理科数学历年高考真题分类训练附答案解析之02常用逻辑用语
历年高考集合与常用逻辑用语(含答案解析)(理科)

历年高考集合与常用逻辑用语(含答案解析)(理科)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN(2013山东, 2,5分) 已知集合A={0,1, 2}, 则集合B={x-y|x∈A, y∈A}中元素的个数是()A. 1B. 3C. 5D. 9(2014课标Ⅰ, 1,5分) 已知集合A={x|x2-2x-3≥0}, B={x|-2≤x< 2}, 则A∩B=() A. [-2, -1] B. [-1,2) C. [-1,1] D. [1,2)(2012江西, 1,5分) 若集合A={-1,1}, B={0,2}, 则集合{z|z=x+y, x∈A, y∈B}中的元素的个数为()A. 5B. 4C. 3D. 2(2014课标Ⅱ, 1,5分) 设集合M={0,1, 2}, N={x|x2-3x+2≤0}, 则M∩N=() A. {1} B. {2} C. {0,1} D. {1,2}(2011广东, 2,5分) 已知集合A={(x, y) |x, y为实数, 且x2+y2=1}, B={(x, y) |x, y为实数, 且y=x}, 则A∩B的元素个数为()A. 0B. 1C. 2D. 3(2014北京, 1,5分) 已知集合A={x|x2-2x=0}, B={0,1, 2}, 则A∩B=()A. {0}B. {0,1}C. {0,2}D. {0,1, 2}(2011福建, 1,5分) i是虚数单位, 若集合S={-1,0, 1}, 则()A. i∈SB. i2∈SC. i3∈SD. ∈S(2014山东, 2,5分) 设集合A={x||x-1|< 2}, B={y|y=2x, x∈[0,2]}, 则A∩B=() A. [0,2] B. (1,3) C. [1,3) D. (1,4)(2011北京, 1,5分) 已知集合P={x|x2≤1}, M={a}. 若P∪M=P, 则a的取值范围是()A. (-∞, -1]B. [1, +∞)C. [-1,1]D. (-∞, -1]∪[1, +∞)(2014辽宁, 1,5分) 已知全集U=R, A={x|x≤0}, B={x|x≥1}, 则集合∁U(A∪B)=()A. {x|x≥0}B. {x|x≤1}C. {x|0≤x≤1}D. {x|0< x< 1}(2011辽宁, 2,5分) 已知M, N为集合I的非空真子集, 且M, N不相等, 若N∩∁I M=⌀, 则M∪N=()A. MB. NC. ID. ⌀(2014浙江, 1,5分) 设全集U={x∈N|x≥2}, 集合A={x∈N|x2≥5}, 则∁U A=() A. ⌀ B. {2} C. {5} D. {2,5}(2013江苏, 4,5分) 集合{-1,0, 1}共有个子集.(2014广东, 1,5分) 已知集合M={-1,0, 1}, N={0,1, 2}, 则M∪N=()A. {0,1}B. {-1,0, 2}C. {-1,0, 1,2}D. {-1,0, 1}(2014四川, 1,5分) 已知集合A={x|x2-x-2≤0}, 集合B为整数集, 则A∩B=() A. {-1,0, 1,2} B. {-2, -1,0, 1} C. {0,1} D. {-1,0}(2014陕西, 1,5分) 设集合M={x|x≥0, x∈R}, N={x|x2< 1, x∈R}, 则M∩N=() A. [0,1] B. [0,1) C. (0,1] D. (0,1)(2014大纲全国, 2,5分) 设集合M={x|x2-3x-4< 0}, N={x|0≤x≤5}, 则M∩N=() A. (0,4] B. [0,4) C. [-1,0) D. (-1,0](2013广东, 1,5分) 设集合M={x|x2+2x=0, x∈R}, N={x|x2-2x=0, x∈R}, 则M∪N=()A. {0}B. {0,2}C. {-2,0}D. {-2,0, 2}(2013浙江, 2,5分) 设集合S={x|x> -2}, T={x|x2+3x-4≤0}, 则(∁R S) ∪T=() A. (-2,1] B. (-∞, -4] C. (-∞, 1] D. [1, +∞)(2013辽宁, 2,5分) 已知集合A={x|0< log4x< 1}, B={x|x≤2}, 则A∩B=()A. (0,1)B. (0,2]C. (1,2)D. (1,2](2013北京, 1,5分) 已知集合A={-1,0, 1}, B={x|-1≤x< 1}, 则A∩B=()A. {0}B. {-1,0}C. {0,1}D. {-1,0, 1}(2013课标全国Ⅱ, 1,5分) 已知集合M={x|(x-1) 2< 4, x∈R}, N={-1,0, 1,2, 3}, 则M∩N=()A. {0,1, 2}B. {-1,0, 1,2}C. {-1,0, 2,3}D. {0,1, 2,3}(2013重庆, 1,5分) 已知全集U={1,2, 3,4}, 集合A={1,2}, B={2,3}, 则∁U(A∪B) =()A. {1,3, 4}B. {3,4}C. {3}D. {4}(2012山东, 2,5分) 已知全集U={0,1, 2,3, 4}, 集合A={1,2, 3}, B={2,4}, 则(∁U A) ∪B为()A. {1,2, 4}B. {2,3, 4}C. {0,2, 4}D. {0,2, 3,4}(2012浙江, 1,5分) 设集合A={x|1< x< 4}, 集合B={x|x2-2x-3≤0}, 则A∩(∁R B)=()A. (1,4)B. (3,4)C. (1,3)D. (1,2) ∪(3,4)(2012北京, 1,5分) 已知集合A={x∈R|3x+2> 0}, B={x∈R|(x+1) (x-3) > 0}, 则A∩B=()A. (-∞, -1)B.C.D. (3, +∞)(2011山东, 1,5分) 设集合M={x|x2+x-6< 0}, N={x|1≤x≤3}, 则M∩N=()A. [1,2)B. [1,2]C. (2,3]D. [2,3](2014江苏, 1,5分) 已知集合A={-2, -1,3, 4}, B={-1,2, 3}, 则A∩B=.(2014重庆, 11,5分) 设全集U={n∈N|1≤n≤10}, A={1,2, 3,5, 8}, B={1,3, 5,7, 9}, 则(∁U A) ∩B=.(2011天津, 13,5分) 已知集合A={x∈R||x+3|+|x-4|≤9},B=, 则集合A∩B=.答案和解析[答案] C[解析]①当x=0时, y=0,1, 2, 此时x-y的值分别为0, -1, -2;②当x=1时, y=0,1, 2, 此时x-y的值分别为1,0, -1;③当x=2时, y=0,1, 2, 此时x-y的值分别为2,1, 0.综上可知, x-y的可能取值为-2, -1,0, 1,2, 共5个, 故选C.[答案] A[解析]由不等式x2-2x-3≥0解得x≥3或x≤-1, 因此集合A={x|x≤-1或x≥3}, 又集合B={x|-2≤x< 2}, 所以A∩B={x|-2≤x≤-1}, 故选A.[答案] C[解析]集合{z|z=x+y, x∈A, y∈B}={-1,1, 3}, 故选C.[答案] D[解析]由已知得N={x|1≤x≤2}, ∵M={0,1, 2}, ∴M∩N={1,2}, 故选D.[答案] C[解析]解法一: A为圆心在原点的单位圆, B为过原点的直线, 故有2个交点, 故选C.解法二: 由可得或故选C.[答案] C[解析]A={0,2}, B={0,1, 2}, ∴A∩B={0,2}. 故选C.[答案] B[解析]i2=-1, -1∈S, 故选B.[答案] C[解析]A={x||x-1|< 2}={x|-1< x< 3}, B={y|y=2x, x∈[0,2]}={y|1≤y≤4},∴A∩B={x|-1< x< 3}∩{y|1≤y≤4}={x|1≤x< 3}.[答案] C[解析]由P∪M=P, 有M⊆P, ∴a2≤1, ∴-1≤a≤1, 故选C.[答案] D[解析]A∪B={x|x≥1或x≤0}, 因此∁U(A∪B) ={x|0< x< 1}. 故选D.[答案] A[解析]∵N∩∁I M=⌀, ∴N⊆M. 又M≠N, ∴N⫋M, ∴M∪N=M. 故选A.[答案] B[解析]∵A={x∈N|x≥}={x∈N|x≥3},∴∁U A={x∈N|2≤x< 3}={2}, 故选B.[答案]8[解析]集合{-1,0, 1}的子集有⌀, {-1}, {0}, {1}, {-1,0}, {-1,1}, {0,1}, {-1,0, 1}, 共8个.[答案] C[解析]由集合的并集运算可得, M∪N={-1,0, 1,2}, 故选C.[答案] A[解析]由x2-x-2≤0得-1≤x≤2, 故集合A中的整数为-1,0, 1,2. 所以A∩B={-1,0, 1,2}.[答案] B[解析]∵N=(-1,1), ∴M∩N=[0,1), 故选B.[答案] B[解析]M={x|x2-3x-4< 0}={x|-1< x< 4}, 则M∩N={x|0≤x< 4}. 故选B.[答案] D[解析]化简两个集合, 得M={-2,0}, N={0,2}, 则M∪N={-2,0, 2}, 故选D.[答案] C[解析]∁R S={x|x≤-2}, 又T={x|-4≤x≤1}, 故(∁R S) ∪T={x|x≤1}, 选C.[答案] D[解析]A={x|0< log4x< 1}={x|log41< log4x< log44}={x|1< x< 4}, A∩B=(1,2], 故选D.[答案] B[解析]∵A={-1,0, 1}, B={x|-1≤x< 1}, ∴A∩B={-1,0}, 故选B.[答案] A[解析]化简得M={x|-1< x< 3}, 所以M∩N={0,1, 2}, 故选A.[答案] D[解析]A∪B={1,2, 3}, ∁U(A∪B) ={4}. 故选D.[答案] C[解析]由题意知∁U A={0,4}, 又B={2,4},∴(∁U A) ∪B={0,2, 4}, 故选C.[答案] B[解析]B={x|-1≤x≤3}, A∩(∁R B) ={x|3< x< 4}, 故选B.[答案] D[解析]∵A=x x> -, B={x|x< -1或x> 3}, ∴A∩B={x|x> 3}, 故选D.[答案] A[解析]∵M={x|-3< x< 2}, N={x|1≤x≤3}, ∴M∩N={x|1≤x< 2}.[答案]{-1,3}[解析]由集合的交集定义知A∩B={-1,3}.[答案]{7,9}[解析]∵U={n∈N|1≤n≤10}, A={1,2, 3,5, 8}, ∴∁U A={4,6, 7,9, 10}, 又∵B={1,3, 5,7, 9}, ∴(∁U A) ∩B={7,9}.[答案]{x|-2≤x≤5}[解析]由|x+3|+|x-4|≤9得或或∴A={x|-4≤x≤5}. 又当t> 0时, x=4t+-6≥2-6=-2, 当且仅当t=时取等号,∴B={x|x≥-2}, 故A∩B={x|-2≤x≤5}.。
