〕 a 2〔 x ﹣ y 〕 +16 〔y ﹣ x 〕;〔 2〕〔 x 2 +y 2〕2﹣4x 2y 2.分析:〔 1〕先提取公因式〔x ﹣ y 〕,再利用平方差公式继续分解;〔 2〕先利用平方差公式,再利用完全平方公式继续分解.解答: 解:〔 1〕 a 2〔 x ﹣ y 〕 +16 〔y ﹣ x 〕,=〔 x ﹣ y 〕〔 a 2﹣ 16〕, =〔 x ﹣ y 〕〔 a+4〕〔 a ﹣ 4〕;22222222222〔 2〕〔 x +y 〕﹣ 4x y , =〔 x +2xy+y 〕〔 x ﹣2xy+y 〕,=〔x+y 〕〔x ﹣ y 〕 .4.分解因式:〔1〕2x 2﹣x ; 〔 2〕16x 2 ﹣ 1; 2 2 3 2〔 3〕6xy ﹣ 9x y ﹣y ; 〔 4〕4+12〔 x ﹣y 〕+9〔 x ﹣ y 〕.分析:〔 1〕直接提取公因式x 即可;( 2〕利用平方差公式进展因式分解;( 3〕先提取公因式﹣ y ,再对余下的多项式利用完全平方公式继续分解;( 4〕把〔 x ﹣ y 〕看作整体,利用完全平方公式分解因式即可.解答: 解:〔 1〕 2x 2﹣x=x 〔 2x ﹣1〕;( 2〕 16x 2﹣ 1=〔 4x+1〕〔 4x ﹣1〕;〔 3〕 2 2 32 22;6xy ﹣ 9x y ﹣ y , =﹣ y 〔 9x ﹣ 6xy+y 〕, =﹣ y 〔 3x﹣ y 〕〔 4〕 4+12〔 x ﹣ y 〕 +9〔 x ﹣ y 〕2, =[2+3 〔 x ﹣ y 〕 ]2, =〔 3x ﹣ 3y+2〕2.5.因式分解:2﹣ 8a ;〔 322〔1〕 2am2〕 4x +4x y+xy分析:〔 1〕先提公因式2a ,再对余下的多项式利用平方差公式继续分解;( 2〕先提公因式 x ,再对余下的多项式利用完全平方公式继续分解.解答: 解:〔 1〕 2am 2﹣ 8a=2a 〔 m 2﹣ 4〕 =2a 〔m+2〕〔 m ﹣ 2〕;( 2〕 4x 3+4x 2y+xy 2,=x 〔 4x 2+4xy+y 2〕, =x 〔2x+y 〕2.6.将以下各式分解因式:〔1〕 3x ﹣ 12x 3〔 2〕〔 x 2 +y 2〕2﹣ 4x 2 y 2.分析:〔 1〕先提公因式 3x ,再利用平方差公式继续分解因式;〔 2〕先利用平方差公式分解因式,再利用完全平方公式继续分解因式.解答: 解:〔 1〕 3x ﹣12x 3 =3x 〔 1﹣ 4x 2〕 =3x 〔 1+2x 〕〔 1﹣ 2x 〕;22 2 2 2 2 2 2 2﹣ 2xy 2 2.〔 2〕〔 x +y 〕 ﹣ 4x y =〔 x +y +2xy 〕〔 x +y 〕 =〔x+y 〕 〔 x ﹣ y 〕7.因式分解:22 3 ; 2 2〔1〕 x y ﹣2xy +y 〔 2〕〔 x+2y 〕﹣ y .分析:〔 1〕先提取公因式y ,再对余下的多项式利用完全平方式继续分解因式;〔 2〕符合平方差公式的构造特点,利用平方差公式进展因式分解即可.223222解答: 解:〔 1〕 x y ﹣ 2xy +y =y 〔 x ﹣ 2xy+y 〕 =y 〔x ﹣ y 〕 ;8.