三年高考2016-2018高考数学试题分项版解析专题02常用逻辑用语文含解析
高考(2016-2018)数学(理)真题分项版解析——专题02常用逻辑用语(原卷版)

专题02 常用逻辑用语考纲解读明方向考点内容解读要求常考题型预测热度1.命题及四种命题间的关系1.理解命题的概念2.了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系Ⅱ选择题★★☆2.充分条件与必要条件理解必要条件、充分条件与充要条件的含义Ⅲ选择题★★★3.逻辑联结词“或”“且”“非”了解逻辑联结词“或”“且”“非”的含义Ⅱ选择题★★☆4.全称量词与存在量词1.理解全称量词和存在量词的意义2.能正确地对含有一个量词的命题进行否定Ⅲ选择题★★★分析解读1.本节主要考查充分必要条件的推理判断及四种命题间的相互关系问题.2.本部分内容在高考试题中多以选择题或填空题的形式出现,考查四种命题的真假判断以及充分条件、必要条件的判定和应用,考查学生的逻辑推理能力.3.会判断含有一个量词的全称命题或特称命题的真假,能正确地对含有一个量词的命题进行否定.4.能用逻辑联结词“或”“且”“非”正确地表达相关的数学内容.5.本节内容在高考中约为5分,属中低档题.命题探究练扩展2018年高考全景展示1.2018年浙江卷已知平面α,直线m ,n 满足m α,n α,则“m ∥n ”是“m ∥α”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件 2.2018年理数天津卷设,则“”是“”的( )A. 充分而不必要条件B. 必要而不重复条件C. 充要条件D. 既不充分也不必要条件 3.2018年理北京卷设a ,b 均为单位向量,则“”是“a ⊥b ”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件2017年高考全景展示1.2017天津,理4设θ∈R ,则“||1212θ-<”是“sin 2θ<”的( ) (A )充分而不必要条件 (B )必要而不充分条件(C )充要条件(D )既不充分也不必要条件 2.2017,理3已知命题p:()x x ∀+>0,ln 1>0;命题q :若a >b ,则a b 22>,下列命题为真命题的是( )(A ) ∧p q (B )⌝∧p q (C ) ⌝∧p q (D )⌝⌝∧p q3.2017北京,理13能够说明“设a ,b ,c 是任意实数.若a >b >c ,则ab >c ”是假命题的一组整数a , b ,c 的值依次为______________________________.2016年高考全景展示1.2016浙江理数命题“*x n ∀∈∃∈,R N ,使得2n x >”的否定形式是( ) A .*x n ∀∈∃∈,R N ,使得2n x < B .*x n ∀∈∀∈,R N ,使得2n x < C .*x n ∃∈∃∈,R N ,使得2n x < D .*x n ∃∈∀∈,R N ,使得2n x <2.2016理数已知直线a ,b 分别在两个不同的平面α,β内.则“直线a 和直线b 相交”是“平面α和平面β相交”的( )(A )充分不必要条件 (B )必要不充分条件 (C )充要条件(D )既不充分也不必要条件3. 2016天津理数设{a n }是首项为正数的等比数列,公比为q ,则“q <0”是“对任意的正整数n ,a 2n −1a 2n <0”的( )(A )充要条件 (B )充分而不必要条件 (C )必要而不充分条件 (D )既不充分也不必要条件。
常用逻辑用语近3年高考试题【精品教案】—【教学设计】

中小学教学参考资料教学设计试卷随堂检测近3年(2016——2018)《常用逻辑用语》部分高考真题一.选择题(共22小题)1.(2018•天津)设x∈R,则“x3>8”是“|x|>2”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件2.(2018•天津)设x∈R,则“|x ﹣|<”是“x3<1”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件3.(2018•上海)已知a∈R,则“a>1”是“<1”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件4.(2018•浙江)已知平面α,直线m,n满足m⊄α,n⊂α,则“m∥n”是“m∥α”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件5.(2018•北京)设a,b,c,d是非零实数,则“ad=bc”是“a,b,c,d成等比数列”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件6.(2018•北京)设,均为单位向量,则“|﹣3|=|3+|”是“⊥”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件7.(2016•四川)设p:实数x,y满足x>1且y>1,q:实数x,y满足x+y>2,则p是q的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件8.(2017•天津)设x∈R,则“2﹣x≥0”是“|x﹣1|≤1”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件9.(2017•天津)设θ∈R,则“|θ﹣|<”是“sinθ<”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件10.(2017•北京)设,为非零向量,则“存在负数λ,使得=λ”是“•<0”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件11.(2017•浙江)已知等差数列{a n}的公差为d,前n项和为S n,则“d>0”是“S4+S6>2S5”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件12.(2017•山东)已知命题p:∃x∈R,x2﹣x+1≥0.命题q:若a2<b2,则a<b,下列命题为真命题的是()A.p∧q B.p∧¬q C.¬p∧q D.¬p∧¬q13.(2016•山东)已知直线a,b分别在两个不同的平面α,β内.则“直线a和直线b相交”是“平面α和平面β相交”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件14.(2016•浙江)命题“∀x∈R,∃n∈N*,使得n≥x2”的否定形式是()A.∀x∈R,∃n∈N*,使得n<x2B.∀x∈R,∀n∈N*,使得n<x2C.∃x∈R,∃n∈N*,使得n<x2D.∃x∈R,∀n∈N*,使得n<x215.(2016•北京)设,是向量,则“||=||”是“|+|=|﹣|”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件16.(2016•浙江)已知函数f(x)=x2+bx,则“b<0”是“f(f(x))的最小值与f(x)的最小值相等”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件17.(2016•天津)设x>0,y∈R,则“x>y”是“x>|y|”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件18.(2016•上海)设a∈R,则“a>1”是“a2>1”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件19.(2016•天津)设{a n}是首项为正数的等比数列,公比为q,则“q<0”是“对任意的正整数n,a2n﹣1+a2n<0”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件20.(2016•上海)设f(x)、g(x)、h(x)是定义域为R的三个函数,对于命题:①f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均为增函数,则f(x)、g(x)、h(x)中至少有一个增函数;②若f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均是以T为周期的函数,则f(x)、g(x)、h (x)均是以T为周期的函数,下列判断正确的是()A.①和②均为真命题B.①和②均为假命题C.①为真命题,②为假命题D.①为假命题,②为真命题近3年(2016——2018)《常用逻辑用语》部分高考真题参考答案与试题解析一.选择题(共22小题)1.(2018•天津)设x∈R,则“x3>8”是“|x|>2”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【分析】由x3>8得到|x|>2,由|x|>2不一定得到x3>8,然后结合查充分条件、必要条件的判定方法得答案.【解答】解:由x3>8,得x>2,则|x|>2,反之,由|x|>2,得x<﹣2或x>2,则x3<﹣8或x3>8.即“x3>8”是“|x|>2”的充分不必要条件.故选:A.【点评】本题考查充分条件、必要条件及其判定方法,是基础题.2.(2018•天津)设x∈R,则“|x﹣|<”是“x3<1”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【分析】先解不等式,再根据充分条件和必要条件的定义即可求出.【解答】解:由|x﹣|<可得﹣<x﹣<,解得0<x<1,由x3<1,解得x<1,故“|x﹣|<”是“x3<1”的充分不必要条件,故选:A.【点评】本题考查了不等式的解法和充分必要条件,属于基础题.3.