年全国各地高考数学试题及解答分类汇编大全(02常用逻辑用语)

"⎪ ⎪ 全国各地高考数学试题及解答分类汇编大全(02 常用逻辑用语)一.选择题:1. (2006 春招上海) 若 k ∈ R ,则“ k > 3”是“方程x 2 - k - 3 y 2k + 3= 1表示双曲线”的( )(A )充分不必要条件. (B )必要不充分条件. (C )充要条件. (D )既不充分也不必要条件.2.(2006 安徽文)“ x > 3”是 x 2> 4 “的( ) A .必要不充分条件 B .充分不必要条件 C .充分必要条件 D .既不充分也不必要条件 2.解:条件集是结论集的子集,所以选 B 。
⎛ a + b ⎫2a 2 +b 23.(2006 安徽理)设 a , b ∈ R ,已知命题 p : a = b ;命题 q : 2 ≤ ,则 p 是 q 成立的( )2 ⎝ ⎭ A .必要不充分条件 B .充分不必要条件 C .充分必要条件 D .既不充分也不必要条件⎛ a + b ⎫2a 2+ b 23.解:命题 p : a = b 是命题q : 2 ≤ 等号成立的条件,故选 B 。
2 ⎝ ⎭4.(2006 北京文、理)若 a 与b - c 都是非零向量,则“ a ⋅ b = a ⋅ c ”是“ a ⊥ (b - c ) ”的()(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件4.解: a ⋅ b = a ⋅ c ⇔ a • b -a • c =0 ⇔ a •(b -c )=0 ⇔ a ⊥(b -c ), 故选 C5. (2006 福建理)设 a 、b 、c 、d ∈R ,则复数(a +b i)(c +d i)为实数的充要条件是( ) A. ad -bc =0 B.ac -bd =0 C. ac +bd =0 D.ad +bc =05.解: a , b , c ∈ R , 复数(a + bi )(c + di ) = (ac - bd ) + (ad + bc )i 为实数,∴ ad + bc = 0 ,选 D.π6. (2006 福建文) " tan α= 1" 是"α="的( )4(A )充分而不必要条件 (B )必要不而充分条件 (C )充要条件(D )既不充分也不必要条件π6.解:若" tan α= 1" ,则α= k π+ ,α不一定等于4π ;而若"α=4π"则 tanα=1,4∴ " tan α= 1" 是"α= π的必要不而充分条件,选 B. 47. (2006 湖南文、理) “a=1”是“函数 f (x ) =| x - a | 在区间[1, +∞)上为增函数”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.解:若“ a = 1”,则函数 f (x ) =| x - a |= | x -1| 在区间[1,+∞) 上为增函数;而若 f (x ) =| x - a |在区间[1,+∞) 上为增函数,则 0≤a ≤1,所以“ a = 1”是“函数 f (x ) =| x - a |在区间[1,+∞) 上为增函数” 的充分不必要条件,选 A.8. .(2006 湖北文)甲:A 1、A 2 是互斥事件;乙:A 1、A 2 是对立事件,那么( ) A. 甲是乙的充分但不必要条件 B. 甲是乙的必要但不充分条件C. 甲是乙的充要条件D. 甲既不是乙的充分条件,也不是乙的必要条件8.解:两个事件是对立事件,则它们一定互斥,反之不成立。
高考(2016-2018)数学(理)真题分项版解析——专题02常用逻辑用语(原卷版)

专题02 常用逻辑用语考纲解读明方向考点内容解读要求常考题型预测热度1.命题及四种命题间的关系1.理解命题的概念2.了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系Ⅱ选择题★★☆2.充分条件与必要条件理解必要条件、充分条件与充要条件的含义Ⅲ选择题★★★3.逻辑联结词“或”“且”“非”了解逻辑联结词“或”“且”“非”的含义Ⅱ选择题★★☆4.全称量词与存在量词1.理解全称量词和存在量词的意义2.能正确地对含有一个量词的命题进行否定Ⅲ选择题★★★分析解读1.本节主要考查充分必要条件的推理判断及四种命题间的相互关系问题.2.本部分内容在高考试题中多以选择题或填空题的形式出现,考查四种命题的真假判断以及充分条件、必要条件的判定和应用,考查学生的逻辑推理能力.3.会判断含有一个量词的全称命题或特称命题的真假,能正确地对含有一个量词的命题进行否定.4.能用逻辑联结词“或”“且”“非”正确地表达相关的数学内容.5.本节内容在高考中约为5分,属中低档题.命题探究练扩展2018年高考全景展示1.2018年浙江卷已知平面α,直线m ,n 满足m α,n α,则“m ∥n ”是“m ∥α”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件 2.2018年理数天津卷设,则“”是“”的( )A. 充分而不必要条件B. 必要而不重复条件C. 充要条件D. 既不充分也不必要条件 3.2018年理北京卷设a ,b 均为单位向量,则“”是“a ⊥b ”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件2017年高考全景展示1.2017天津,理4设θ∈R ,则“||1212θ-<”是“sin 2θ<”的( ) (A )充分而不必要条件 (B )必要而不充分条件(C )充要条件(D )既不充分也不必要条件 2.2017,理3已知命题p:()x x ∀+>0,ln 1>0;命题q :若a >b ,则a b 22>,下列命题为真命题的是( )(A ) ∧p q (B )⌝∧p q (C ) ⌝∧p q (D )⌝⌝∧p q3.2017北京,理13能够说明“设a ,b ,c 是任意实数.若a >b >c ,则ab >c ”是假命题的一组整数a , b ,c 的值依次为______________________________.2016年高考全景展示1.2016浙江理数命题“*x n ∀∈∃∈,R N ,使得2n x >”的否定形式是( ) A .*x n ∀∈∃∈,R N ,使得2n x < B .*x n ∀∈∀∈,R N ,使得2n x < C .*x n ∃∈∃∈,R N ,使得2n x < D .*x n ∃∈∀∈,R N ,使得2n x <2.2016理数已知直线a ,b 分别在两个不同的平面α,β内.则“直线a 和直线b 相交”是“平面α和平面β相交”的( )(A )充分不必要条件 (B )必要不充分条件 (C )充要条件(D )既不充分也不必要条件3. 2016天津理数设{a n }是首项为正数的等比数列,公比为q ,则“q <0”是“对任意的正整数n ,a 2n −1a 2n <0”的( )(A )充要条件 (B )充分而不必要条件 (C )必要而不充分条件 (D )既不充分也不必要条件。
十年高考理科数学真题专题一集合与常用逻辑用语二常用逻辑用语及答案

A .充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D .既不充分也不必要条件
11.(2016 年山东)已知直线 a, b 分别在两个不同的平面 α,β内,则 “直线 a 和直线 b 相
交 ”是 “平面 α和平面 β相交 ”的
A .充分不必要条件 C.充要条件
B.必要不充分条件 D .既不充分也不必要条件
D .既不充分也不必要条件
17.( 2015 浙江)命题“ n N * , f (n) N * 且 f (n) ≤ n 的否定形式是
A . n N * , f (n) N * 且 f ( n) n
B. n N * , f (n) N * 或 f (n) n
*
*
C. n0 N , f (n0) N 且 f (n0) n0
列命题为真命题的是
A. p q
B. p q
C. p q
D. p q
9.( 2017 北京)设 m , n 为非零向量,则 “存在负数 ,使得 m n ”是 “m n 0 ”的
A .充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D .既不充分也不必要条件
10.( 2016 年北京)设 a, b 是向量,则“ |a|=|b| ”是“ | a b | | a b | ”的
12.( 2016 年天津)设 { an} 是首项为正数的等比数列,公比为 q ,则 “q 0 ”是 “对任意的正
整数 n , a2n 1 a2n 0 ”的(
)
A .充要条件
B.充分而不必要条件
C.必要而不充分Biblioteka 件D .既不充分也不必要条件
13.( 2015 新课标)设命题
最新高考真题理科数学分类汇编(解析版):常用逻辑用语及答案

高考真题理科数学分类汇编(解析版)常用逻辑用语1、(高考(安徽卷))"0"a ≤“是函数()=(-1)f x ax x 在区间(0,+)∞内单调递增”的(A ) 充分不必要条件 (B )必要不充分条件(C )充分必要条件 (D )既不充分也不必要条件【答案】C【解析】 当a=0 时,,时,且上单调递增;当,在x ax x f x a x f y x x f )1()(00)0()(||)(+-=><∞+=⇒= .)0()(0所以a .)0()(上单调递增的充分条件,在是上单调递增,在∞+=≤∞+=x f y x f y 0a )0()(≤⇒∞+=上单调递增,在相反,当x f y ,.)0()(0a 上单调递增的必要条件,在是∞+=≤⇒x f y故前者是后者的充分必要条件。