对以下代数式分解因式:〔1〕 n 2〔 m ﹣ 2〕﹣ n 〔 2﹣m 〕;〔 2〕〔x ﹣ 1〕〔 x ﹣ 3〕 +1.分析:〔 1〕提取公因式n 〔 m ﹣ 2〕即可;( 2〕根据多项式的乘法把 〔 x ﹣ 1〕〔 x ﹣ 3〕展开,再利用完全平方公式进展因式分解.解答:解:〔 1〕 n 2〔 m ﹣ 2〕﹣ n 〔 2﹣ m 〕 =n 2〔 m ﹣ 2〕 +n 〔 m ﹣ 2〕 =n 〔 m ﹣ 2〕〔n+1 〕;( 2〕〔 x ﹣ 1〕〔 x ﹣ 3〕 +1=x 2﹣ 4x+4= 〔 x ﹣2〕2.229.分解因式:a ﹣4a+4﹣ b.分析: 此题有四项,应该考虑运用分组分解法.观察后可以发现,此题中有 a 的二次项 a 2,a 的一次项﹣ 4a ,常数项 4,所以要考虑三一分组,先运用完全平方公式,再进一步运用平方差公式进展分解.222222解答: 解: a ﹣ 4a+4﹣ b =〔 a ﹣ 4a+4〕﹣ b =〔 a ﹣ 2〕 ﹣ b =〔 a ﹣ 2+b 〕〔 a ﹣ 2﹣ b 〕.22 ﹣ 2a+110.分解因式: a ﹣ b分析: 当被分解的式子是四项时,应考虑运用分组分解法进展分解.此题中有 a 的二次项,a 的一次项,有常数项.所以要考虑2为一组.a ﹣2a+12 2 22 2 2解答: 解: a ﹣ b ﹣ 2a+1=〔 a ﹣ 2a+1〕﹣ b =〔 a ﹣ 1〕 ﹣ b =〔 a ﹣ 1+b 〕〔 a ﹣ 1﹣ b 〕.11.把以下各式分解因式:42;422〔1〕 x ﹣ 7x +1〔 2〕 x +x +2ax+1 ﹣ a22 2 4 〔1﹣ y 〕 2 43 2〔3〕〔 1+y 〕﹣ 2x 〔 1﹣ y 〕 +x 〔 4〕x +2x +3x +2x+1分析:〔 1〕首先把﹣ 7x 2变为 +2x 2﹣ 9x 2,然后多项式变为 x 4﹣ 2x 2 +1﹣ 9x 2,接着利用完全平方公式和平方差公式分解因式即可求解;〔 2〕首先把多项式变为42 22x +2x +1 ﹣ x +2ax ﹣ a ,然后利用公式法分解因式即可解;〔 3〕首先把﹣ 2x 2〔1﹣ y 2〕变为﹣ 2x 2〔 1﹣ y 〕〔 1﹣y 〕,然后利用完全平方公式分解因式即可求解;4 32 3 22〔 4〕首先把多项式变为x +x +x ++x+x +x+x +x+1 ,然后三个一组提取公因式,接着提取公因式即可求解.4 2 4 2 ﹣ 9x 2 22 ﹣〔 3x 〕 2 2 2 解答: 解:〔 1〕 x ﹣ 7x +1=x +2x +1 =〔x +1〕 =〔 x +3x+1 〕〔x ﹣ 3x+1 〕;4 24 2 2 2 22 2 〔 2〕 x +x +2ax+1﹣ a=x+2x +1﹣ x +2ax ﹣ a =〔 x +1〕﹣〔 x ﹣ a 〕 =〔x +1+x﹣ a 〕〔 x 2﹣ x+a 〕;+12 ﹣ 2x 2〔1﹣ y242221+y 〕 +x 4〔 3〕〔 1+y 〕 〕 +x 〔 1﹣ y 〕 =〔 1+y 〕﹣2x 〔 1﹣y 〕〔〔 1﹣ y 〕 22 2222〔 1=〔 1+y 〕 ﹣ 2x 〔 1﹣ y 〕〔1+y 〕 +[x 〔1﹣ y 〕 ]=[ 〔1+y 〕﹣ x22 22﹣ y 〕 ]=〔 1+y ﹣x +x y 〕3 2 22 2243243 2( 4〕 x +2x +3x +2x+1=x +x +x ++x +x +x+x +x+1=x 〔 x +x+1 〕 +x 〔x +x+1 〕+x 2+x+1= 〔 x 2+x+1 〕2.12.