(2018•上海)已知a∈R,则“a>1”是“<1”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件【分析】“a>1”⇒“”,“”⇒“a>1或a<0”,由此能求出结果.【解答】解:a∈R,则“a>1”⇒“”,“”⇒“a>1或a<0”,∴“a>1”是“”的充分非必要条件.故选:A.【点评】本题考查充分条件、必要条件的判断,考查不等式的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.4.(2018•浙江)已知平面α,直线m,n满足m⊄α,n⊂α,则“m∥n”是“m∥α”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【分析】根据线面平行的定义和性质以及充分条件和必要条件的定义进行判断即可.【解答】解:∵m⊄α,n⊂α,∴当m∥n时,m∥α成立,即充分性成立,当m∥α时,m∥n不一定成立,即必要性不成立,则“m∥n”是“m∥α”的充分不必要条件.故选:A.【点评】本题主要考查充分条件和必要条件的判断,根据线面平行的定义和性质是解决本题的关键,是基础题.5.(2018•北京)设a,b,c,d是非零实数,则“ad=bc”是“a,b,c,d成等比数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】根据充分条件和必要条件的定义结合等比数列的性质进行判断即可.【解答】解:若a,b,c,d成等比数列,则ad=bc,反之数列﹣1,﹣1,1,1.满足﹣1×1=﹣1×1,但数列﹣1,﹣1,1,1不是等比数列,即“ad=bc”是“a,b,c,d成等比数列”的必要不充分条件.故选:B.【点评】本题主要考查充分条件和必要条件的判断,结合等比数列的性质是解决本题的关键.6.(2018•北京)设,均为单位向量,则“|﹣3|=|3+|”是“⊥”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】根据向量数量积的应用,结合充分条件和必要条件的对应进行判断即可.【解答】解:∵“|﹣3|=|3+|”∴平方得||2+9||2﹣6•=9||2+||2+6•,即1+9﹣6•=9+1+6•,即12•=0,则•=0,即⊥,则“|﹣3|=|3+|”是“⊥”的充要条件,故选:C.【点评】本题主要考查充分条件和必要条件的判断,结合向量数量积的公式进行转化是解决本题的关键.7.(2017•上海)已知a、b、c为实常数,数列{x n}的通项x n=an2+bn+c,n∈N*,则“存在k∈N*,使得x100+k、x200+k、x300+k成等差数列”的一个必要条件是()A.a≥0B.b≤0C.c=0D.a﹣2b+c=0【分析】由x100+k,x200+k,x300+k成等差数列,可得:2x200+k=x100+k x300+k,代入化简即可得出.【解答】解:存在k∈N*,使得x100+k、x200+k、x300+k成等差数列,可得:2[a(200+k)2+b(200+k)+c]=a(100+k)2+b(100+k)+c+a(300+k)2+b(300+k)+c,化为:a=0.∴使得x100+k,x200+k,x300+k成等差数列的必要条件是a≥0.故选:A.【点评】本题考查了等差数列的通项公式、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.8.(2017•天津)设x∈R,则“2﹣x≥0”是“|x﹣1|≤1”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【分析】求出不等式的等价条件,结合充分条件和必要条件的定义进行判断即可.【解答】解:由2﹣x≥0得x≤2,由|x﹣1|≤1得﹣1≤x﹣1≤1,得0≤x≤2.则“2﹣x≥0”是“|x﹣1|≤1”的必要不充分条件,故选:B.【点评】本题主要考查充分条件和必要条件的判断,结合充分条件和必要条件的定义以及不等式的性质是解决本题的关键.9.(2017•天津)设θ∈R,则“|θ﹣|<”是“sinθ<”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【分析】运用绝对值不等式的解法和正弦函数的图象和性质,化简两已知不等式,结合充分必要条件的定义,即可得到结论.【解答】解:|θ﹣|<⇔﹣<θ﹣<⇔0<θ<,sinθ<⇔﹣+2kπ<θ<+2kπ,k∈Z,则(0,)⊊(﹣+2kπ,+2kπ),k∈Z,可得“|θ﹣|<”是“sinθ<”的充分不必要条件.故选:A.【点评】本题考查充分必要条件的判断,同时考查正弦函数的图象和性质,运用定义法和正确解不等式是解题的关键,属于基础题.10.(2017•北京)设,为非零向量,则“存在负数λ,使得=λ”是“•<0”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】,为非零向量,存在负数λ,使得=λ,则向量,共线且方向相反,可得•<0.反之不成立,非零向量,的夹角为钝角,满足•<0,而=λ不成立.即可判断出结论.【解答】解:,为非零向量,存在负数λ,使得=λ,则向量,共线且方向相反,可得•<0.反之不成立,非零向量,的夹角为钝角,满足•<0,而=λ不成立.∴,为非零向量,则“存在负数λ,使得=λ”是•<0”的充分不必要条件.故选:A.【点评】本题考查了向量共线定理、向量夹角公式、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.11.(2017•浙江)已知等差数列{a n}的公差为d,前n项和为S n,则“d>0”是“S4+S6>2S5”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【分析】根据等差数列的求和公式和S4+S6>2S5,可以得到d>0,根据充分必要条件的定义即可判断.【解答】解:∵S4+S6>2S5,∴4a1+6d+6a1+15d>2(5a1+10d),∴21d>20d,∴d>0,故“d>0”是“S4+S6>2S5”充分必要条件,故选:C.【点评】本题借助等差数列的求和公式考查了充分必要条件,属于基础题12.(2017•山东)已知命题p:∃x∈R,x2﹣x+1≥0.命题q:若a2<b2,则a<b,下列命题为真命题的是()A.p∧q B.p∧¬q C.¬p∧q D.¬p∧¬q【分析】先判断命题p,q的真假,进而根据复合命题真假的真值表,可得答案.【解答】解:命题p:∃x=0∈R,使x2﹣x+1≥0成立.故命题p为真命题;当a=1,b=﹣2时,a2<b2成立,但a<b不成立,故命题q为假命题,故命题p∧q,¬p∧q,¬p∧¬q均为假命题;命题p∧¬q为真命题,故选:B.【点评】本题以命题的真假判断与应用为载体,考查了复合命题,特称命题,不等式与不等关系,难度中档.13.(2016•山东)已知直线a,b分别在两个不同的平面α,β内.则“直线a和直线b相交”是“平面α和平面β相交”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”⇒“平面α和平面β相交”,反之不成立.【解答】解:直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”⇒“平面α和平面β相交”,反之不成立.∴“直线a和直线b相交”是“平面α和平面β相交”的充分不必要条件.故选:A.【点评】本题考查了空间位置关系、简易逻辑的判定方法,考查了推理能力,属于基础题.14.(2016•浙江)命题“∀x∈R,∃n∈N*,使得n≥x2”的否定形式是()A.∀x∈R,∃n∈N*,使得n<x2B.∀x∈R,∀n∈N*,使得n<x2C.∃x∈R,∃n∈N*,使得n<x2D.∃x∈R,∀n∈N*,使得n<x2【分析】特称命题的否定是全称命题,全称命题的否定是特称命题,依据规则写出结论即可【解答】解:“∀x∈R,∃n∈N*,使得n≥x2”的否定形式是“∃x∈R,∀n∈N*,使得n<x2“故选:D.【点评】本题考查命题的否定,解本题的关键是掌握住特称命题的否定是全称命题,书写答案是注意量词的变化.15.(2016•浙江)已知实数a,b,c.()A.若|a2+b+c|+|a+b2+c|≤1,则a2+b2+c2<100B.若|a2+b+c|+|a2+b﹣c|≤1,则a2+b2+c2<100C.若|a+b+c2|+|a+b﹣c2|≤1,则a2+b2+c2<100D.若|a2+b+c|+|a+b2﹣c|≤1,则a2+b2+c2<100【分析】本题可根据选项特点对a,b,c设定特定值,采用排除法解答.【解答】解:A.设a=b=10,c=﹣110,则|a2+b+c|+|a+b2+c|=0≤1,a2+b2+c2>100;B.设a=10,b=﹣100,c=0,则|a2+b+c|+|a2+b﹣c|=0≤1,a2+b2+c2>100;C.设a=100,b=﹣100,c=0,则|a+b+c2|+|a+b﹣c2|=0≤1,a2+b2+c2>100;故选:D.【点评】本题主要考查命题的真假判断,由于正面证明比较复杂,故利用特殊值法进行排除是解决本题的关键.16.(2016•浙江)已知函数f(x)=x2+bx,则“b<0”是“f(f(x))的最小值与f (x)的最小值相等”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【分析】求出f(x)的最小值及极小值点,分别把“b<0”和“f(f(x))的最小值与f(x)的最小值相等”当做条件,看能否推出另一结论即可判断.【解答】解:f(x)的对称轴为x=﹣,f min(x)=﹣.(1)若b<0,则﹣>﹣,∴当f(x)=﹣时,f(f(x))取得最小值f(﹣)=﹣,即f(f(x))的最小值与f(x)的最小值相等.∴“b<0”是“f(f(x))的最小值与f(x)的最小值相等”的充分条件.