所以选C2、(高考(北京卷))“φ=π”是“曲线y=sin(2x +φ)过坐标原点的”A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件3、(高考(福建卷))已知集合{}1,A a =,{}1,2,3B =,则“3a =”是“A B ⊆”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【解析】3,a A B =⇒⊆2A B a ⊆⇒=,或3.因此是充分不必要条件.4、(高考(福建卷))设函数()f x 的定义域为R ,00(0)x x ≠是()f x 的极大值点,以下结论一定正确的是( )A .0,()()x R f x f x ∀∈≤B .0x -是()f x -的极小值点C .0x -是()f x -的极小值点D .0x -是()f x --的极小值点【答案】D【解析】A .0,()()x R f x f x ∀∈≤,错误.00(0)x x ≠是()f x 的极大值点,并不是最大值点.B .0x -是()f x -的极小值点.错误.()f x -相当于()f x 关于y 轴的对称图像,故0x -应是()f x -的极大值点C .0x -是()f x -的极小值点.错误.()f x -相当于()f x 关于x 轴的对称图像,故0x 应是()f x -的极小值点.跟0x -没有关系.D .0x -是()f x --的极小值点.正确.()f x --相当于()f x 先关于y 轴的对象,再关于x 轴的对称图像.故D 正确5、(高考(湖北卷))在一次跳伞训练中,甲、乙两位学员各跳一次,设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( )A.()()p q ⌝∨⌝B. ()p q ∨⌝C. ()()p q ⌝∧⌝D.p q ∨【解析与答案】“至少有一位学员没有降落在指定范围”即:“甲或乙没有降落在指定范围内”。
历年(2020-2024)全国高考数学真题分类(集合与常用逻辑用语)汇编(附答案)

历年(2020-2024)全国高考数学真题分类(集合与常用逻辑用语)汇编考点01 集合间的基本关系1.(2023∙全国新Ⅱ卷∙高考真题)设集合{}0,A a =-,{}1,2,22B a a =--,若A B ⊆,则=a ( ). A .2 B .1 C .23 D .1-2.(2020全国新Ⅰ卷∙高考真题)已知a ∈R ,若集合{}1,M a =,{}1,0,1N =-,则“0a =”是“M N ⊆”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件考点02 交集1.(2024∙全国新Ⅰ卷高考真题)已知集合{}355,{3,1,0,2,3}A xx B =-<<=--∣,则A B = ( ) A .{1,0}- B .{2,3} C .{3,1,0}-- D .{1,0,2}-2.(2024年全国甲卷高考真题)若集合{}1,2,3,4,5,9A =,{}1B x x A =+∈,则A B = ( ) A .{}1,3,4 B .{}2,3,4 C .{}1,2,3,4 D .{}0,1,2,3,4,93.(2023∙北京∙高考真题)已知集合{20},{10}M xx N x x =+≥=-<∣∣,则M N ⋂=( ) A .{21}x x -≤<∣ B .{21}xx -<≤∣ C .{2}xx ≥-∣ D .{1}x x <∣ 4.(2023全国新Ⅰ卷高考真题)已知集合{}2,1,0,1,2M =--,{}260N x x x =--≥,则M N ⋂=( ) A .{}2,1,0,1-- B .{}0,1,2 C .{}2- D .{}25.(2022∙全国新Ⅱ卷高考真题)已知集合{}{}1,1,2,4,11A B x x =-=-≤,则A B = ( ) A .{1,2}- B .{1,2} C .{1,4} D .{1,4}- 6.(2022年全国乙卷∙高考真题)集合{}{}2,4,6,8,10,16M N x x ==-<<,则M N ⋂=( ) A .{2,4} B .{2,4,6} C .{2,4,6,8} D .{2,4,6,8,10}7.(2022年全国甲卷∙高考真题)设集合5{2,1,0,1,2},02A B x x ⎧⎫=--=≤<⎨⎬⎩⎭∣,则A B = ( ) A .{}0,1,2 B .{2,1,0}-- C .{0,1} D .{1,2}8.(2022全国新Ⅰ卷∙高考真题)若集合{4},{31}M x N x x =<=≥∣,则M N ⋂=( ) A .{}02x x ≤< B .123x x ⎧⎫≤<⎨⎬⎩⎭ C .{}316x x ≤< D .1163x x ⎧⎫≤<⎨⎬⎩⎭9.(2021年全国乙卷∙高考真题)已知集合{}21,S s s n n ==+∈Z ,{}41,T t t n n ==+∈Z ,则S T?( )A .∅B .SC .TD .Z10.(2021年全国甲卷∙高考真题)设集合{}{}1,3,5,7,9,27M N x x ==>,则M N ⋂=( )A .{}7,9B .{}5,7,9C .{}3,5,7,9D .{}1,3,5,7,911.(2021年全国甲卷∙高考真题)设集合{}104,53M x x N x x ⎧⎫=<<=≤≤⎨⎬⎩⎭,则M N ⋂=( )A .103x x ⎧⎫<≤⎨⎬⎩⎭ B .143x x ⎧⎫≤<⎨⎬⎩⎭C .{}45x x ≤<D .{}05x x <≤12.(2021全国新Ⅰ卷∙高考真题)设集合{}24A x x =-<<,{}2,3,4,5B =,则A B = ( )A .{}2B .{}2,3C .{}3,4D .{}2,3,4考点03 并集1.(2024∙北京∙高考真题)已知集合{|31}M x x =-<<,{|14}N x x =-≤<,则M N ⋃=( ) A .{}11x x -≤< B .{}3x x >-C .{}|34x x -<<D .{}4x x <2.(2022∙浙江∙高考真题)设集合{1,2},{2,4,6}A B ==,则A B ⋃=( )A .{2}B .{1,2}C .{2,4,6}D .{1,2,4,6}3.(2021∙北京∙高考真题)已知集合{}|11A x x =-<<,{}|02B x x =≤≤,则A B ⋃=( )A .{}|12x x -<<B .{}|12x x -<≤C .{}|01x x ≤<D .{}|02x x ≤≤4.(2020∙山东∙高考真题)设集合A ={x |1≤x ≤3},B ={x |2<x <4},则A ∪B =( )A .{x |2<x ≤3}B .{x |2≤x ≤3}C .{x |1≤x <4}D .{x |1<x <4}考点04 补集1.(2024年全国甲卷∙高考真题)已知集合{}{}1,2,3,4,5,9,A B A ==,则()A A B ⋂=ð( ) A .{}1,4,9 B .{}3,4,9 C .{}1,2,3 D .{}2,3,52.(2023年全国乙卷∙高考真题)设全集{}0,1,2,4,6,8U =,集合{}{}0,4,6,0,1,6M N ==,则U M N ⋃=ð( ) A .{}0,2,4,6,8 B .{}0,1,4,6,8 C .{}1,2,4,6,8 D .U3.(2023年全国乙卷∙高考真题)设集合U =R ,集合{}1M x x =<,{}12N x x =-<<,则{}2x x ≥=( )A .()U M N ðB .U N M ðC .()U M N ðD .U M N ⋃ð4.(2022∙全国乙卷∙高考真题)设全集{1,2,3,4,5}U =,集合M 满足{1,3}U M =ð,则( )A .2M ∈B .3M ∈C .4M ∉D .5M ∉5.(2022∙北京∙高考真题)已知全集{33}U x x =-<<,集合{21}A x x =-<≤,则U A =ð( ) A .(2,1]- B .(3,2)[1,3)-- C .[2,1)- D .(3,2](1,3)--6.(2021全国新Ⅱ卷∙高考真题)设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()U A B = ð( )A .{3}B .{1,6}C .{5,6}D .{1,3}7.(2020全国新Ⅰ卷∙高考真题)已知全集{},,,U a b c d =,集合{},M a c =,则U M ð等于( ) A .∅ B .{},a c C .{},b d D .{},,,a b c d考点05 充分条件与必要条件1.(2024∙全国甲卷∙高考真题)设向量()()1,,,2a x x b x =+= ,则( )A .“3x =-”是“a b ⊥ ”的必要条件B .“3x =-”是“//a b ”的必要条件C .“0x =”是“a b ⊥ ”的充分条件D .“1x =-”是“//a b ”的充分条件2.(2024∙天津∙高考真题)设,a b ∈R ,则“33a b =”是“33a b =”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.(2024∙北京∙高考真题)设 a ,b 是向量,则“()()ꞏ0a b a b +-= ”是“a b =- 或a b = ”的( ). A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件4.(2023∙北京∙高考真题)若0xy ≠,则“0x y +=”是“2yxx y +=-”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.(2023∙全国甲卷∙高考真题)设甲:22sin sin 1αβ+=,乙:sin cos 0αβ+=,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件6.