把以下各式分解因式:〔1〕 4x 3﹣ 31x+15 ; 2 2 2 2 2 2 4 4 4;〔 2〕 2a b +2a c +2b c ﹣a ﹣ b ﹣ c5 ;3 2﹣ 9;〔3〕 x +x+1 〔 4〕x +5x +3x( 5〕 2a 4﹣ a 3﹣6a 2﹣ a+2.分析:〔 1〕需把﹣ 31x 拆项为﹣ x ﹣ 30x ,再分组分解;2 2 2 2 2 2 ,再按公式法因式分解;〔 2〕把 2ab 拆项成 4a b ﹣2ab 5 522〔 3〕把 x +x+1 添项为 x ﹣ x+x +x+1 ,再分组以及公式法因式分解;32322﹣ 9〕,再提取公因式因〔 4〕把 x +5x +3x ﹣ 9 拆项成〔 x ﹣x 〕 +〔 6x ﹣ 6x 〕 +〔 9x 式分解;〔 5〕先分组因式分解,再用拆项法把因式分解彻底.解答: 解:〔 1〕4x 3﹣31x+15=4x 3﹣ x ﹣ 30x+15=x 〔 2x+1 〕〔2x ﹣ 1〕﹣ 15〔 2x ﹣1〕 =〔 2x ﹣ 1〕( 2x 2+1﹣ 15〕=〔 2x ﹣ 1〕〔 2x ﹣5〕〔 x+3 〕;2 2 2 2 2 2 4 4 4 2 2 4 4 4 2 2 2 2 2 2〔 2〕2a b +2a c +2b c﹣a﹣ b ﹣ c =4a b ﹣〔 a +b +c +2a b﹣2a c ﹣ 2bc 〕=2 222222 2222〔 2ab 〕 ﹣〔 a +b ﹣ c 〕 = 〔2ab+a +b ﹣ c 〕〔 2ab ﹣ a ﹣b +c 〕 =〔a+b+c 〕 〔 a+b ﹣c 〕〔 c+a ﹣b 〕〔 c ﹣ a+b 〕;5 5 22 2 322 2〔 3〕 x +x+1=x ﹣ x+x +x+1=x 〔 x﹣ 1〕 +〔 x +x+1 〕 =x 〔 x ﹣ 1〕〔x +x+1 〕+2232〔 x +x+1 〕 =〔 x +x+1 〕〔 x ﹣ x +1〕;3232 2﹣6x 〕+〔9x2〔 4〕x +5x +3x ﹣ 9=〔 x ﹣ x 〕+〔 6x ﹣ 9〕=x 〔 x ﹣ 1〕+6x 〔 x ﹣ 1〕+9〔x ﹣ 1〕=〔 x ﹣ 1〕〔 x+3 〕2;〔 5〕2a 4﹣ a 3﹣ 6a 2﹣ a+2=a 3〔2a ﹣ 1〕﹣〔2a ﹣ 1〕〔 3a+2〕=〔 2a ﹣1〕〔 a 3﹣ 3a ﹣ 2〕3 2 2 2〔 a+1〕﹣ a 〔 a+1〕﹣ 2=〔2a ﹣ 1〕〔 a +a ﹣ a ﹣ a ﹣ 2a ﹣2〕 =〔 2a ﹣ 1〕 [a ( a+1〕 ]= 〔 2a ﹣ 1〕〔 a+1〕〔a2﹣ a ﹣ 2〕=〔 a+1〕2〔a ﹣ 2〕〔 2a ﹣ 1〕.。