(2)设f(x)=t,则f(f(x))=f(t),∴f(t)在(﹣,﹣)上单调递减,在(﹣,+∞)上单调递增,若f(f(x))=f(t)的最小值与f(x)的最小值相等,则﹣≤﹣,解得b≤0或b≥2.∴“b<0”不是“f(f(x))的最小值与f(x)的最小值相等”的必要条件.故选:A.【点评】本题考查了二次函数的性质,简易逻辑关系的推导,属于基础题.17.(2016•天津)设x>0,y∈R,则“x>y”是“x>|y|”的()A.充要条件B.充分不必要条件C.必要而不充分条件D.既不充分也不必要条件【分析】直接根据必要性和充分判断即可.【解答】解:设x>0,y∈R,当x>0,y=﹣1时,满足x>y但不满足x>|y|,故由x>0,y∈R,则“x>y”推不出“x>|y|”,而“x>|y|”⇒“x>y”,故“x>y”是“x>|y|”的必要不充分条件,故选:C.【点评】本题考查了不等式的性质、充要条件的判定,考查了推理能力与计算能力,属于基础题.18.(2016•上海)设a∈R,则“a>1”是“a2>1”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件【分析】根据不等式的关系,结合充分条件和必要条件的定义进行判断即可.【解答】解:由a2>1得a>1或a<﹣1,即“a>1”是“a2>1”的充分不必要条件,故选:A.【点评】本题主要考查充分条件和必要条件的判断,利用不等式的关系结合充分条件和必要条件的定义是解决本题的关键,比较基础.19.(2016•四川)设p:实数x,y满足x>1且y>1,q:实数x,y满足x+y>2,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】由x>1且y>1,可得:x+y>2,反之不成立,例如取x=3,y=.【解答】解:由x>1且y>1,可得:x+y>2,反之不成立:例如取x=3,y=.∴p是q的充分不必要条件.故选:A.【点评】本题考查了不等式的性质、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.20.(2016•北京)设,是向量,则“||=||”是“|+|=|﹣|”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】根据向量模相等的几何意义,结合充要条件的定义,可得答案.【解答】解:若“||=||”,则以,为邻边的平行四边形是菱形;若“|+|=|﹣|”,则以,为邻边的平行四边形是矩形;故“||=||”是“|+|=|﹣|”的既不充分也不必要条件;故选:D.【点评】本题考查的知识点是充要条件,向量的模,分析出“||=||”与“|+|=|﹣|”表示的几何意义,是解答的关键.21.(2016•天津)设{a n}是首项为正数的等比数列,公比为q,则“q<0”是“对任意的正整数n,a2n+a2n<0”的()﹣1A.充要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件【分析】利用必要、充分及充要条件的定义判断即可.【解答】解:{a n}是首项为正数的等比数列,公比为q,+a2n<0”不一定成立,若“q<0”是“对任意的正整数n,a2n﹣1例如:当首项为2,q=﹣时,各项为2,﹣1,,﹣,…,此时2+(﹣1)=1>0,+(﹣)=>0;+a2n<0”,前提是“q<0”,而“对任意的正整数n,a2n﹣1+a2n<0”的必要而不充分条件,则“q<0”是“对任意的正整数n,a2n﹣1故选:C.【点评】此题考查了必要条件、充分条件与充要条件的判断,熟练掌握各自的定义是解本题的关键.22.(2016•上海)设f(x)、g(x)、h(x)是定义域为R的三个函数,对于命题:①f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均为增函数,则f(x)、g(x)、h(x)中至少有一个增函数;②若f(x)+g(x)、f(x)+h(x)、g(x)+h (x)均是以T为周期的函数,则f(x)、g(x)、h(x)均是以T为周期的函数,下列判断正确的是()A.①和②均为真命题B.①和②均为假命题C.①为真命题,②为假命题D.①为假命题,②为真命题【分析】①不成立.可举反例:f(x)=.g(x)=,h(x)=.②由题意可得:f(x)+g(x)=f(x+T)+g(x+T),f(x)+h(x)=f(x+T)+h(x+T),h(x)+g(x)=h(x+T)+g(x+T),可得:g(x)=g(x+T),h (x)=h(x+T),f(x)=f(x+T),即可判断出真假.【解答】解:①不成立.可举反例:f(x)=.g(x)=,h(x)=.②∵f(x)+g(x)=f(x+T)+g(x+T),f(x)+h(x)=f(x+T)+h(x+T),h(x)+g(x)=h(x+T)+g(x+T),前两式作差可得:g(x)﹣h(x)=g(x+T)﹣h(x+T),结合第三式可得:g (x)=g(x+T),h(x)=h(x+T),同理可得:f(x)=f(x+T),因此②正确.故选:D.【点评】本题考查了函数的单调性与周期性、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.二.填空题(共2小题)23.(2018•北京)能说明“若f(x)>f(0)对任意的x∈(0,2]都成立,则f (x)在[0,2]上是增函数”为假命题的一个函数是f(x)=sinx.【分析】本题答案不唯一,符合要求即可.【解答】解:例如f(x)=sinx,尽管f(x)>f(0)对任意的x∈(0,2]都成立,当x∈[0,)上为增函数,在(,2]为减函数,故答案为:f(x)=sinx.【点评】本题考查了函数的单调性,属于基础题.24.(2018•北京)能说明“若a>b,则<”为假命题的一组a,b的值依次为a=1,b=﹣1.【分析】根据不等式的性质,利用特殊值法进行求解即可.【解答】解:当a>0,b<0时,满足a>b,但<为假命题,故答案可以是a=1,b=﹣1,故答案为:a=1,b=﹣1.【点评】本题主要考查命题的真假的应用,根据不等式的性质是解决本题的关键.比较基础.。
三年高考2016_2018高考数学试题分项版解析专题02常用逻辑用语理含解析43

专题02 常用逻辑用语★★☆分析解读1.本节主要考查充分必要条件的推理判断及四种命题间的相互关系问题.2.本部分内容在高考试题中多以选择题或填空题的形式出现,考查四种命题的真假判断以及充分条件、必要条件的判定和应用,考查学生的逻辑推理能力.3.会判断含有一个量词的全称命题或特称命题的真假,能正确地对含有一个量词的命题进行否定.4.能用逻辑联结词“或”“且”“非”正确地表达相关的数学内容.5.本节内容在高考中约为5分,属中低档题.命题探究练扩展2018年高考全景展示1.【2018年浙江卷】已知平面α,直线m,n满足mα,nα,则“m∥n”是“m∥α”的A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A点睛:充分、必要条件的三种判断方法:(1)定义法:直接判断“若则”、“若则”的真假.并注意和图示相结合,例如“⇒”为真,则是的充分条件.(2)等价法:利用⇒与非⇒非,⇒与非⇒非,⇔与非⇔非的等价关系,对于条件或结论是否定式的命题,一般运用等价法.(3)集合法:若⊆,则是的充分条件或是的必要条件;若=,则是的充要条件.2.【2018年理数天津卷】设,则“”是“”的A. 充分而不必要条件B. 必要而不重复条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】分析:首先求解绝对值不等式,然后求解三次不等式即可确定两者之间的关系.详解:绝对值不等式,由.据此可知是的充分而不必要条件.本题选择A选项.点睛:本题主要考查绝对值不等式的解法,充分不必要条件的判断等知识,意在考查学生的转化能力和计算求解能力.3.【2018年理北京卷】设a,b均为单位向量,则“”是“a⊥b”的A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】C点睛:充分、必要条件的三种判断方法.1.定义法:直接判断“若则”、“若则”的真假.并注意和图示相结合,例如“⇒”为真,则是的充分条件.2.等价法:利用⇒与非⇒非,⇒与非⇒非,⇔与非⇔非的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若⊆,则是的充分条件或是的必要条件;若=,则是的充要条件. 2017年高考全景展示1.【2017天津,理4】设θ∈R ,则“ππ||1212θ-<”是“1sin 2θ<”的( ) (A )充分而不必要条件 (B )必要而不充分条件(C )充要条件(D )既不充分也不必要条件【答案】A 【解析】πππ||012126θθ-<⇔<< 1sin 2θ⇒< ,但10,sin 2θθ=<,不满足 ππ||1212θ-<,所以是充分不必要条件,选A.【考点】 充要条件【名师点睛】本题考查充要条件的判断,若p q ⇒,则p 是q 的充分条件,若q p ⇒,则p 是q 的必要条件,若p q ⇔,则p 是q 的充要条件;从集合的角度看,若A B ⊆,则A 是B 的充分条件,若B A ⊆,则A 是B 的必要条件,若A B =,则A 是B 的充要条件,若A 是B 的真子集,则A 是B 的充分不必要条件,若B 是A 的真子集,则A 是B 的必要不充分条件.2.【2017山东,理3】已知命题p:()x x ∀+>0,ln 1>0;命题q :若a >b ,则a b 22>,下列命题为真命题的是( )(A ) ∧p q (B )⌝∧p q (C ) ⌝∧p q (D )⌝⌝∧p q【答案】B【解析】试题分析:由0x >时11,ln(1)x x +>+有意义,知p 是真命题,由222221,21;12,(1)(2)>>->--<-可知q 是假命题,即⌝,p q 均是真命题,故选B.