(2023∙天津∙高考真题)已知,R a b ∈,“22a b =”是“222a b ab +=”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件7.(2023∙全国新Ⅰ卷∙高考真题)记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:{}n S n为等差数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件8.(2022∙浙江∙高考真题)设x ∈R ,则“sin 1x =”是“cos 0x =”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件9.(2022∙北京∙高考真题)设{}n a 是公差不为0的无穷等差数列,则“{}n a 为递增数列”是“存在正整数0N ,当0n N >时,0n a >”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件10.(2021∙全国甲卷∙高考真题)等比数列{}n a 的公比为q ,前n 项和为n S ,设甲:0q >,乙:{}n S 是递增数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件考点06 全称量词与存在量词1.(2024∙全国新Ⅱ卷∙高考真题)已知命题p :x ∀∈R ,|1|1x +>;命题q :0x ∃>,3x x =,则( ) A .p 和q 都是真命题B .p ⌝和q 都是真命题C .p 和q ⌝都是真命题D .p ⌝和q ⌝都是真命题2.(2020∙全国新Ⅰ卷∙高考真题)下列命题为真命题的是( )A .10>且34>B .12>或45>C .x R ∃∈,cos 1x >D .x ∀∈R ,20x ≥参考答案考点01 集合间的基本关系1.(2023∙全国新Ⅱ卷∙高考真题)设集合{}0,A a =-,{}1,2,22B a a =--,若A B ⊆,则=a ( ). A .2 B .1 C .23 D .1-【答案】B【详细分析】根据包含关系分20a -=和220a -=两种情况讨论,运算求解即可.【答案详解】因为A B ⊆,则有:若20a -=,解得2a =,此时{}0,2A =-,{}1,0,2B =,不符合题意;若220a -=,解得1a =,此时{}0,1A =-,{}1,1,0B =-,符合题意;综上所述:1a =.故选:B.2.(2020全国新Ⅰ卷∙高考真题)已知a ∈R ,若集合{}1,M a =,{}1,0,1N =-,则“0a =”是“M N ⊆”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【详细分析】根据充分条件和必要条件的定义即可求解.【答案详解】当0a =时,集合{}1,0M =,{}1,0,1N =-,可得M N ⊆,满足充分性,若M N ⊆,则0a =或1a =-,不满足必要性,所以“0a =”是“M N ⊆”的充分不必要条件,故选:A.考点02 交集1.(2024∙全国新Ⅰ卷高考真题)已知集合{}355,{3,1,0,2,3}A x x B =-<<=--∣,则A B = ( ) A .{1,0}- B .{2,3} C .{3,1,0}-- D .{1,0,2}-【答案】A【详细分析】化简集合A ,由交集的概念即可得解.【答案详解】因为{{}|,3,1,0,2,3A x x B =<<=--,且注意到12<<,从而A B = {}1,0-.故选:A.2.(2024年全国甲卷高考真题)若集合{}1,2,3,4,5,9A =,{}1B x x A =+∈,则A B = ( )A .{}1,3,4B .{}2,3,4C .{}1,2,3,4D .{}0,1,2,3,4,9【答案】C 【详细分析】根据集合B 的定义先算出具体含有的元素,然后根据交集的定义计算.【答案详解】依题意得,对于集合B 中的元素x ,满足11,2,3,4,5,9x +=,则x 可能的取值为0,1,2,3,4,8,即{0,1,2,3,4,8}B =,于是{1,2,3,4}A B ⋂=.故选:C3.(2023∙北京∙高考真题)已知集合{20},{10}M xx N x x =+≥=-<∣∣,则M N ⋂=( ) A .{21}x x -≤<∣ B .{21}xx -<≤∣ C .{2}xx ≥-∣ D .{1}x x <∣ 【答案】A【详细分析】先化简集合,M N ,然后根据交集的定义计算.【答案详解】由题意,{20}{|2}M xx x x =+≥=≥-∣,{10}{|1}N x x x x =-<=<∣, 根据交集的运算可知,{|21}M N x x =-≤< .故选:A4.(2023全国新Ⅰ卷高考真题)已知集合{}2,1,0,1,2M =--,{}260N x x x =--≥,则M N ⋂=( ) A .{}2,1,0,1--B .{}0,1,2C .{}2-D .{}2【答案】C 【详细分析】方法一:由一元二次不等式的解法求出集合N ,即可根据交集的运算解出.方法二:将集合M 中的元素逐个代入不等式验证,即可解出. 【答案详解】方法一:因为{}(][)260,23,N x x x ∞∞=--≥=--⋃+,而{}2,1,0,1,2M =--, 所以M N ⋂={}2-.故选:C .方法二:因为{}2,1,0,1,2M =--,将2,1,0,1,2--代入不等式260x x --≥,只有2-使不等式成立,所以M N ⋂={}2-.故选:C .5.(2022∙全国新Ⅱ卷高考真题)已知集合{}{}1,1,2,4,11A B x x =-=-≤,则A B = ( )A .{1,2}-B .{1,2}C .{1,4}D .{1,4}- 【答案】B【详细分析】方法一:求出集合B 后可求A B ⋂.【答案详解】[方法一]:直接法因为{}|02B x x =≤≤,故{}1,2A B = ,故选:B.[方法二]:【最优解】代入排除法=1x -代入集合{}11B x x =-≤,可得21≤,不满足,排除A 、D ;4x =代入集合{}11B x x =-≤,可得31≤,不满足,排除C.故选:B.【整体点评】方法一:直接解不等式,利用交集运算求出,是通性通法;方法二:根据选择题特征,利用特殊值代入验证,是该题的最优解.6.(2022年全国乙卷∙高考真题)集合{}{}2,4,6,8,10,16M N x x ==-<<,则M N ⋂=( ) A .{2,4} B .{2,4,6} C .{2,4,6,8} D .{2,4,6,8,10}【答案】A【详细分析】根据集合的交集运算即可解出.【答案详解】因为{}2,4,6,8,10M =,{}|16N x x =-<<,所以{}2,4M N = .故选:A.7.(2022年全国甲卷∙高考真题)设集合5{2,1,0,1,2},02A B x x ⎧⎫=--=≤<⎨⎬⎩⎭∣,则A B = ( )A .{}0,1,2B .{2,1,0}--C .{0,1}D .{1,2}【答案】A【详细分析】根据集合的交集运算即可解出.【答案详解】因为{}2,1,0,1,2A =--,502B x x ⎧⎫=≤<⎨⎬⎩⎭∣,所以{}0,1,2A B = .故选:A.8.(2022全国新Ⅰ卷∙高考真题)若集合{4},{31}M x N x x =<=≥∣,则M N ⋂=( )A .{}02x x ≤<B .123x x ⎧⎫≤<⎨⎬⎩⎭ C .{}316x x ≤< D .1163x x ⎧⎫≤<⎨⎬⎩⎭【答案】D【详细分析】求出集合,M N 后可求M N ⋂. 【答案详解】1{16},{}3M x x N x x =≤<=≥∣0∣,故1163M N x x ⎧⎫⋂=≤<⎨⎬⎩⎭,故选:D9.(2021年全国乙卷∙高考真题)已知集合{}21,S s s n n ==+∈Z ,{}41,T t t n n ==+∈Z ,则S T ?( )A .∅B .SC .TD .Z【答案】C【详细分析】详细分析可得T S ⊆,由此可得出结论.【答案详解】任取t T ∈,则()41221t n n =+=⋅+,其中Z n ∈,所以,t S ∈,故T S ⊆,因此,S T T = .故选:C.10.(2021年全国甲卷∙高考真题)设集合{}{}1,3,5,7,9,27M N x x ==>,则M N ⋂=( )A .{}7,9B .{}5,7,9C .{}3,5,7,9D .{}1,3,5,7,9【答案】B【详细分析】求出集合N 后可求M N ⋂. 【答案详解】7,2N ⎛⎫=+∞ ⎪⎝⎭,故{}5,7,9M N ⋂=, 故选:B.11.(2021年全国甲卷∙高考真题)设集合{}104,53M x x N x x ⎧⎫=<<=≤≤⎨⎬⎩⎭,则M N ⋂=( ) A .103x x ⎧⎫<≤⎨⎬⎩⎭ B .143x x ⎧⎫≤<⎨⎬⎩⎭ C .{}45x x ≤<D .{}05x x <≤【答案】B【详细分析】根据交集定义运算即可 【答案详解】因为1{|04},{|5}3M x x N x x =<<=≤≤,所以1|43M N x x ⎧⎫⋂=≤<⎨⎬⎩⎭, 故选:B.【名师点评】本题考查集合的运算,属基础题,在高考中要求不高,掌握集合的交并补的基本概念即可求解.12.(2021全国新Ⅰ卷∙高考真题)设集合{}24A x x =-<<,{}2,3,4,5B =,则A B = ( )A .{}2B .{}2,3C .{}3,4D .{}2,3,4 【答案】B【详细分析】利用交集的定义可求A B ⋂.【答案详解】由题设有{}2,3A B ⋂=,故选:B .考点03 并集1.(2024∙北京∙高考真题)已知集合{|31}M x x =-<<,{|14}N x x =-≤<,则M N ⋃=( ) A .{}11x x -≤< B .{}3x x >-C .{}|34x x -<<D .{}4x x <【答案】C【详细分析】直接根据并集含义即可得到答案.【答案详解】由题意得{}|34M x x N ⋃=-<<.故选:C.2.(2022∙浙江∙高考真题)设集合{1,2},{2,4,6}A B ==,则A B ⋃=( )A .{2}B .{1,2}C .