因式分解专项练习题(含答案)

因式分解专项练习题(含答案)

整式的乘除与因式分解全章复习与巩固要点一、幂的运算1. 同底数幂的乘法:(为正整数);同底数幂相乘,底数不变,指数相加.2. 幂的乘方:(为正整数);幂的乘方,底数不变,指数相乘.3. 积的乘方:(为正整数);积的乘方,等于各因数乘方的积.4 .同底数幂的除法:(≠0, 为正整数,并且).同底数幂相除,底数不变,指数相减.5. 零指数幂:即任何不等于零的数的零次方等于1.要点诠释:公式中的字母可以表示数,也可以表示单项式,还可以表示多项式;灵活地双向应用运算性质,使运算更加方便、简洁要点二、整式的乘法和除法1. 单项式乘以单项式单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.2. 单项式乘以多项式单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.即(都是单项式).3. 多项式乘以多项式多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.要点诠释:运算时,要注意积的符号,多项式中的每一项前面的“+”“-”号是性质符号,单项式乘以多项式各项的结果,要用“+”连结,最后写成省略加号的代数和的形式.根据多项式的乘法,能得出一个应用比较广泛的公式:.4. 单项式相除把系数、相同字母的幂分别相除作为商的因式,对于只在被除式里出现的字母,则连同它的指数一起作为商的一个因式要点三、乘法公式1. 平方差公式:两个数的和与这两个数的差的积,等于这两个数的平方差.要点诠释:在这里,既可以是具体数字,也可以是单项式或多项式.平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.2. 完全平方公式:;两数和(差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍.要点诠释:公式特点:左边是两数的和(或差)的平方,右边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍要点四、因式分解把一个多项式化成几个整式的积的形式,像这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.因式分解的方法主要有: 提公因式法, 公式法, 分组分解法, 十字相乘法, 添、拆项法等.要点诠释:落实好方法的综合运用:首先提取公因式,然后考虑用公式;两项平方或立方,三项完全或十字;四项以上想分组,分组分得要合适;几种方法反复试,最后须是连乘式;因式分解要彻底,一次一次又一次因式分解专题过关1.将下列各式分解因式(1)3p2﹣6pq;(2)2x2+8x+8分析:(1)提取公因式3p整理即可;(2)先提取公因式2,再对余下的多项式利用完全平方公式继续分解.解答:解:(1)3p2﹣6pq=3p(p﹣2q),(2)2x2+8x+8,=2(x2+4x+4),=2(x+2)2.2.将下列各式分解因式(1)x3y﹣xy (2)3a3﹣6a2b+3ab2.分析:(1)首先提取公因式xy,再利用平方差公式进行二次分解即可;(2)首先提取公因式3a,再利用完全平方公式进行二次分解即可.解答:解:(1)原式=xy(x2﹣1)=xy(x+1)(x﹣1);(2)原式=3a(a2﹣2ab+b2)=3a(a﹣b)2.3.分解因式(1)a2(x﹣y)+16(y﹣x);(2)(x2+y2)2﹣4x2y2.分析:(1)先提取公因式(x﹣y),再利用平方差公式继续分解;(2)先利用平方差公式,再利用完全平方公式继续分解.解答:解:(1)a2(x﹣y)+16(y﹣x),=(x﹣y)(a2﹣16),=(x﹣y)(a+4)(a﹣4);(2)(x2+y2)2﹣4x2y2,=(x2+2xy+y2)(x2﹣2xy+y2),=(x+y)2(x﹣y)2.4.分解因式:(1)2x2﹣x;(2)16x2﹣1;(3)6xy2﹣9x2y﹣y3;(4)4+12(x﹣y)+9(x﹣y)2.分析:(1)直接提取公因式x即可;(2)利用平方差公式进行因式分解;(3)先提取公因式﹣y,再对余下的多项式利用完全平方公式继续分解;(4)把(x﹣y)看作整体,利用完全平方公式分解因式即可.解答:解:(1)2x2﹣x=x(2x﹣1);(2)16x2﹣1=(4x+1)(4x﹣1);(3)6xy2﹣9x2y﹣y3,=﹣y(9x2﹣6xy+y2),=﹣y(3x﹣y)2;(4)4+12(x﹣y)+9(x﹣y)2,=[2+3(x﹣y)]2,=(3x﹣3y+2)2.5.因式分解:(1)2am2﹣8a;(2)4x3+4x2y+xy2分析:(1)先提公因式2a,再对余下的多项式利用平方差公式继续分解;(2)先提公因式x,再对余下的多项式利用完全平方公式继续分解.解答:解:(1)2am2﹣8a=2a(m2﹣4)=2a(m+2)(m﹣2);(2)4x3+4x2y+xy2,=x(4x2+4xy+y2),=x(2x+y)2.6.将下列各式分解因式:(1)3x﹣12x3(2)(x2+y2)2﹣4x2y2.分析:(1)先提公因式3x,再利用平方差公式继续分解因式;(2)先利用平方差公式分解因式,再利用完全平方公式继续分解因式.解答:解:(1)3x﹣12x3=3x(1﹣4x2)=3x(1+2x)(1﹣2x);(2)(x2+y2)2﹣4x2y2=(x2+y2+2xy)(x2+y2﹣2xy)=(x+y)2(x﹣y)2.7.