【考点】1.简易逻辑联结词.2.全称命题.【名师点睛】解答简易逻辑联结词相关问题,关键是要首先明确各命题的真假,利用或、且、非真值表,进一步作出判断.3.【2017北京,理13】能够说明“设a ,b ,c 是任意实数.若a >b >c ,则a +b >c ”是假命题的一组整数a ,b ,c 的值依次为______________________________.【答案】-1,-2,-3(答案不唯一)【解析】试题分析:()123,1233->->--+-=->-相矛盾,所以验证是假命题.【考点】不等式的性质【名师点睛】对于判断不等式恒成立问题,一般采用举反例排除法.解答本题时利用赋值的方式举反例进行验证,答案不唯一 2016年高考全景展示1.【2016浙江理数】命题“*x n ∀∈∃∈,R N ,使得2n x >”的否定形式是( )A .*x n ∀∈∃∈,R N ,使得2n x <B .*x n ∀∈∀∈,R N ,使得2n x <C .*x n ∃∈∃∈,R N ,使得2n x <D .*x n ∃∈∀∈,R N ,使得2n x <【答案】D【解析】试题分析: ∀的否定是∃,∃的否定是∀,2n x ≥的否定是2n x <.故选D .考点:全称命题与特称命题的否定.【方法点睛】全称命题的否定是特称命题,特称命题的否定是全称命题.对含有存在(全称)量词的命题进行否定需要两步操作:①将存在(全称)量词改成全称(存在)量词;②将结论加以否定.2.【2016山东理数】已知直线a ,b 分别在两个不同的平面α,β内.则“直线a 和直线b 相交”是“平面α和平面β相交”的( )(A )充分不必要条件(B )必要不充分条件 (C )充要条件(D )既不充分也不必要条件【答案】A【解析】试题分析:“直线a和直线b相交”⇒“平面α和平面β相交”,但“平面α和平面β相交”⇒“直线a和直线b相交”,所以“直线a和直线b相交”是“平面α和平面β相交”的充分不必要条件,故选A.考点:1.充要条件;2.直线与平面的位置关系.【名师点睛】充要条件的判定问题,是常考题目之一,其综合性较强,易于和任何知识点结合.本题涉及直线与平面的位置关系,突出体现了试题的基础性,能较好的考查考生分析问题解决问题的能力、空间想象能力等.3. 【2016天津理数】设{a n}是首项为正数的等比数列,公比为q,则“q<0”是“对任意的正整数n,a2n−1+a2n<0”的()(A)充要条件(B)充分而不必要条件(C)必要而不充分条件(D)既不充分也不必要条件【答案】C考点:充要关系【名师点睛】充分、必要条件的三种判断方法.1.定义法:直接判断“若p则q”、“若q则p”的真假.并注意和图示相结合,例如“p⇒q”为真,则p 是q的充分条件.2.等价法:利用p⇒q与非q⇒非p,q⇒p与非p⇒非q,p⇔q与非q⇔非p的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若A⊆B,则A是B的充分条件或B是A的必要条件;若A=B,则A是B的充要条件.。
专题01 集合-三年高考(2016-2018)数学(文)试题分项版解析(解析版)

专题01 集合-三年高考(2016-2018)数学(文)试题分项版解析(解析版)分析解读1.掌握集合的表示方法,能判断元素与集合的“属于”关系、集合与集合之间的包含关系.2.深刻理解、掌握集合的元素,子、交、并、补集的概念.熟练掌握集合的交、并、补的运算和性质.能用韦恩(Venn)图表示集合的关系及运算.学#科网3.本部分内容在高考试题中多以选择题或填空题的形式出现,以函数、不等式等知识为载体,以集合语言和符号语言表示为表现形式,考查数学思想方法.4.本节内容在高考中分值约为5分,属中低档题.命题探究练扩展2019年高考全景展示1.【2019年新课标I卷文】已知集合,,则A. B. C. D.【答案】A点睛:该题考查的是有关集合的运算的问题,在解题的过程中,需要明确交集中元素的特征,从而求得结果.2.【2019年全国卷Ⅲ文】已知集合,,则A. B. C. D.【答案】C【解析】分析:由题意先解出集合A,进而得到结果。
详解:由集合A得,所以,故答案选C.点睛:本题主要考查交集的运算,属于基础题。
3.【2019年全国卷II文】已知集合,,则A. B. C. D.【答案】C【解析】分析:根据集合可直接求解.详解:,,故选C学%科网点睛:集合题也是每年高考的必考内容,一般以客观题形式出现,一般解决此类问题时要先将参与运算的集合化为最简形式,如果是“离散型”集合可采用Venn图法解决,若是“连续型”集合则可借助不等式进行运算.【2019年北京卷文】已知集合A={(x||x|<2)},B={−2,0,1,2}, 4.则A. {0,1}B. {−1,0,1}C. {−2,0,1,2}D. {−1,0,1,2}【答案】A【解析】分析:将集合化成最简形式,再进行求交集运算.详解:,,,故选A.点睛:此题考查集合的运算,属于送分题.5.【2019年天津卷文】设集合,,,则A. B. C. D.【答案】C点睛:本题主要考查并集运算、交集运算等知识,意在考查学生的计算求解能力.6.【2019年浙江卷】已知全集U={1,2,3,4,5},A={1,3},则A. B. {1,3} C. {2,4,5} D. {1,2,3,4,5}【答案】C【解析】试题分析:分析:根据补集的定义可得结果.详解:因为全集,,所以根据补集的定义得,故选C.点睛:若集合的元素已知,则求集合的交集、并集、补集时,可根据交集、并集、补集的定义求解. 7.【2019年江苏卷】已知集合,,那么________.【答案】{1,8}【解析】由题设和交集的定义可知:.点睛:本题考查交集及其运算,考查基础知识,难度较小.2019年高考全景展示1.【2019课表1,文1】已知集合A ={}|2x x <,B ={}|320x x ->,则A .AB =3|2x x ⎧⎫<⎨⎬⎩⎭B .A B =∅C .A B 3|2x x ⎧⎫=<⎨⎬⎩⎭D .A B=R【答案】A【考点】集合运算.【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理. 2.【2019课标II ,文1】设集合{1,2,3},{2,3,4}A B ==则AB =A. {}123,4,, B. {}123,, C. {}234,, D. {}134,, 【答案】A 【解析】由题意{1,2,3,4}AB =,故选A.【考点】集合运算【名师点睛】集合的基本运算的关注点(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提.(2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决.(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn图.3.【2019课标3,文1】已知集合A={1,2,3,4},B={2,4,6,8},则A B中元素的个数为()A.1 B.2 C.3 D.4 【答案】B【解析】由题意可得:{}A B=,A B中元素的个数为2,2,4所以选B.【考点】集合运算【名师点睛】集合的基本运算的关注点(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提.(2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决.(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn图.4.【2019天津,文1】设集合{1,2,6},{2,4},{1,2,3,4}===,则A B C()A B C=(A){2}(B){1,2,4}(C){1,2,4,6}(D){1,2,3,4,6}【答案】B【解析】试题分析:由题意可得:{}(){}=∴=.本题选A B A B C1,2,4,6,1,2,4择B选项.【考点】集合的运算【名师点睛】集合分为有限集合和无限集合,若集合个数比较少时可以用列举法表示,若集合是无限集合就用描述法表示,注意代表元素是什么,集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.5.【2019北京,文1】已知U=R,集合{|22}或,则U A==<->A x x x(A)(2,2)-(B)-∞-+∞(,2)(2,)(C)[2,2]-(D)-∞-+∞(,2][2,)【答案】C【考点】集合的运算【名师点睛】集合分为有限集合和无限集合,若集合个数比较少时可以用列举法表示,若集合是无限集合就用描述法表示,注意代表元素是什么,集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.6.【2019浙江,1】已知}11|{<<-=x x P ,}20{<<=x Q ,则=Q P A .)2,1(- B .)1,0( C .)0,1(- D .)2,1( 【答案】A 【解析】试题分析:利用数轴,取Q P ,所有元素,得=Q P )2,1(-.学&科网【考点】集合运算【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理. 7.【2019山东,文1】设集合{}11M x x =-<,{}2N x x =<,则MN =A.()1,1-B. ()1,2-C. ()0,2D. ()1,2 【答案】C【考点】 不等式的解法,集合的运算【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,对连续数集间的运算,借助数轴的直观性,进行合理转化;对已知连续数集间的关系,求其中参数的取值范围时,要注意单独考察等号能否取到,对离散的数集间的运算,或抽象集合间的运算,可借助Venn 图.8.