{2,4,6}D .{1,2,4,6}【答案】D【详细分析】利用并集的定义可得正确的选项.【答案详解】{}1,2,4,6A B = ,故选:D.3.(2021∙北京∙高考真题)已知集合{}|11A x x =-<<,{}|02B x x =≤≤,则A B ⋃=( ) A .{}|12x x -<< B .{}|12x x -<≤C .{}|01x x ≤<D .{}|02x x ≤≤【答案】B【详细分析】结合题意利用并集的定义计算即可.【答案详解】由题意可得:{}|12A B x x =-<≤ .故选:B.4.(2020∙山东∙高考真题)设集合A ={x |1≤x ≤3},B ={x |2<x <4},则A ∪B =( ) A .{x |2<x ≤3} B .{x |2≤x ≤3}C .{x |1≤x <4}D .{x |1<x <4}【答案】C【详细分析】根据集合并集概念求解.【答案详解】[1,3](2,4)[1,4)A B ==U U故选:C【名师点评】本题考查集合并集,考查基本详细分析求解能力,属基础题.考点04 补集1.(2024年全国甲卷∙高考真题)已知集合{}{}1,2,3,4,5,9,A B A ==,则()A A B ⋂=ð( )A .{}1,4,9B .{}3,4,9C .{}1,2,3D .{}2,3,5【答案】D【详细分析】由集合B 的定义求出B ,结合交集与补集运算即可求解.【答案详解】因为{}{}1,2,3,4,5,9,A B A ==,所以{}1,4,9,16,25,81B =, 则{}1,4,9A B = ,(){}2,3,5A A B = ð故选:D 2.(2023年全国乙卷∙高考真题)设全集{}0,1,2,4,6,8U =,集合{}{}0,4,6,0,1,6M N ==,则U M N ⋃=ð( ) A .{}0,2,4,6,8 B .{}0,1,4,6,8 C .{}1,2,4,6,8 D .U【答案】A【详细分析】由题意可得U N ð的值,然后计算U M N ⋃ð即可.【答案详解】由题意可得{}2,4,8U N =ð,则{}0,2,4,6,8U M N = ð.故选:A.3.(2023年全国乙卷∙高考真题)设集合U =R ,集合{}1M x x =<,{}12N x x =-<<,则{}2x x ≥=( ) A .()U M N ð B .U N M ðC .()U M N ðD .U M N ⋃ð【答案】A【详细分析】由题意逐一考查所给的选项运算结果是否为{}|2x x ≥即可.【答案详解】由题意可得{}|2M N x x =< ,则(){}|2U M N x x =≥ ð,选项A 正确; {}|1U M x x =≥ð,则{}|1U N M x x =>- ð,选项B 错误;{}|11M N x x =-<< ,则(){|1U M N x x ⋂=≤-ð或}1x ≥,选项C 错误;{|1U N x x =≤-ð或}2x ≥,则U M N = ð{|1x x <或}2x ≥,选项D 错误;故选:A.4.(2022∙全国乙卷∙高考真题)设全集{1,2,3,4,5}U =,集合M 满足{1,3}U M =ð,则( ) A .2M ∈ B .3M ∈ C .4M ∉ D .5M ∉【答案】A【详细分析】先写出集合M ,然后逐项验证即可【答案详解】由题知{2,4,5}M =,对比选项知,A 正确,BCD 错误故选:A5.(2022∙北京∙高考真题)已知全集{33}U x x =-<<,集合{21}A x x =-<≤,则U A =ð( ) A .(2,1]- B .(3,2)[1,3)-- C .[2,1)- D .(3,2](1,3)--【答案】D【详细分析】利用补集的定义可得正确的选项.【答案详解】由补集定义可知:{|32U A x x =-<≤-ð或13}x <<,即(3,2](1,3)U A =-- ð,故选:D .6.(2021全国新Ⅱ卷∙高考真题)设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()U A B = ð( ) A .{3} B .{1,6}C .{5,6}D .{1,3}【答案】B【详细分析】根据交集、补集的定义可求()U A B ⋂ð.【答案详解】由题设可得{}U 1,5,6B =ð,故(){}U 1,6A B ⋂=ð, 故选:B.7.(2020全国新Ⅰ卷∙高考真题)已知全集{},,,U a b c d =,集合{},M a c =,则U M ð等于( ) A .∅ B .{},a cC .{},b dD .{},,,a b c d【答案】C【详细分析】利用补集概念求解即可. 【答案详解】{},U M b d =ð. 故选:C考点05 充分条件与必要条件1.(2024∙全国甲卷∙高考真题)设向量()()1,,,2a x x b x =+= ,则( )A .“3x =-”是“a b ⊥”的必要条件B .“3x =-”是“//a b ”的必要条件C .“0x =”是“a b ⊥”的充分条件 D .“1x =-”是“//a b ”的充分条件 【答案】C【详细分析】根据向量垂直和平行的坐标表示即可得到方程,解出即可.【答案详解】对A ,当a b ⊥ 时,则0a b ⋅=,所以(1)20x x x ⋅++=,解得0x =或3-,即必要性不成立,故A 错误;对C ,当0x =时,()()1,0,0,2a b == ,故0a b ⋅=,所以a b ⊥,即充分性成立,故C 正确;对B ,当//a b时,则22(1)x x +=,解得1x =±B 错误;对D ,当1x =-时,不满足22(1)x x +=,所以//a b不成立,即充分性不立,故D 错误. 故选:C.2.(2024∙天津∙高考真题)设,a b ∈R ,则“33a b =”是“33a b =”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】C【详细分析】说明二者与同一个命题等价,再得到二者等价,即是充分必要条件.【答案详解】根据立方的性质和指数函数的性质,33a b =和33a b =都当且仅当a b =,所以二者互为充要条件. 故选:C.3.(2024∙北京∙高考真题)设 a ,b 是向量,则“()()ꞏ0a b a b +-=”是“a b =- 或a b = ”的( ). A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B【详细分析】根据向量数量积详细分析可知()()0a b a b +⋅-= 等价于a b =,结合充分、必要条件详细分析判断.【答案详解】因为()()220a b a b a b +⋅-=-= ,可得22a b = ,即a b = ,可知()()0a b a b +⋅-= 等价于a b = , 若a b = 或a b =- ,可得a b = ,即()()0a b a b +⋅-=,可知必要性成立;若()()0a b a b +⋅-= ,即a b =,无法得出a b = 或a b =- , 例如()()1,0,0,1a b ==,满足a b = ,但a b ≠ 且a b ≠- ,可知充分性不成立;综上所述,“()()0a b a b +⋅-=”是“a b ≠ 且a b ≠- ”的必要不充分条件.故选:B.4.(2023∙北京∙高考真题)若0xy ≠,则“0x y +=”是“2y xx y+=-”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】C【详细分析】解法一:由2xyy x +=-化简得到0x y +=即可判断;解法二:证明充分性可由0x y +=得到x y =-,代入x y y x+化简即可,证明必要性可由2x yy x +=-去分母,再用完全平方公式即可;解法三:证明充分性可由x y y x +通分后用配凑法得到完全平方公式,再把0x y +=代入即可,证明必要性可由x yy x+通分后用配凑法得到完全平方公式,再把0x y +=代入,解方程即可. 【答案详解】解法一: 因为0xy ≠,且2x yy x +=-,所以222x y xy +=-,即2220x y xy ++=,即()20x y +=,所以0x y +=.所以“0x y +=”是“2x yy x +=-”的充要条件. 解法二:充分性:因为0xy ≠,且0x y +=,所以x y =-, 所以112x y y yy x y y -+=+=--=--, 所以充分性成立;必要性:因为0xy ≠,且2x yy x +=-,所以222x y xy +=-,即2220x y xy ++=,即()20x y +=,所以0x y +=. 所以必要性成立.所以“0x y +=”是“2x yy x +=-”的充要条件. 解法三:充分性:因为0xy ≠,且0x y +=,所以()2222222222x y xy x y x y x y xy xy xyy x xy xy xy xy+-+++--+=====-, 所以充分性成立;必要性:因为0xy ≠,且2x yy x +=-,所以()()22222222222x y xy x y x y x y x y xy xy y x xy xy xy xy+-++++-+====-=-, 所以()20x y xy+=,所以()20x y +=,所以0x y +=,所以必要性成立.所以“0x y +=”是“2xyy x +=-”的充要条件. 故选:C5.(2023∙全国甲卷∙高考真题)设甲:22sin sin 1αβ+=,乙:sin cos 0αβ+=,则( ) A .甲是乙的充分条件但不是必要条件 B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件【答案】B【详细分析】根据充分条件、必要条件的概念及同角三角函数的基本关系得解. 【答案详解】当22sin sin 1αβ+=时,例如π,02αβ==但sin cos 0αβ+≠, 即22sin sin 1αβ+=推不出sin cos 0αβ+=;当sin cos 0αβ+=时,2222sin sin (cos )sin 1αβββ+=-+=,即sin cos 0αβ+=能推出22sin sin 1αβ+=. 综上可知,甲是乙的必要不充分条件. 