因式分解:(1)x2y﹣2xy2+y3;(2)(x+2y)2﹣y2.分析:(1)先提取公因式y,再对余下的多项式利用完全平方式继续分解因式;(2)符合平方差公式的结构特点,利用平方差公式进行因式分解即可.解答:解:(1)x2y﹣2xy2+y3=y(x2﹣2xy+y2)=y(x﹣y)2;(2)(x+2y)2﹣y2=(x+2y+y)(x+2y﹣y)=(x+3y)(x+y).8.对下列代数式分解因式:(1)n2(m﹣2)﹣n(2﹣m);(2)(x﹣1)(x﹣3)+1.分析:(1)提取公因式n(m﹣2)即可;(2)根据多项式的乘法把(x﹣1)(x﹣3)展开,再利用完全平方公式进行因式分解.解答:解:(1)n2(m﹣2)﹣n(2﹣m)=n2(m﹣2)+n(m﹣2)=n(m﹣2)(n+1);(2)(x﹣1)(x﹣3)+1=x2﹣4x+4=(x﹣2)2.9.分解因式:a2﹣4a+4﹣b2.分析:本题有四项,应该考虑运用分组分解法.观察后可以发现,本题中有a的二次项a2,a的一次项﹣4a,常数项4,所以要考虑三一分组,先运用完全平方公式,再进一步运用平方差公式进行分解.解答:解:a2﹣4a+4﹣b2=(a2﹣4a+4)﹣b2=(a﹣2)2﹣b2=(a﹣2+b)(a﹣2﹣b).10.分解因式:a2﹣b2﹣2a+1分析:当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题中有a的二次项,a的一次项,有常数项.所以要考虑a2﹣2a+1为一组.解答:解:a2﹣b2﹣2a+1=(a2﹣2a+1)﹣b2=(a﹣1)2﹣b2=(a﹣1+b)(a﹣1﹣b).11.把下列各式分解因式:(1)x4﹣7x2+1;(2)x4+x2+2ax+1﹣a2(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2(4)x4+2x3+3x2+2x+1分析:(1)首先把﹣7x2变为+2x2﹣9x2,然后多项式变为x4﹣2x2+1﹣9x2,接着利用完全平方公式和平方差公式分解因式即可求解;(2)首先把多项式变为x4+2x2+1﹣x2+2ax﹣a2,然后利用公式法分解因式即可解;(3)首先把﹣2x2(1﹣y2)变为﹣2x2(1﹣y)(1﹣y),然后利用完全平方公式分解因式即可求解;(4)首先把多项式变为x4+x3+x2++x3+x2+x+x2+x+1,然后三个一组提取公因式,接着提取公因式即可求解.解答:解:(1)x4﹣7x2+1=x4+2x2+1﹣9x2=(x2+1)2﹣(3x)2=(x2+3x+1)(x2﹣3x+1);(2)x4+x2+2ax+1﹣a=x4+2x2+1﹣x2+2ax﹣a2=(x2+1)﹣(x﹣a)2=(x2+1+x﹣a)(x2+1﹣x+a);(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2=(1+y)2﹣2x2(1﹣y)(1+y)+x4(1﹣y)2=(1+y)2﹣2x2(1﹣y)(1+y)+[x2(1﹣y)]2=[(1+y)﹣x2(1﹣y)]2=(1+y﹣x2+x2y)2(4)x4+2x3+3x2+2x+1=x4+x3+x2++x3+x2+x+x2+x+1=x2(x2+x+1)+x(x2+x+1)+x2+x+1=(x2+x+1)2.12.把下列各式分解因式:(1)4x3﹣31x+15;(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4;(3)x5+x+1;(4)x3+5x2+3x﹣9;(5)2a4﹣a3﹣6a2﹣a+2.分析:(1)需把﹣31x拆项为﹣x﹣30x,再分组分解;(2)把2a2b2拆项成4a2b2﹣2a2b2,再按公式法因式分解;(3)把x5+x+1添项为x5﹣x2+x2+x+1,再分组以及公式法因式分解;(4)把x3+5x2+3x﹣9拆项成(x3﹣x2)+(6x2﹣6x)+(9x﹣9),再提取公因式因式分解;(5)先分组因式分解,再用拆项法把因式分解彻底.解答:解:(1)4x3﹣31x+15=4x3﹣x﹣30x+15=x(2x+1)(2x﹣1)﹣15(2x﹣1)=(2x﹣1)(2x2+1﹣15)=(2x﹣1)(2x﹣5)(x+3);(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4=4a2b2﹣(a4+b4+c4+2a2b2﹣2a2c2﹣2b2c2)=(2ab)2﹣(a2+b2﹣c2)2=(2ab+a2+b2﹣c2)(2ab﹣a2﹣b2+c2)=(a+b+c)(a+b﹣c)(c+a﹣b)(c﹣a+b);(3)x5+x+1=x5﹣x2+x2+x+1=x2(x3﹣1)+(x2+x+1)=x2(x﹣1)(x2+x+1)+(x2+x+1)=(x2+x+1)(x3﹣x2+1);(4)x3+5x2+3x﹣9=(x3﹣x2)+(6x2﹣6x)+(9x﹣9)=x2(x﹣1)+6x(x﹣1)+9(x﹣1)=(x﹣1)(x+3)2;(5)2a4﹣a3﹣6a2﹣a+2=a3(2a﹣1)﹣(2a﹣1)(3a+2)=(2a﹣1)(a3﹣3a﹣2)=(2a﹣1)(a3+a2﹣a2﹣a﹣2a﹣2)=(2a﹣1)[a2(a+1)﹣a(a+1)﹣2(a+1)]=(2a﹣1)(a+1)(a2﹣a﹣2)=(a+1)2(a﹣2)(2a﹣1).。