【2019江苏,1】已知集合{1,2}A =,2{,3}B a a=+,若{1}A B =则实数a 的值为 .【答案】1【解析】由题意1B ∈,显然233a +≥,所以1a =,此时234a +=,满足题意,故答案为1.【考点】元素的互异性【名师点睛】(1)认清元素的属性,解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件. (2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致解题错误.(3)防范空集.在解决有关,A B A B =∅⊆等集合问题时,往往忽略空集的情况,一定先考虑∅是否成立,以防漏解.2019年高考全景展示1. 【2019高考新课标1文数】设集合{}1,3,5,7A =,{}25B x x =,则A B =( )(A ){1,3} (B ){3,5} (C ){5,7} (D ){1,7}【答案】B【解析】试题分析:集合A 与集合B 公共元素有3,5,}5,3{=B A ,故选B. 学*科网考点:集合的交集运算2.【2019高考新课标2文数】已知集合{123}A =,,,2{|9}B x x =<,则A B =( )(A ){210123}--,,,,, (B ){21012}--,,,, (C ){123},, (D ){12},【答案】D【解析】试题分析:由29x<得,33x -<<,所以{|33}B x x =-<<,因为{1,2,3}A =,所以{1,2}A B =,故选D.考点: 一元二次不等式的解法,集合的运算.【名师点睛】集合的交、并、补运算问题,应先把集合化简在计算,常常借助数轴或韦恩图处理.3. [2019高考新课标Ⅲ文数]设集合{0,2,4,6,8,10},{4,8}A B ==,则A B=( )(A ){48}, (B ){026},, (C ){02610},,, (D ){0246810},,,,, 【答案】C考点:集合的补集运算.【技巧点拨】研究集合的关系,处理集合的交、并、补的运算问题,常用韦恩图、数轴等几何工具辅助解题.一般地,对离散的数集、抽象的集合间的关系及运算,可借助韦恩图,而对连续的集合间的运算及关系,可借助数轴的直观性,进行合理转化.4.【2019高考天津文数】已知集合}3,2,1{=A,yB∈-=,则A B=()=xy,1x2}|{A(A)}3,1{(B)}2,1{(C)}3,2{(D)}3,2,1{【答案】A【解析】{1,3,5},{1,3}==,选A.B A B考点:集合运算【名师点睛】本题重点考查集合的运算,容易出错的地方是审错题意,误求并集,属于基本题,难点系数较小.一要注意培养良好的答题习惯,避免出现粗心错误,二是明确集合交集的考查立足于元素互异性,做到不重不漏.5.【2019高考四川文科】设集合{|15}=≤≤,Z为整数集,A x x则集合A∩Z中元素的个数是( )(A)6 (B) 5 (C)4 (D)3【答案】B【解析】试题分析:由题意,{1,2,3,4,5}A Z=,故其中的元素个数为5,选B.考点:集合中交集的运算.【名师点睛】集合的概念及运算一直是高考的热点,几乎是每年必考内容,属于容易题.一般是结合不等式,函数的定义域值域考查,解题的关键是结合韦恩图或数轴解答.6. 【2019高考浙江文数】已知全集U ={1,2,3,4,5,6},集合P ={1,3,5},Q ={1,2,4},则U P Q ()=( ) A.{1} B.{3,5} C.{1,2,4,6} D.{1,2,3,4,5} 【答案】C考点:补集的运算. 【易错点睛】解本题时要看清楚是求“”还是求“”,否则很容易出现错误;一定要注意集合中元素的互异性,防止出现错误.7.【2019高考北京文数】已知集合={|24}A x x <<,{|3B x x =<或5}x >,则A B =( )A.{|25}x x << B .{|4x x <或5}x > C.{|23}x x << D.{|2x x <或5}x >【答案】C【解析】试题分析:由题意得,(2,3)AB =,故选C.考点: 集合交集 【名师点睛】1. 首先要弄清构成集合的元素是什么(即元素的意义),是数集还是点集,如集合)}(|{x f y x =,)}(|{x f y y =,)}(|),{(x f y y x =三者是不同的.2.集合中的元素具有三性——确定性、互异性、无序性,特别是互异性,在判断集合中元素的个数时,以及在含参的集合运算中,常因忽视互异性,疏于检验而出错.3.数形结合常使集合间的运算更简捷、直观.对离散的数集间的运算或抽象集合间的运算,可借助Venn图实施,对连续的数集间的运算,常利用数轴进行,对点集间的运算,则通过坐标平面内的图形求解,这在本质上是数形结合思想的体现和运用.4.空集是不含任何元素的集合,在未明确说明一个集合非空的情况下,要考虑集合为空集的可能.另外,不可忽视空集是任何元素的子集.学@科网8.【2019高考山东文数】设集合{1,2,3,4,5,6},{1,3,5},{3,4,5}U A B===,则()A B=()U(A){2,6}(B){3,6}(C){1,3,4,5}(D){1,2,4,6}【答案】A考点:集合的运算【名师点睛】本题主要考查集合的并集、补集,是一道基础题目.从历年高考题目看,集合的基本运算,是必考考点,也是考生必定得分的题目之一.9.【2019江苏卷】已知集合{1,2,3,6},{|23},=-=-<<则A B x xA B____________.=【答案】{}-1,2【解析】试题分析:{1,2,3,6}{|23}{1,2}=--<<=-A B x x考点:集合运算【名师点睛】本题重点考查集合的运算,容易出错的地方是审错题意,属于基本题,难点系数较小.一要注意培养良好的答题习惯,避免出现粗心错误,二是明确江苏对于集合题的考查立足于列举法,强调对集合运算有关概念及法则的理解。
三年高考2016_2018高考数学试题分项版解析专题01集合理含解析word格式

专题01 集合考纲解读明方向分析解读1.掌握集合的表示方法,能判断元素与集合的“属于”关系、集合与集合之间的包含关系.2.深刻理解、掌握集合的元素,子、交、并、补集的概念.熟练掌握集合的交、并、补的运算和性质.能用韦恩(Venn)图表示集合的关系及运算.3.本部分内容在高考试题中多以选择题或填空题的形式出现,以函数、不等式等知识为载体,以集合语言和符号语言表示为表现形式,考查数学思想方法.4.本节内容在高考中分值约为5分,属中低档题.命题探究练扩展2018年高考全景展示1.【2018年理北京卷】已知集合A={x||x|<2},B={–2,0,1,2},则A B=A. {0,1}B. {–1,0,1}C. {–2,0,1,2}D. {–1,0,1,2}【答案】A【解析】因此A B=,选A.点睛:认清元素的属性,解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.2.【2018年理新课标I卷】已知集合,则A. B.C. D.【答案】B程中,需要明确一元二次不等式的解集的形式以及补集中元素的特征,从而求得结果.3.【2018年全国卷Ⅲ理】已知集合,,则A. B. C. D.【答案】C【解析】由集合A得,所以,故答案选C.点睛:本题主要考查交集的运算,属于基础题。
4.【2018年理数全国卷II】已知集合,则中元素的个数为A. 9B. 8C. 5D. 4【答案】A【解析】.,当时,;当时,;当时,;所以共有9个,选A.点睛:本题考查集合与元素关系,点与圆位置关系,考查学生对概念理解与识别. 5.【2018年理数天津卷】设全集为R,集合,,则A. B. C. D.【答案】B【解析】由题意可得:,结合交集的定义可得:.本题选择B 选项.点睛:本题主要考查交集的运算法则,补集的运算法则等知识,意在考查学生的转化能力和计算求解能力.6.【2018年江苏卷】已知集合,,那么________.【答案】{1,8}【解析】由题设和交集的定义可知:.点睛:本题考查交集及其运算,考查基础知识,难度较小.2017年高考全景展示1.【2017课标1,理1】已知集合A={x|x<1},B={x|},则()A.B.C.D.【答案】A【解析】由可得,则,即,所以,,故选A.【考点】集合的运算,指数运算性质.【名师点睛】集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.2.【2017课标II,理】设集合,.若,则()A. B. C. D.【答案】C【考点】交集运算,元素与集合的关系【名师点睛】集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.两个防范:一是不要忽视元素的互异性;二是保证运算的准确性.3.【2017课标3,理1】已知集合A=,B=,则A B 中元素的个数为()A.3 B.2 C.1 D.0【答案】B【考点】交集运算;集合中的表示方法.【名师点睛】求集合的基本运算时,要认清集合元素的属性(是点集、数集或其他情形)和化简集合,这是正确求解集合运算的两个先决条件.集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.4.【2017北京,理1】若集合A={x|–2<x<1},B={x|x<–1或x>3},则A B=()(A){x|–2<x<–1} (B){x|–2<x<3}(C){x|–1<x<1} (D){x|1<x<3}【答案】A【解析】利用数轴可知,故选A.【考点】集合的运算【名师点睛】集合分为有限集合和无限集合,若集合个数比较少时可以用列举法表示,若集合是无限集合就用描述法表示,注意代表元素是什么,集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.5.【2017浙江,1】已知,,则()A.B.C.D.