故选:B6.(2023∙天津∙高考真题)已知,R a b ∈,“22a b =”是“222a b ab +=”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分又不必要条件【答案】B【详细分析】根据充分、必要性定义判断条件的推出关系,即可得答案.【答案详解】由22a b =,则a b =±,当0a b =-≠时222a b ab +=不成立,充分性不成立; 由222a b ab +=,则2()0a b -=,即a b =,显然22a b =成立,必要性成立; 所以22a b =是222a b ab +=的必要不充分条件. 故选:B7.(2023∙全国新Ⅰ卷∙高考真题)记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:{}nS n为等差数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件 【答案】C【详细分析】利用充分条件、必要条件的定义及等差数列的定义,再结合数列前n 项和与第n 项的关系推理判断作答.,【答案详解】方法1,甲:{}n a 为等差数列,设其首项为1a ,公差为d , 则1111(1)1,,222212n n n n S S S n n n d d dS na d a d n a n n n +--=+=+=+--=+, 因此{}nS n为等差数列,则甲是乙的充分条件; 反之,乙:{}nS n为等差数列,即111(1)1(1)(1)n n n n n n S S nS n S na S n n n n n n +++-+--==+++为常数,设为t ,即1(1)n nna S t n n +-=+,则1(1)n n S na t n n +=-⋅+,有1(1)(1),2n n S n a t n n n -=--⋅-≥,两式相减得:1(1)2n n n a na n a tn +=---,即12n n a a t +-=,对1n =也成立, 因此{}n a 为等差数列,则甲是乙的必要条件, 所以甲是乙的充要条件,C 正确.方法2,甲:{}n a 为等差数列,设数列{}n a 的首项1a ,公差为d ,即1(1)2n n n S na d -=+, 则11(1)222n S n d d a d n a n-=+=+-,因此{}n S n 为等差数列,即甲是乙的充分条件;反之,乙:{}nS n 为等差数列,即11,(1)1n n n S S S D S n D n n n+-==+-+, 即1(1)n S nS n n D =+-,11(1)(1)(2)n S n S n n D -=-+--,当2n ≥时,上两式相减得:112(1)n n S S S n D --=+-,当1n =时,上式成立, 于是12(1)n a a n D =+-,又111[22(1)]2n n a a a nD a n D D +-=+-+-=为常数, 因此{}n a 为等差数列,则甲是乙的必要条件, 所以甲是乙的充要条件. 故选:C8.(2022∙浙江∙高考真题)设x ∈R ,则“sin 1x =”是“cos 0x =”的( ) A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】A【详细分析】由三角函数的性质结合充分条件、必要条件的定义即可得解. 【答案详解】因为22sin cos 1x x +=可得: 当sin 1x =时,cos 0x =,充分性成立; 当cos 0x =时,sin 1x =±,必要性不成立; 所以当x ∈R ,sin 1x =是cos 0x =的充分不必要条件. 故选:A.9.(2022∙北京∙高考真题)设{}n a 是公差不为0的无穷等差数列,则“{}n a 为递增数列”是“存在正整数0N ,当0n N >时,0n a >”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】C【详细分析】设等差数列{}n a 的公差为d ,则0d ≠,利用等差数列的通项公式结合充分条件、必要条件的定义判断可得出结论.【答案详解】设等差数列{}n a 的公差为d ,则0d ≠,记[]x 为不超过x 的最大整数. 若{}n a 为单调递增数列,则0d >,若10a ≥,则当2n ≥时,10n a a >≥;若10a <,则()11n a a n d +-=, 由()110n a a n d =+->可得11a n d >-,取1011a N d ⎡⎤=-+⎢⎥⎣⎦,则当0n N >时,0n a >,所以,“{}n a 是递增数列”⇒“存在正整数0N ,当0n N >时,0n a >”; 若存在正整数0N ,当0n N >时,0n a >,取N k *∈且0k N >,0k a >, 假设0d <,令()0n k a a n k d =+-<可得k a n k d >-,且k ak k d->, 当1k a n k d ⎡⎤>-+⎢⎥⎣⎦时,0n a <,与题设矛盾,假设不成立,则0d >,即数列{}n a 是递增数列.所以,“{}n a 是递增数列”⇐“存在正整数0N ,当0n N >时,0n a >”.所以,“{}n a 是递增数列”是“存在正整数0N ,当0n N >时,0n a >”的充分必要条件. 故选:C.10.(2021∙全国甲卷∙高考真题)等比数列{}n a 的公比为q ,前n 项和为n S ,设甲:0q >,乙:{}n S 是递增数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件 【答案】B【详细分析】当0q >时,通过举反例说明甲不是乙的充分条件;当{}n S 是递增数列时,必有0n a >成立即可说明0q >成立,则甲是乙的必要条件,即可选出答案. 【答案详解】由题,当数列为2,4,8,--- 时,满足0q >, 但是{}n S 不是递增数列,所以甲不是乙的充分条件.若{}n S 是递增数列,则必有0n a >成立,若0q >不成立,则会出现一正一负的情况,是矛盾的,则0q >成立,所以甲是乙的必要条件. 故选:B .【名师点评】在不成立的情况下,我们可以通过举反例说明,但是在成立的情况下,我们必须要给予其证明过程.考点06 全称量词与存在量词1.(2024∙全国新Ⅱ卷∙高考真题)已知命题p :x ∀∈R ,|1|1x +>;命题q :0x ∃>,3x x =,则( ) A .p 和q 都是真命题 B .p ⌝和q 都是真命题 C .p 和q ⌝都是真命题 D .p ⌝和q ⌝都是真命题【答案】B【详细分析】对于两个命题而言,可分别取=1x -、1x =,再结合命题及其否定的真假性相反即可得解. 【答案详解】对于p 而言,取=1x -,则有101x +=<,故p 是假命题,p ⌝是真命题,对于q 而言,取1x =,则有3311x x ===,故q 是真命题,q ⌝是假命题, 综上,p ⌝和q 都是真命题. 故选:B.2.(2020∙全国新Ⅰ卷∙高考真题)下列命题为真命题的是( ) A .10>且34> B .12>或45> C .x R ∃∈,cos 1x > D .x ∀∈R ,20x ≥【答案】D【详细分析】本题可通过43>、12<、45<、cos 1≤x 、20x ≥得出结果. 【答案详解】A 项:因为43>,所以10>且34>是假命题,A 错误; B 项:根据12<、45<易知B 错误; C 项:由余弦函数性质易知cos 1≤x ,C 错误; D 项:2x 恒大于等于0,D 正确, 故选:D.。
20202020年新课标高考数学理科试题分类精编2常用逻辑用语

20202020年新课标高考数学理科试题分类精编2常用逻辑用语第2部分-常用逻辑用语一、选择题1.( 2018年陕西理9).关于数列{a n },〝a n+1>∣a n ∣〔n=1,2…〕〞是〝{a n }为递增数列〞的【 】 (A) 必要不充分条件 (B) 充分不必要条件[来源:学+科+网](C) 必要条件 (D) 既不充分也不必要条件【答案】B 【解析】当),2,1(1 =>+n a a n n 时,∵n n a a ≥,∴n n a a >+1,∴{}n a 为递增数列.当{}n a 为递增数列时,假设该数列为1,0,2-,那么由12a a >不成立,即知:),2,1(1 =>+n a a n n 不一定成立.故综上知,〝),2,1(1 =>+n a a n n 〞是〝{}n a 为递增数列〞的充分不必要条件.应选B .2.〔2018年全国理5〕命题1p :函数22x xy -=-在R 为增函数, 2p :函数22x x y -=+在R 为减函数,那么在命题1q :12p p ∨,2q :12p p ∧,3q :()12p p -∨和4q :()12p p ∧-中,真命题是〔A 〕1q ,3q 〔B 〕2q ,3q 〔C 〕1q ,4q 〔D 〕2q ,4q【答案】C 解析:易知1p 是真命题,而对2p :112ln 2ln 2ln 2(2)22x x x x y '=-=-, 当[0,)x ∈+∞时,122x x ≥,又ln 20>,因此0y '≥,函数单调递增;同理得当(,0)x ∈-∞时,函数单调递减,故2p 是假命题.由此可知,1q 真,2q 假,3q 假,4q 真. 另解:对2p 的真假能够取专门值来判定,如取1212x x =<=,得1251724y y =<=;取3412x x =->=-,得3451724y y =<=即可得到2p 是假命题,下略. 3.〔2018年天津理3〕命题〝假设()f x 是奇函数,那么()f x -是奇函数〞的否命题是 〔A 〕假设()f x 是偶函数,那么()f x -是偶函数〔B 〕假设()f x 是奇数,那么()f x -不是奇函数〔C 〕假设()f x -是奇函数,那么()f x 是奇函数〔D 〕假设()f x -是奇函数,那么()f x 不是奇函数【答案】B 【解析】因为一个命题的否命题是只对其结论进行否定,因此选B 。
历年(2019-2023)高考数学真题分类(集合、常用逻辑用语与不等式)练习(附答案)

[答案解析]因为
1 ,所以
|
2
C. |3
16
|0
16 ;因为
4 ,所以
}.所以 ∩
|
A.