超经典的因式分解练习题有答案

超经典的因式分解练习题有答案

超经典的因式分解练习题有答案一、填空题:1、4a3+8a2+24a=4a(a2+2a+6)2.(a-3)(3-2a)=(3-a)(3-2a);3、a3b-ab3=ab(a-b)(a2+ab+b2)4、(1-a)mn+a-1=(mn-1)(1-a)5、0.0009x4=(0.03x2)26、(3a-1)2-8a+3=9a2-14a+17、x2-y2-z2+2yz=(x-y+z)(x+y-z)8、2ax-10at+5by-bx=2a(x-5t)-b(x-5y)=(2a-b)(x-5t)9、x2+3x-10=(x+5)(x-2)10.若m2-3m+2=(m+a)(m+b),则a=1,b=2;11、x3-1y3=(x-1y)(x2+xy+y2)12、a2-bc+ab-ac=(a+b)(a-c)13、当m=5时,x2+2(m-3)x+25是完全平方式.14、x2-1216x-1/4)(x+1/4)二、选择题:1.下列各式的因式分解结果中,正确的是C.-6xy=(4-3xy)2.多项式m(n-2)-m(2-n)分解因式等于D.m(n-2)(m-1)3.在下列等式中,属于因式分解的是C.-4a+9b=(-2a+3b)(2a+3b)4.下列各式中,能用平方差公式分解因式的是D.-(-a)+b5.若9x+mxy+16y是一个完全平方式,那么m的值是C.126.把多项式a-a分解得A.a(a-a)7.若a+a=-1,则a+2a-3a-4a+3的值为2432(此题有误,无法解答)1.解:n4n-13n+12n+12 = n(n3-13n+12)+12 = n(n-3)(n-4)(n-1)+12答案:D2.解:x+y+2x-6y+10=0,化简得3x-5y+10=0,解得y=3-x/5,代入原式得x=1答案:A3.解:(m+3m)-8(m+3m)+16 = -4m+16 = -4(m-4)答案:B4.解:x-7x-60 = -6x-60 = -6(x+10)答案:A5.解:3x-2xy-8y = (3x-4y)(1-2x)答案:B6.解:a+8ab-33b = (a-3b)(8b+11)+11(a-3b) = (a-3b)(8b+11+a-3b)答案:C7.解:x-3x+2 = -2x+2 = -2(x-1)答案:A8.解:同第二题,答案为A9.解:(m+3m)-8(m+3m)+16 = -4m+16 = -4(m-4),答案为B10.解:同第四题,答案为A11.解:3x-2xy-8y = (3x-4y)(1-2x),答案为B12.解:a+8ab-33b = (a-3b)(8b+11)+11(a-3b) = (a-3b)(8b+11+a-3b),答案为C13.解:x-3x+2 = -2x+2 = -2(x-1),答案为A14.解:x-ax-bx+ab = (x-a)(b-x),答案为B15.解:设二次三项式为(x-p)(x-q),则pq=-12,p+q=1,解得p=-4,q=3或p=3,q=-4,答案为C16.解:x-x-x+1 = 1,x+y-xy-x = (1-y)(x-1),x-2x-y+1 = -(x+y-1),(x+3x)2-(2x+1) = 8x2-2x-1,不含有(x-1)因式的有3个,答案为C17.解:9-x+12xy-36y = (3-x)(3-4y),答案为A18.解:a-bc+ac-ab = a(c-b)-b(c-a) = (a-b)(c-a),答案为AC。

初中数学 因式分解 练习题(含答案)

初中数学  因式分解  练习题(含答案)

因式分解的常用方法把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。

因式分解的方法多种多样,现将初中阶段因式分解的常用方法总结如下: 一、提公因式法.如多项式),(c b a m cm bm am ++=++其中m 叫做这个多项式各项的公因式, m 既可以是一个单项式,也可以是一个多项式.【例1】分解因式322x x x -- 解:原式()221x x x =--二、运用公式法.运用公式法,即用))((,)(2),)((223322222b ab a b a b a b a b ab a b a b a b a +±=±±=+±-+=- 写出结果.【例2】分解因式2244a ab b ++ 解:原式()22a b =+三、分组分解法.(一)分组后能直接提公因式 【例3】分解因式:bn bm an am +++分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a ,后两项都含有b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。

解:原式=)()(bn bm an am +++=)()(n m b n m a +++ 每组之间还有公因式! =))((b a n m ++思考:此题还可以怎样分组?此类型分组的关键:分组后,每组内可以提公因式,且各组分解后,组与组之间又有公因式可以提。