【答案】A【解析】利用数轴,取所有元素,得.【考点】集合运算【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理.6.【2017天津,理1】设集合,则()(A)(B)(C)(D)【答案】【解析】 ,选B【考点】集合的运算【名师点睛】集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.7.【2017江苏,1】已知集合,,若则实数的值为 .【答案】1【解析】由题意,显然,所以,此时,满足题意,故答案为1.【考点】元素的互异性【名师点睛】(1)认清元素的属性,解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.(2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致解题错误.(3)防范空集.在解决有关等集合问题时,往往忽略空集的情况,一定先考虑是否成立,以防漏解.2016年高考全景展示1.【2016课标1,理1】设集合 ,,则()(A)(B)(C)(D)【答案】D考点:集合的交集运算【名师点睛】集合是每年中的必考题,一般以基础题形式出现,属得分题.解决此类问题一般要把参与运算的集合化为最简形式再进行运算,如果是不等式解集、函数定义域及值域有关数集之间的运算,常借助数轴进行运算.2.【2016新课标3理数】设集合,则()(A) [2,3] (B)(-,2] [3,+) (C) [3,+) (D)(0,2] [3,+)【答案】D【技巧点拨】研究集合的关系,处理集合的交、并、补的运算问题,常用韦恩图、数轴等几何工具辅助解题.一般地,对离散的数集、抽象的集合间的关系及运算,可借助韦恩图,而对连续的集合间的运算及关系,可借助数轴的直观性,进行合理转化.3.【2016新课标2理数】已知集合,,则()(A)(B)(C)(D)【答案】C【解析】试题分析:集合,而,所以,故选C.考点:集合的运算.【名师点睛】集合的交、并、补运算问题,应先把集合化简在计算,常常借助数轴或韦恩图处理.4. 【2016山东理数】设集合则=()(A)(B)(C)(D)【答案】C【解析】试题分析:,,则,选C.考点:1.指数函数的性质;2.解不等式;3.及集合的运算.【名师点睛】本题主要考查集合的并集、补集,是一道基础题目.从历年题目看,集合的基本运算,是必考考点,也是考生必定得分的题目之一.本题与求函数值域、解不等式等相结合,增大了考查的覆盖面.5.【2016浙江理数】已知集合则()A.[2,3] B.( -2,3 ] C.[1,2) D.【答案】B【解析】试题分析:根据补集的运算得.故选B.考点:1、一元二次不等式;2、集合的并集、补集.【易错点睛】解一元二次不等式时,的系数一定要保证为正数,若的系数是负数,一定要化为正数,否则很容易出错.6.【2016年北京理数】已知集合,,则()A. B. C. D.【答案】C【解析】由,得,故选C.考点:集合交集.【名师点睛】1.首先要弄清构成集合的元素是什么(即元素的意义),是数集还是点集,如集合,,三者是不同的.2.集合中的元素具有三性——确定性、互异性、无序性,特别是互异性,在判断集合中元素的个数时,以及在含参的集合运算中,常因忽视互异性,疏于检验而出错.3.数形结合常使集合间的运算更简捷、直观.对离散的数集间的运算或抽象集合间的运算,可借助Venn图实施,对连续的数集间的运算,常利用数轴进行,对点集间的运算,则通过坐标平面内的图形求解,这在本质上是数形结合思想的体现和运用.4.空集是不含任何元素的集合,在未明确说明一个集合非空的情况下,要考虑集合为空集的可能.另外,不可忽视空集是任何元素的子集.7.【2016年四川理数】设集合,Z为整数集,则中元素的个数是()(A)3 (B)4 (C)5 (D)6【答案】C【解析】由题意,,故其中的元素个数为5,选C.考点:集合中交集的运算.【名师点睛】集合的概念及运算一直是的热点,几乎是每年必考内容,属于容易题.一般是结合不等式,函数的定义域值域考查,解题的关键是结合韦恩图或数轴解答.8.【2016天津理数】已知集合则=()(A)(B)(C)(D)【答案】D【解析】试题分析:选D.考点:集合运算【名师点睛】本题重点考查集合的运算,容易出错的地方是审错题意,误求并集,属于基本题,难点系数较小.一要注意培养良好的答题习惯,避免出现粗心错误,二是明确集合交集的考查立足于元素互异性,做到不重不漏.9.【2016江苏卷】已知集合则____________. 【答案】【解析】试题分析:考点:集合运算【名师点睛】本题重点考查集合的运算,容易出错的地方是审错题意,属于基本题,难点系数较小.一要注意培养良好的答题习惯,避免出现粗心错误,二是明确江苏对于集合题的考查立足于列举法,强调对集合运算有关概念及法则的理解。
高考(2016-2018)数学(文)真题分项版解析——专题02常用逻辑用语(原卷版)

考纲解读明方向考点内容解读要求常考题型预测热度1.命题及四种命题间的关系1.理解命题的概念2.了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系Ⅱ选择题★★☆2.充分条件与必要条件理解必要条件、充分条件与充要条件的含义Ⅲ选择题★★★3.逻辑联结词“或”“且”“非”了解逻辑联结词“或”“且”“非”的含义Ⅱ选择题★★☆4.全称量词与存在量词1.理解全称量词和存在量词的意义2.能正确地对含有一个量词的命题进行否定Ⅲ选择题★★★分析解读1.本节主要考查充分必要条件的推理判断及四种命题间的相互关系问题.2.本部分内容在高考试题中多以选择题或填空题的形式出现,考查四种命题的真假判断以及充分条件、必要条件的判定和应用,考查学生的逻辑推理能力.3.会判断含有一个量词的全称命题或特称命题的真假,能正确地对含有一个量词的命题进行否定.4.能用逻辑联结词“或”“且”“非”正确地表达相关的数学内容.5.本节内容在高考中约为5分,属中低档题.命题探究练扩展2018年高考全景展示 1.2018年浙江卷已知平面α,直线m ,n 满足m α,nα,则“m ∥n ”是“m ∥α”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件2.2018年文北京卷能说明“若a ﹥b ,则”为假命题的一组a ,b 的值依次为_________. 3.2018年天津卷文设,则“”是“” 的( ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充要条件 D. 既不充分也不必要条件4.2018年北京卷文设a,b,c,d 是非零实数,则“ad=bc ”是“a,b,c,d 成等比数列”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件2017年高考全景展示1.2017天津,文2设x ∈R ,则“20x -≥”是“|1|1x -≤”的( )(A )充分而不必要条件 (B )必要而不充分条件(C )充要条件 (D )既不充分也不必要条件2.2017,文5已知命题p :,x ∃∈R 210x x -+≥命题q :若22a b <,则a <b .下列命题为真命题的是( )A .p q ∧ B.p q ∧⌝ C.p q ⌝∧ D.p q ⌝∧⌝3.2017北京,文13能够说明“设a ,b ,c 是任意实数.若a >b >c ,则ab >c ”是假命题的一组整数a ,b ,c 的值依次为______________________________. 2016年高考全景展示1.2016高考四川文科设p:实数x ,y 满足1x >且1y >,q: 实数x ,y 满足2x y +>,则p 是q 的( )(A)充分不必要条件 (B)必要不充分条件(C) 充要条件 (D) 既不充分也不必要条件2.2016高考天津文数设0>x ,R y ∈,则“y x >”是“||y x >”的( )(A )充要条件 (B )充分而不必要条件(C )必要而不充分条件 (D )既不充分也不必要条件3.2016高考上海文科设R a ∈,则“1>a ”是“12>a ”的( )(A )充分非必要条件 (B )必要非充分条件(C )充要条件 (D )既非充分也非必要条件。
三年高考(2016-2018)高考数学试题分项版解析专题02常用逻辑用语理(含解析)

专题02常用逻辑用语考纲解读明方向考点内容解读要求 常考题型 预测热度 1.命题及四种命题间的 关系1. 理解命题的概念2. 了解“若p,则q ”形式的命题及其逆 命题、否命题与逆否命题,会分析四种命 题的相互关系n选择题2.充分条件与必要条件 理解必要条件、充分条件与充要条件的 含义出 选择题 ★★★ 3.逻辑联结词“或” “且” “非”了解逻辑联结词“或” “且” “非” 的含义n选择题★★☆4.全称量词与存在量 词 1. 理解全称量词和存在量词的意义2. 能正确地对含有一个量词的命题进 行否定出选择题 ★★★分析解读1. 本节主要考查充分必要条件的推理判断及四种命题间的相互关系问题2. 本部分内容在高考试题中多以选择题或填空题的形式出现 ,考查四种命题的真假判断以及充分条件、必要条件的判定和应用,考查学生的逻辑推理能力•3. 会判断含有一个量词的全称命题或特称命题的真假 ,能正确地对含有一个量词的命题进行否定 •4. 能用逻辑联结词“或” “且”“非”正确地表达相关的数学内容5. 本节内容在高考中约为 5分,属中低档题.命题探究练扩展「0能力要求) -----------------------1.了册叫沖常题的衷示羽式,会分析 UH 种常窗的相耳誥慕.0綁辭充分杀件.临蜜来件忌充此* 杵的盘进行刘斷-再斷充守必竖条件的常用方眶:1盘丈込孑找条怖何阿前遢推式,⑷先对弗題沁 ne 与 雋附 进行真锻刘虬 再下站论.么乘合秋:脊所刿斷的命题与方科的屜■.