1 ,2
|0
B. 1 ,2
1|
1 ,得 1
2 ,所以 ∩
9. [2022 北京,4 分]已知全集
1 ,则∁
A.
2,1
16
|3
| |
1|
(B)
[答案解析]由|
历年(2019-2023)高考数学真题分类(集合、常用逻辑用语与不等式)练习
考点: 集合
一、选择题
2 , 1 ,0,1,2 ,
1. [2023 新高考卷Ⅰ,5 分]已知集合
6
A.
0 ,则 ∩
(C)
2 , 1 ,0,1
B. 0 ,1,2
2
C.
|
[答案解析]解法一因为
∩
|
6
0
1 ,3 ,
1 ,2,4 ,则
C. 1 ,2,4
D. 1 ,2,4,5
1 ,2,4 ,所以∁
3 ,5 ,又
1 ,3 ,
1 ,3,5 .故选A .
4. [2023 全国卷甲,5 分]设全集
∪
0 .当
(A)
A. 1 ,3,5
|
2
1 ,0,1 ,满足 ⊆ .所以
3. [2023 天津,5 分]已知集合
2 ,故选A .
2 ,4,6 ,则 ∪
B. 1 ,2
C. 2 ,4,6
[答案解析]由集合并集的定义,得 ∪
7. [2022 新高考卷Ⅰ,5 分]若集合
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题一 集合与常用逻辑用语第二讲 常用逻辑用语2019年1.(2019全国Ⅱ理7)设α,β为两个平面,则α∥β的充要条件是 A.α内有无数条直线与β平行 B.α内有两条相交直线与β平行 C.α,β平行于同一条直线 D.α,β垂直于同一平面2.(2019北京理7)设点A ,B ,C 不共线,则“与的夹角是锐角”是“AB AC BC +>”的(A)充分而不必要条件 (B)必要而不充分条件 (C)充分必要条件 (D)既不充分也不必要条件3.(2019天津理3)设x ∈R ,则“250x x -<”是“|1|1x -<”的 A.充分而不必要条件 B.必要而不充分条件 C.充要条件D.既不充分也不必要条件2010-2018年一、选择题1.(2018北京)设a ,b 均为单位向量,则“33-=+a b a b ”是“a ⊥b ”的A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件2.(2018天津)设x ∈R ,则“11||22x -<”是“31x <”的 A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件 3.(2018上海)已知a R ∈,则“1a >”是“11a<”的( ) A.充分非必要条件 B.必要非充分条件 C.充要条件 D.既非充分又非必要条件4.(2018浙江)已知平面α,直线m ,n 满足m α⊄,n α⊂,则“m ∥n ”是“m ∥α”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件5.(2017新课标Ⅰ)设有下面四个命题1p :若复数z 满足1z∈R ,则z ∈R ;2p :若复数z 满足2z ∈R ,则z ∈R ;3p :若复数1z ,2z 满足12z z ∈R ,则12z z =; 4p :若复数z ∈R ,则z ∈R .其中的真命题为A.1p ,3pB.1p ,4pC.2p ,3pD.2p ,4p6.(2017浙江)已知等差数列{}n a 的公差为d ,前n 项和为n S ,则“0d >”是“465+2S S S >”的A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D.既不充分也不必要条件 7.(2017天津)设θ∈R ,则“ππ||1212θ-<”是“1sin 2θ<”的 A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件8.(2017山东)已知命题p :0x ∀>,ln(1)0x +>;命题q :若a b >,则22a b >,下列命题为真命题的是A.p q ∧B.p q ⌝∧C.p q ⌝∧D.p q ⌝⌝∧ 9.(2017北京)设m , n 为非零向量,则“存在负数λ,使得λ=m n ”是“0⋅<m n ”的A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件 10.(2016年北京)设,a b 是向量,则“||=||a b ”是“||||+=-a b a b ”的A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件11.(2016年山东)已知直线a ,b 分别在两个不同的平面α,β内,则“直线a 和直线b 相交”是“平面α和平面β相交”的 A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件12.(2016年天津)设{}n a 是首项为正数的等比数列,公比为q ,则“0q <”是“对任意的正整数n ,2120n n a a -+<”的( )A.充要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件13.(2015新课标)设命题p :n N ∃∈,22nn >,则p ⌝为A.2,2nn N n ∀∈> B.2,2nn N n ∃∈≤C.2,2nn N n ∀∈≤ D.2,2nn N n ∃∈=14.(2015安徽)设p :12x <<,q :21x>,则p 是q 成立的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件 15.(2015重庆)“1x >”是“12log (2)0x +<”的A.充要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件 16.(2015天津)设x R ∈ ,则“21x -< ”是“220x x +-> ”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件 17.(2015浙江)命题“**N ,()N n f n ∀∈∈ 且()f n n ≤的否定形式是A.**N ,()N n f n ∀∈∉且()f n n > B.**N ,()N n f n ∀∈∉或()f n n >C.**00N ,()N n f n ∃∈∉且00()f n n > D.**00N ,()N n f n ∃∈∉或00()f n n >18.(2015北京)设α,β是两个不同的平面,m 是直线且m α⊂.“m β∥”是“αβ∥”的A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件19.(2015陕西)“sin cos αα=”是“cos20α=”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要20.(2014新课标2)函数()f x 在0=x x 处导数存在,若()00p f x '=:,0:q x x =是()f x 的极值点,则A.p 是q 的充分必要条件B.p 是q 的充分条件,但不是q 的必要条件C.p 是q 的必要条件,但不是q 的充分条件D.p 既不是q 的充分条件,也不是q 的必要条件21.(2014广东)在ABC ∆中,角A ,B ,C 所对应的边分别为,,,c b a 则“b a ≤”是“B A sin sin ≤”的A.充分必要条件B.充分非必要条件C.必要非充分条件D.非充分非必要条件 22.(2014福建)命题“[)30,.0x x x ∀∈+∞+≥”的否定是A.()30,.0x x x ∀∈+∞+< B.()3,0.0x x x ∀∈-∞+≥C.[)30000,.0x x x ∃∈+∞+< D.[)30000,.0x x x ∃∈+∞+≥23.(2014浙江)已知i 是虚数单位,R b a ∈,,则“1==b a ”是“i bi a 2)(2=+”的A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件24.(2014湖南)已知命题p :若x y >,则x y -<-;命题q :若x y >,则22x y >.在命题①p q ∧ ②p q ∨ ③()p q ∧⌝ ④()p q ⌝∨中,真命题是A.①③B.①④C.②③D.②④ 25.(2014陕西)原命题为“若12n n n a a a ++<,n N +∈,则{}n a 为递减数列”,关于逆命题,否命题,逆否命题真假性的判断依次如下,正确的是A.真,真,真B.假,假,真C.真,真,假D.假,假,假 26.(2014江西)下列叙述中正确的是A.若,,a b c R ∈,则2"0"ax bx c ++≥的充分条件是2"40"b ac -≤ B.若,,a b c R ∈,则22""ab cb >的充要条件是""a c >C.命题“对任意x R ∈,有20x ≥”的否定是“存在x R ∈,有20x ≥” D.l 是一条直线,,αβ是两个不同的平面,若,l l αβ⊥⊥,则//αβ27.(2013安徽)“0a ≤”是“函数()=(-1)f x ax x 在区间(0,+)∞内单调递增”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件 28.(2013北京)“ϕπ=”是“曲线()sin 2y x ϕ=+过坐标原点的”A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件29.设z 是复数, 则下列命题中的假命题是A.若20z ≥, 则z 是实数B.若20z <, 则z 是虚数C.若z 是虚数, 则20z ≥D.若z 是纯虚数, 则20z <30.(2013浙江)已知函数),0,0)(cos()(R A x A x f ∈>>+=ϕωϕω,则“)(x f 是奇函数”是2πϕ=的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件 31.(2013重庆)命题“对任意x R ∈,都有20x ≥”的否定为A.对任意x R ∈,都有20x <B.不存在x R ∈,都有20x <C.存在0x R ∈,使得200x ≥D.存在0x R ∈,使得200x <32.(2013四川)设x Z ∈,集合A 是奇数集,集合B 是偶数集,若命题p :,2x A x B ∀∈∈,则A.p ⌝:,2x A x B ∀∈∉ B.p ⌝:2x A x B ∀∉∉,C.p ⌝:2x A x B ∀∉∈,D.p ⌝:2x A x B ∀∈∉,33.(2013湖北)在一次跳伞训练中,甲.乙两位学员各跳一次,设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为A.