【例4】分解因式:bx by ay ax -+-5102解法一:第一、二项为一组 解法二:第一、四项为一组;第三、四项为一组。

第二、三项为一组。

解:原式=)5()102(bx by ay ax -+- 原式=)510()2(by ay bx ax +-+- =)5()5(2y x b y x a --- =)2(5)2(b a y b a x --- =)2)(5(b a y x -- =)5)(2(y x b a --练习1:分解因式255m n mn m +--解:原式()()()()255555m m mn n m m n m m n m =--+=---=--(二)分组后能直接运用公式【例5】分解因式:ay ax y x ++-22分析:若将第一、三项分为一组,第二、四项分为一组,虽然可以提公因式,但提完后就能继续分解,所以只能另外分组。

因式分解练习题加答案-100题

因式分解练习题加答案-100题

因式分解下列各式:1.3a3b2c-6a2b2c2+9ab2c3=3ab^2 c(a^2-2ac+3c^2)2.xy+6-2x-3y=(x-3)(y-2)3.x2(x-y)+y2(y-x)=(x+y)(x-y)^24.2x2-(a-2b)x-ab=(2x-a)(x+b)5.a4-9a2b2=a^2(a+3b)(a-3b)6.x3+3x2-4含有x-1的因式,试分解x3+3x2-4=(x-1)(x+2)^27.ab(x2-y2)+xy(a2-b2)=(ay+bx)(ax-by)8.(x+y)(a-b-c)+(x-y)(b+c-a)=2y(a-b-c)9.a2-a-b2-b=(a+b)(a-b-1)10.(3a-b)2-4(3a-b)(a+3b)+4(a+3b)2=[3a-b-2(a+3b)]^2=(a-7b)^211.(a+3)2-6(a+3)=(a+3)(a-3)12.(x+1)2(x+2)-(x+1)(x+2)2=-(x+1)(x+2)abc+ab-4a=a(bc+b-4)(2)16x2-81=(4x+9)(4x-9)(3)9x2-30x+25=(3x-5)^2(4)x2-7x-30=(x-10)(x+3)35.x2-25=(x+5)(x-5)36.x2-20x+100=(x-10)^237.x2+4x+3=(x+1)(x+3)38.4x2-12x+5=(2x-1)(2x-5)39.(1)3ax2-6ax=3ax(x-2)(2)x(x+2)-x=x(x+1)(3)x2-4x-ax+4a=(x-4)(x-a)(4)25x2-49=(5x-9)(5x+9)(5)36x2-60x+25=(6x-5)^2(6)4x2+12x+9=(2x+3)^2(7)x2-9x+18=(x-3)(x-6)(8)2x2-5x-3=(x-3)(2x+1)(9)12x2-50x+8=2(6x-1)(x-4)40.(x+2)(x-3)+(x+2)(x+4)=(x+2)(2x-1)41.2ax2-3x+2ax-3=(x+1)(2ax-3)42.9x2-66x+121=(3x-11)^243.8-2x2=2(2+x)(2-x)44.x2-x+14 =整数内无法分解45.9x2-30x+25=(3x-5)^246.-20x2+9x+20=(-4x+5)(5x+4)47.12x2-29x+15=(4x-3)(3x-5)48.36x2+39x+9=3(3x+1)(4x+3)49.21x2-31x-22=(21x+11)(x-2)50.9x4-35x2-4=(9x^2+1)(x+2)(x-2)51.(2x+1)(x+1)+(2x+1)(x-3)=2(x-1)(2x+1)52.2ax2-3x+2ax-3=(x+1)(2ax-3)53.x(y+2)-x-y-1=(x-1)(y+1)54.(x2-3x)+(x-3)2=(x-3)(2x-3)55.9x2-66x+121=(3x-11)^256.8-2x2=2(2-x)(2+x)57.x4-1=(x-1)(x+1)(x^2+1)58.x2+4x-xy-2y+4=(x+2)(x-y+2)59.4x2-12x+5=(2x-1)(2x-5)60.21x2-31x-22=(21x+11)(x-2)61.4x2+4xy+y2-4x-2y-3=(2x+y-3)(2x+y+1)62.9x5-35x3-4x=x(9x^2+1)(x+2)(x-2)63.(1)3x2-6x=3x(x-2)(2)49x2-25=(7x+5)(7x-5)(3)6x2-13x+5=(2x-1)(3x-5)(4)x2+2-3x=(x-1)(x-2)(5)12x2-23x-24=(3x-8)(4x+3)(6)(x+6)(x-6)-(x-6)=(x-6)(x+5)(7)3(x+2)(x-5)-(x+2)(x-3)=2(x-6)(x+2)(8)9x2+42x+49=(3x+7)^2 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1页3页
因式分解习题精选
一、填空:(30分)
1、若16)3(22xmx是完全平方式,则m的值等于_____。2、22)(nxmxx则m=____n=____