不難式的綁集 有)t,我所怖述的对餐可议用勒合表示时”可比帯肋更 合IM 的也需关歪J8行充甘乘杵和必更航杵的胃斷.:在月瞬片与©之间的关董时"町由脈命题①英 逆否诒剧的铮桥性转化为判断*¥和円"的艾票”rQ 易第■示〕------------------------------------- ■仁在判聊克林件为型竖条伴时.锲 姜弄淸詞鬆的设闻方式.叮呈尺的克分 不恋要条tr 忖M前兗井不:/要条样 业旷前冲魄法伯牌里足不设碌吊为非零向就 m=Aji ,n 是 “nt ■ w<0 5糾\则二伴去负数儿使得\s r ) 扎充分而不必要条件-屣錘応 B.必要而平充分务件岳匕班忒k 芍歩 G 充分必要条件"的量"JD.既车充分也不必耍条件拾戸片昭亂耳宁纽割曹戸鼻冋 /、箱丸套审■井左臨同丈翎呂人(2017 Jt#I —箋Jfc 帆殺鬲A?量诙月访枪芳向料]K包知识摘备} ---------------------1,充分笫杵Q 逊豎牡杵的对称件: MIV UTFP 申0 ・2盘分条件与融要条杵的传遽性: pO 解菩过程〕 ------------------------答秦:A解析;曲祎在员議九可 得曲、帶艾缎H.反向,光角为】EF .SM1K - n=- Iml Ifl ko,tt(ft V. ■ t4i Hl -的夹角为钝州政1卿\故 必戟性不展立.故逛扎声)思路井析〕勺,先理断充分性是否嵐电2.再贰斷心亞杵足苦嵐A 3给出结论,e 解题方法) ---------------- 1------------------------❼关联考点〕-----------------1 一向址共戏的充住条件一2數址和的正伍号史曲的具慕3 一俞題的僮廉判哺一2018年咼考全景展示1. 【2018年浙江卷】已知平面a,直线m n满足m a , n匸a ,则"m// n”是"m// a ”的A.充分不必要条件B. 必要不充分条件C.充分必要条件D. 既不充分也不必要条件【答案】A【解析】试题分折:分析:根据线面平行的判定定理得充分性成立,而必要性显然不成立.详解:因为用E氐总匚所以根据线面平行的判定走理得阳〃$宙阳〃厲不能得出讯与厲內任一直线平行,所^m//n是用"金的充分不必要条件,故选A点睛:充分、必要条件的三种判断方法:(1)定义法:直接判断“若贝A ”、“若-则的真假.并注意和图示相结合,例如为真,贝『'是 -的充分条件.(2)等价法:利用?•与非?非,:?与非?非,? •与非?非的等价关系,对于条件或结论是否定式的命题,一般运用等价法.(3)集合法:若?,则•是的充分条件或是」的必要条件;若•=,则•是的充要条件.2 .【2018年理数天津卷】设XER,则“2 2 ” 是“ JT<1”的A.充分而不必要条件B.必要而.不重复条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】分析:首先求解绝对值不等式,然后求解.三次不等式即可确定两者之间的关系.1 1 1 1 111详解:绝对值不等式22o 2 2 2O D<K U1,由x3<! « x < 1 .据此可知2< -2v 1的充分而不必要条件.本题选择A选项.点睛:本题主要考查绝对值不等式的解法,充分不必要条件的判断等知识,意在考查学生的转化能力和计算求解能力.3.【2018年理北京卷】设a, b均为单位向量y ““闷—I -- - ■'■■I ”是“ a丄b”的A.充分而不必要条件B. 必要而不充分条件C.充分必要条件D. 既不充分也不必要条件【答案】C【解析】分析:先对模平方,将X - 3川=|3垃+旬等价韩化为「b *再根据向量垂直时数量积为零得充真关系.详解:la —3£?| = |3a + &| «la —3b I s= \3a + b\2« a:—6c ■ d + = 9a:+6a - b + b23因为j b均为单位向量,所決亦-6血• b+ 9&2 = ■ i> + d2Q a ■ &=0 0疽丄S 即|a —36| = |3a + b|"是i{a丄泸的充分必要条件选C.点睛:充分、必要条件的三种判断方法.1 •定义法:直接判断“若则:”、“若•则■”的真假•并注意和图示相结合,例如“ ?•”为真,则是的充分条件.2 .等价法:利用?■与非?非’,?与非?非:,?:与非?非■的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3•集合法:若'?,则•是的充分条件或是」的必要条件;若」=,则•是的充要条件.2017年高考全景展示n n 11. 【2017天津,理4】设"R,则| ”是“ sin'—”的()12 12 2(A)充分而不必要条件(B)必要而不充分条件(C)充要条件(D)既不充分也不必要条件【答案】An n ■ n.1 1 . n n【解析】| | 0 ■—:sin •—,但r - 0,sin ■ —,不满足| | ,所以是12 12 6 2 2 12 12充分不必要条件,选 A.【考点】充要条件【名师点睛】本题考查充要条件的判断,若p= q,则p是q的充分条件,若q= p,则p是q的必要条件,若p= q,则p是q的充要条件;从集合的角度看,若 A B,则A是B的充分条件,若B A ,则A是B的必要条件,若A二B,则A是B的充要条件,若A是B的真子集,则A是B的充分不必要条件,若B 是A的真子集,则A是B的必要不充分条件•2. 【2017山东,理3】已知命题p: _x>0,ln x - 1 >0 ;命题q:若a>b,则a2>b2,下列命题为真命题的是()(A)p q (B)p q (C p q (D)p q【答案】B【解析】试题分析:由x . 0时x 1 . 1,ln(x・1)有意义,知p是真命题,由2 1,2212; . -2,(-1)2::: ( -2)2可知q是假命题,即p, q均是真命题,故选 B.【考点】1.简易逻辑联结词.2.全称命题.【名师点睛】解答简易逻辑联结词相关问题,关键是要首先明确各命题的真假,利用或、且、非真值表,进一步作出判断•3. 【2017北京,理13】能够说明“设a, b, c是任意实数•若a>b>c,则a+b>c”是假命题的一组整数a,b, c的值依次为 _________________________________ •【答案】-1 , -2 , -3 (答案不唯一)【解析】试题分析:-1 •-2 •-3,-1 • -2[=-3 •-3相矛盾,所以验证是假命题.【考点】不等式的性质【名师点睛】对于判断不等式恒成立问题,一般采用举反例排除法•解答本题时利用赋值的方式举反例进行验证,答案不唯一2016年高考全景展示1. 【2016浙江理数】命题“ -x R, N ,使得n・x2”的否定形式是()* 9 * 9A. - x • R, T n •N ,使得n:::x B .一R,一n・N,使得n :::x* 2 * 2C. x := R, n•N ,使得n:::x D . R,一n・N,使得n :::x【答案】D【解析】试题分析:-的否定是,的否定是一,n _x2的否定是n :::x2.故选D.考点:全称命题与特称命题的否定.【方法点睛】全称命题的否定是特称命题,特称命题的否定是全称命题.对含有存在(全称)量词的命题进行否定需要两步操作:①将存在(全称)量词改成全称(存在)量词;②将结论加以否定.2. [ 2016山东理数】已知直线a, b分别在两个不同的平面 a , B内.则“直线a和直线b相交”是“平面a和平面3相交”的()(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件【答案】A【解析】试题分析:“直线a和直线b相交”=“平面:-和平面1相交”,但“平面〉和平面一:相交”=“直线a和直线b相交”,所以“直线a和直线b相交”是“平面:和平面1相交”的充分不必要条件,故选A.考点:1.充要条件;2.直线与平面的位置关系.【名师点睛】充要条件的判定问题,是常考题目之一,其综合性较强,易于和任何知识点结合.本题涉及直线与平面的位置关系,突出体现了试题的基础性,能较好的考查考生分析问题解决问题的能力、空间想象能力等•3. 【20 16天津理数】设{a n}是首项为正数的等比数列,公比为q,则“ q<0”是“对任意的正整数n,a2n- l + a2n<0” 的()(A)充要条件(B)充分而不必要条件(C)必要而不充分条件(D)既不充分也不必要条件【答案】C【解析】试题分析:由题竜得,+吆vOo的(『小乜+ 住(-鸡-1),故是必要不充分条件,故选U考点:充要关系【名师点睛】充分、必要条件的三种判断方法.1.定义法:直接判断“若p则q”、“若q则p”的真假.并注意和图示相结合,例如“p? q”为真,则p是q的充分条件.2 .等价法:利用p? q与非q?非p, q? p与非p?非q, p? q与非q?非p的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3 .集合法:若A? B,则A是B的充分条件或B是A的必要条件;若A= B,则A是B的充要条件.。
2016-2018三年高考数学(理)真题分类专题汇编解析版

3 1,
2
(D)
3 ,3
2
考点:集合的交集运算
【名师点睛】集合是每年中的必考题 ,一般以基础题形式出现 ,属得分题 .解决此类问题一
般要把参与运算的集合化为最简形式再进行运算 ,如果是不等式解集、函数定义域及值
域有关数集之间的运算 ,常借助数轴进行运算 . 2.【2016新课标 3理数】设集合 S x | (x 2)( x 3) 0 ,T
【解析】由题意 1 B ,显然 a2 3 3,所以 a 1,此时
a2 3 4 ,满足题意,故答案为 1. 【考点】元素的互异性 【名师点睛】 (1)认清元素的属性,解决集合问题时,认清集合中元素的属性 (是点集、 数集或其他情形 )和化简集合是正确求解的两个先决条件 . (2)注意元素的互异性 .在解决含参数的集合问题时,要注意检验集合中元素的互异性, 否则很可能会因为不满足 “互异性 ”而导致解题错误 .
(B){ x|–2<x<3}
( C) { x|–1<x<1}
( D ){ x|1<x<3}
【答案】 A
【解析】利用数轴可知 A B x 2 x 1 ,故选 A.
【考点】集合的运算 【名师点睛】集合分为有限集合和无限集合,若集合个数比较少时可以用列举法表示 ,若集合是无限集合就用描述法表示,注意代表元素是什么,集合的交、并、补运算 问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理 .
6【. 2017 天津,理 1】设集合 A {1,2,6}, B {2,4}, C { x R | 1 x 5} ,则 ( A B) C
()
( A) {2}
( B) {1,2, 4}
( C) {1,2,4,6}
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题02常用逻辑用语文
考纲解读明方向
分析解读
1.本节主要考查充分必要条件的推理判断及四种命题间的相互关系问题.
2.本部分内容在高考试题中多以选择题或填空题的形式出现,考查四种命题的真假判断以及充分条件、必要条件的判定和应用,考查学生的逻辑推理能力.
3.会判断含有一个量词的全称命题或特称命题的真假,能正确地对含有一个量词的命题进行否定.
4.能用逻辑联结词“或”“且”“非”正确地表达相关的数学内容.
5.本节内容在高考中约为5分,属中低档题.
命题探究练扩展
2018年高考全景展示
1.【2018年浙江卷】已知平面α,直线m,n满足mα,nα,则“m∥n”是“m∥α”的
A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分也不必要条件
【答案】A
【解析】
点睛:充分、必要条件的三种判断方法:
(1)定义法:直接判断“若则”、“若则”的真假.并注意和图示相结合,例如“⇒”为真,则是的充
分条件.
(2)等价法:利用⇒与非⇒非,⇒与非⇒非,⇔与非⇔非的等价关系,对于条件或结论是否定式的命题,
一般运用等价法.
(3)集合法:若⊆,则是的充分条件或是的必要条件;若=,则是的充要条件.
2.【2018年文北京卷】能说明“若a﹥b,则”为假命题的一组a,b的值依次为_________.
【答案】(答案不唯一)
【解析】分析:根据原命题与命题的否定的真假关系,可将问题转化为找到使“若,则”成立的,根据不等式的性质,去特值即可.
详解:使“若,则”为假命题,则使“若,则”为真命题即可,
只需取即可满足,所以满足条件的一组的值为(答案不唯一)
点睛:此题考查不等式的运算,解决本题的核心关键在于对原命题与命题的否定真假关系的灵活转换,对不等式性质及其等价变形的充分理解,只要多取几组数值,解决本题并不困难.
3.【2018年天津卷文】设,则“”是“”的
A.充分而不必要条件
B.必要而不充分条件
C.充要条件
D.既不充分也不必要条件
【答案】A
点睛:本题主要考查绝对值不等式的解法,充分不必要条件的判断等知识,意在考查学生的转化能力和计算求解能力.
4.【2018年北京卷文】设a,b,c,d是非零实数,则“ad=bc”是“a,b,c,d成等比数列”的
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件
【答案】B
【解析】分析:证明“”“成等比数列”只需举出反例即可,论证“成等比数
列”“”可利用等比数列的性质.
详解:当时,不成等比数列,所以不是充分条件;当成等比数列时,则
,所以是必要条件.综上所述,“”是“成等比数列”的必要不充分条件,故选B. 点睛:此题主要考查充分必要条件,实质是判断命题“”以及“”的真假.判断一个命题为真命题,要给出理论依据、推理证明;判断一个命题为假命题,只需举出反例即可,或者当一个命题正面很难判断真假时,可利用原命题与逆否命题同真同假的特点转化问题.
2017年高考全景展示
1.【2017天津,文2】设,则“”是“”的
(A)充分而不必要条件(B)必要而不充分条件
(C)充要条件(D)既不充分也不必要条件
【答案】
【考点】充分必要条件
【名师点睛】判断充分必要条件的的方法:1.根据定义,若,那么是的充分不必要条件,同时是的必要不充分条件,若,那互为充要条件,若,那就是既不充分也不必要条件,2.当命题是以集合形式给出时,那就看包含关系,若,若,那么是的充分必要条件,同时是的必要不充分条件,若,互为充要条件,若没有包含关系,就是既不充分也不必要条件,3.命题的等价性,根据互为逆否命题的两个命题等价,将是条件的判断,转化为是条件的判断.
2.【2017山东,文5】已知命题p:;命题q:若,则a<b.下列命题为真命题的是
A. B. C. D.
【答案】B
【解析】
试题分析:由时成立知p是真命题,由可知q是假命题,所以
是真命题,故选B.
【考点】命题真假的判断
【名师点睛】判断一个命题为真命题,要给出推理证明;判断一个命题是假命题,只需举出反例.根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假.
3.【2017北京,文13】能够说明“设a,b,c是任意实数.若a>b>c,则a+b>c”是假命题的一组整数
a,b,c
的值依次为______________________________.
【答案】-1,-2,-3(答案不唯一)
【解析】
试题分析:相矛盾,所以验证是假命题.
【考点】不等式的性质
【名师点睛】对于判断不等式恒成立问题,一般采用举反例排除法.解答本题时利用赋值的方式举反例进行验证,答案不唯一.
2016年高考全景展示
1.【2016高考四川文科】设p:实数x,y满足且,q:实数x,y满足,则p是q的( )
(A)充分不必要条件 (B)必要不充分条件
(C)充要条件 (D)既不充分也不必要条件
【答案】A
【解析】
考点:充分必要条件.
【名师点睛】本题考查充分性与必要性的判断问题,首先是分清条件和结论,然后考察条件推结论,结论推条件是否成立.这类问题往往与函数、三角、不等式等数学知识结合起来考.有许多情况下可利用充分性、必要性和集合的包含关系得出结论.
2.【2016高考天津文数】设,,则“”是“”的()
(A)充要条件(B)充分而不必要条件
(C)必要而不充分条件(D)既不充分也不必要条件
【答案】C
【解析】
试题分析:,所以充分性不成立;,必要性成立,故选C
考点:充要关系
【名师点睛】充分、必要条件的三种判断方法.
1.定义法:直接判断“若p则q”、“若q则p”的真假.并注意和图示相结合,例如“p⇒q”为真,则p是q的充分条件.
2.等价法:利用p⇒q与非q⇒非p,q⇒p与非p⇒非q,p⇔q与非q⇔非p的等价关系,对于条件或结论是否定式的命题,一般运用等价法.
集合法:若A⊆B,则A是B的充分条件或B是A的必要条件;若A=B,则A是B的充要条件.
3.【2016高考上海文科】设,则“”是“”的()
(A)充分非必要条件(B)必要非充分条件
(C)充要条件(D)既非充分也非必要条件
【答案】A
【名师点睛】充要条件的判定问题,是高考常考题目之一,其综合性较强,易于和任何知识点结合.本题涉及不等关系,突出体现了高考试题的基础性,能较好的考查考生分析问题解决问题的能力、逻辑推理能力等.。