3、232yx与yx612的公因式是_4、若nmyx=))()((4222yxyxyx,则m=_______,n=_________。
5、在多项式4224222294,4,,tsyxbanm中,可以用平方差公式分解因式的
有________________________ ,其结果是 _____________________。
6、若16)3(22xmx是完全平方式,则m=_______。7、_____))(2(2(_____)2xxxx

8、已知,01200520042xxxx则.________2006x9、若25)(162Mba是完全平方式
M=________。10、22)3(__6xxx, 22)3(9___xx11、若229ykx是完全平方式,则k=-
_______。12、若442xx的值为0,则51232xx的值是________。13、若)15)(1(152xxaxx则
a
=_____。14、若6,422yxyx则xy___。15、方程042xx,的解是________。

二、选择题:(10分)
1、多项式))(())((xbxaabbxxaa的公因式是( )

A、-a、 B、))((bxxaa C、)(xaa D、)(axa
2、若22)32(9xkxmx,则m,k的值分别是( )
A、m=—2,k=6,B、m=2,k=12,C、m=—4,k=—12、D m=4,k=12、
3、下列名式:4422222222,)()(,,,yxyxyxyxyx中能用平方差公式分解因式的有( )
A、1个,B、2个,C、3个,D、4个
4、计算)1011)(911()311)(211(2232的值是( ) A、21 B、2011.,101.,201DC
三、分解因式:(30分)
1 、234352xxx 2 、 2633xx 3 、 22)2(4)2(25xyyx 4、22414yxyx

5、xx5 6、13x 7、2axabaxbxbx2 8、811824xx
2页3页

9 、24369yx 10、24)4)(3)(2)(1(xxxx
四、代数式求值(15分)
1、 已知312yx,2xy,求 43342yxyx的值。

2、 若x、y互为相反数,且4)1()2(22yx,求x、y的值
3、 已知2ba,求)(8)(22222baba的值
五、计算: (15)

(1) 0.7566.24366.3 (2) 200020012121 (3)2244222568562
因式分解经典提高题
1、22424yxyxyx有一个因式是yx2,另一个因式是( )
A.12yx B.12yx C.12yx D.12yx
2、把a4-2a2b2+b4分解因式,结果是( )
A、a2(a2-2b2)+b4 B、(a2-b2)2 C、(a-b)4 D、(a+b)2(a-b)2
3、若a2-3ab-4b2=0,则ba的值为( )A、1 B、-1 C、4或-1 D、- 4或1

4、已知a为任意整数,且2213aa的值总可以被(1)nnn为自然数,且整除,则n的值为( )
A.13 B.26 C.13或26 D.13的倍数
5、把代数式 322363xxyxy分解因式,结果正确的是

A.(3)(3)xxyxy B.223(2)xxxyy C.2(3)xxy D.23()xxy
6、把x2-y2-2y-1分解因式结果正确的是( )。
A.(x+y+1)(x-y-1) B.(x+y-1)(x-y-1)
C.(x+y-1)(x+y+1) D.(x-y+1)(x+y+1)
7、把x2-y2-2y-1分解因式结果正确的是( )。
A.(x+y+1)(x-y-1) B.(x+y-1)(x-y-1)
C.(x+y-1)(x+y+1) D.(x-y+1)(x+y+1)
8、分解因式:222xxyyxy的结果是( )

A.1xyxy B.1xyxy C.1xyxy D.1xyxy
9、因式分解:9x2-y2-4y-4=__________.
3页3页

10、若nmyx=))()((4222yxyxyx,则m=_______,n=_________。
11、已知,01200520042xxxx则.________2006x12、若6,422yxyx则xy___。
13、计算)1011)(911()311)(211(2232的值是( )
14、22414yxyx 15、811824xx 16、2axabaxbxbx2

17、24)4)(3)(2)(1(xxxx 18、1235xxx 19、)()()(23mnnmnm
20、3)2(2)2(222aaaa

21、已知312yx,2xy,求 43342yxyx的值。
22、已知2ba,求)(8)(22222baba的值
23、(1)已知2,2xyyx,求xyyx622的值;
(2)已知21,122yxyx,求yx的值;
(3)已知21ba,83ab,求(1)2)(ba;(2)32232abbaba
(4)已知0516416422yxyx,求x+y的值;
24、2222224)(babac
25、先分解因式,然后计算求值:(本题6分)
(a2+b2-2ab)-6(a-6)+9,其中a=10000,b=9999。
26、已知,8nm,15mn求22nmnm的值。

24、27已知:,012aa
(1)求222aa的值;
(2)求1999223aa的值。

28、已知x(x-1)-(x2-y)=-2.求xyyx222的值.

相关文档
最新文档