()()p q ⌝∨⌝B. ()p q ∨⌝C.()()p q ⌝∧⌝D.p q ∨34.(2012湖北)命题“0x ∃∈R Q ,30x ∈Q ”的否定是A.0x ∃∉R Q ,30x ∈QB.0x ∃∈R Q ,30x ∉QC.x ∀∉R Q ,3x ∈QD.x ∀∈R Q ,3x ∉Q35.(2012湖南)命题“若4πα=,则tan 1α=”的逆否命题是A.若4πα≠,则tan 1α≠ B.若4πα=,则tan 1α≠C.若tan 1α≠,则4πα≠D.若tan 1α≠,则4πα=36.(2012安徽)设平面α与平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且b m ⊥,则“αβ⊥”是“a b ⊥”的A.充分不必要条件B.必要不充分条件C.充要条件D. 即不充分不必要条件 37.(2012福建)下列命题中,真命题是A.00,0x x R e∃∈ B.2,2x x R x ∀∈>C.0a b +=的充要条件是1ab=- D.1a >,1b >是1ab >的充分条件 38.(2012北京)设,a b ∈R ,“0a =”是“复数i a b +是纯虚数”的A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件 39.(2012湖北)命题“存在一个无理数,它的平方是有理数”的否定是A.任意一个有理数,它的平方是有理数B.任意一个无理数,它的平方不是有理数C.存在一个有理数,它的平方是有理数D.存在一个无理数,它的平方不是有理数40.(2012山东)设0>a 且1≠a ,则“函数()xa x f =在R 上是减函数”是“()()32xa x g -=在R 上是增函数”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件41.(2012山东)设命题p :函数sin 2y x =的最小正周期为2π;命题q :函数cos y x =的图象关于直线2x π=对称.则下列判断正确的是A.p 为真B.q ⌝为假C.p q ∧为假D.p q ∨为真42.(2011山东)已知,,a b c R ∈,命题“若a b c ++=3,则222a b c ++≥3”,的否命题是 A.若3a b c ++≠,则222a b c ++<3 B.若3a b c ++=,则222a b c ++<3 C.若3a b c ++≠,则222a b c ++≥3D.若222a b c ++≥3,则3a b c ++=43.(2011新课标)已知a ,b 均为单位向量,其夹角为θ,有下列四个命题12:||1[0,)3p πθ+>⇔∈a b 2:p ||1+>a b ⇔2(,]3πθπ∈ 13:||1[0,)3p πθ->⇔∈a b4:p ||1->a b ⇔(,]3πθπ∈其中真命题是A.14,p pB.13,p pC.23,p pD.24,p p 44.(2011陕西)设,a b 是向量,命题“若=-a b ,则=a b ”的逆命题是A.若≠a b ,则≠a bB.若=-a b ,则≠a bC.若≠a b ,则≠a bD.若=a b ,则=-a b45.(2011湖南)设集合{}{}21,2,,M N a ==则 “1a =”是“N M ⊆”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件 46.(2011安徽)命题“所有能被2整聊的整数都是偶数”的否定..是 A.所有不能被2整除的数都是偶数 B.所有能被2整除的整数都不是偶数 C.存在一个不能被2整除的数都是偶数 D.存在一个能被2整除的数都不是偶数47.(2010新课标)已知命题1p :函数22xxy -=-在R 为增函数,2p :函数22xxy -=+ 在R 为减函数,则在命题1q :12p p ∨,2q :12p p ∧,3q :()12p p ⌝∨和4q :()12p p ∧⌝中,真命题是 A.1q ,3q B.2q ,3q C.1q ,4q D.2q ,4q48.(2010辽宁)已知a >0,则0x 满足关于x 的方程ax b =的充要条件是A.220011,22x R ax bx ax bx ∃∈-≥-B.220011,22x R ax bx ax bx ∃∈-≤- C.220011,22x R ax bx ax bx ∀∈-≥- D.220011,22x R ax bx ax bx ∀∈-≤-二、填空题49.(2018北京)能说明“若()(0)f x f >对任意的(0,2]x ∈都成立,则()f x 在[0,2]上是增函数”为假命题的一个函数是__________. 50.(2015山东)若“x ∀[0,]4π∈,tan x m ≤”是真命题,则实数m 的最小值为 .51.(2013四川)设n P P P ,,,⋯⋯21为平面a 内的n 个点,在平面a 内的所有点中,若点P 到点n P P P ,,,⋯⋯21的距离之和最小,则称点P 为点12n P P P ⋅⋅⋅,,,的一个“中位点”,例如,线段AB 上的任意点都是端点A ,B 的中位点,现有下列命题: ①若三个点A ,B ,C 共线,C 在线段AB 上,则C 是A ,B ,C 的中位点; ②直角三角形斜边的中点是该直角三角形三个顶点的中位点; ③若四个点A ,B ,C ,D 共线,则它们的中位点存在且唯一; ④梯形对角线的交点是该梯形四个顶点的唯一中位点; 其中的真命题是________________(写出所有的真命题的序号).52.(2011陕西)设n N +∈,一元二次方程240x x n -+=有正数根的充要条件是n = . 53.(2010安徽)命题“存在x R ∈,使得2250x x ++=”的否定是 .2019年1.解析:对于A,α内有无数条直线与β平行,则α与β相交或βα∥,排除; 对于B,α内有两条相交直线与β平行,则βα∥;对于C,α,β平行于同一条直线,则α与β相交或βα∥,排除; 对于D,α,β垂直于同一平面,则α与β相交或βα∥,排除. 故选B.AC BC AB AC AB AC +>⇔+>-220AB AC AB AC AB AC ⇔+>-⇔⋅>⇔ “AB 与AC 的夹角为锐角”.所以“AB 与AC 的夹角为锐角AC BC +>的充要条件.故选C.11-<,得02x <<, 因为05x <<不能推出02x <<, 但02x <<可以推出05x <<,所以05x <<是02x <<的必要不充分条件, 即0x <<11-<的必要不充分条件. 故选B.2010-2018年1.C 【解析】∵33-=+a b a b ,∴22(3)(3)-=+a b a b ,∴2269-⋅+=a a b b2296+⋅+a a b b ,又||||1==a b ,∴0⋅=a b ,∴⊥a b ;反之也成立,故选C.2.A 【解析】通解 由11||22x -<,得01x <<,所以301x <<;由31x <, 得1x <,不能推出01x <<.所以“11||22x -<”是“31x <”的充分而不必要条件,故选A. 优解 由11||22x -<,得01x <<,所以301x <<,所以充分性成立; 取14x =-,则1131||4242--=>,311()1464-=-<,所以必要性不成立.故选A. 3.A 【解析】由1>a 可得11<a 成立;当11<a,即1110--=<a a a ,解得0<a 或1>a ,推不出1>a 一定成立;所以“1a >”是“11a <”的充分非必要条件.故选A.5.B 【解析】设i z a b =+(,a b ∈R ),则2211i (i)a b z a b a b -==∈++R ,得0b =,所以z ∈R ,1p 正确;2222(i)2i z a b a b ab =+=-+∈R ,则0ab =,即0a =或0b =,不能确定z ∈R ,2p 不正确;若z ∈R ,则0b =,此时i z a b a =-=∈R ,4p 正确.选B.6.C 【解析】∵655465()()S S S S a a d ---=-=,当0d >,可得465+2S S S >;当465+2S S S >,可得0d >.所以“0d >”是“465+2S S S >” 充分必要条件,选C.7.A 【解析】由ππ||1212θ-<,得06πθ<<,所以1sin 2θ<,反之令0θ=,有1sin 2θ< 成立,不满足ππ||1212θ-<,所以“ππ||1212θ-<”是“1sin 2θ<”的充分而不必要条件.选A. 8.B 【解析】0x ∀>,11+>x ,所以ln(1)0x +>,所以p 为真命题;若0a b >>,则22a b >,若0b a <<,则0a b <-<-,所以22a b <,所以q 为假命题.所以p q ⌝∧为真命题.选B.9.A 【解析】因为,m n 为非零向量,所以||||cos ,0⋅=<><m n m n m n 的充要条件是cos ,0<><m n .因为0λ<,则由λ=m n 可知,m n 的方向相反,,180<>=m n ,所以cos ,0<><m n ,所以“存在负数λ,使得λ=m n ”可推出“0⋅<m n ”;而0⋅<m n 可推出cos ,0<><m n ,但不一定推出,m n 的方向相反,从而不一定推得“存在负数λ,使得λ=m n ”,所以“存在负数λ,使得λ=m n ”是“0⋅<m n ”的充分而不必要条件.10.D 【解析】取0-≠a =b ,则||||0=≠a b ,|||0|0+==a b ,|||2|0-=≠a b a ,所以||||+≠-a b a b ,故由||||=a b 推不出||||+=-a b a b .由||||+=-a b a b ,得22||||+=-a b a b ,整理得0⋅=a b ,所以⊥a b ,不一定能得出||||=a b ,故由||||+=-a b a b 推不出||||=a b ,故“||||=a b ”是“||||+=-a b a b ”的既不充分也不必要条件,故选D.11.A 【解析】若直线,a b 相交,设交点为P ,则,P a P b ∈∈,又,a b αβ⊂⊂,所以,P P αβ∈∈,故,αβ相交.反之,若,αβ相交,则,a b 可能相交,也可能异面或平行.故“直线a 和直线b 相交”是“平面α和平面β相交”的充分不必要条件.故选A.12.C 【解析】由题意得,111(0)n n a a q a -=>,222121211n n n n a a a qa q ---+=+= 221(1)n a q q -+,若0q <,因为1q +得符号不定,所以无法判断212n n a a -+的符号;反之,若2120n n a a -+<,即2(1)1(1)0n a q q -+<,可得10q <-<,故“0q <”是“对任意的正整数n ,2120n n a a -+<”的必要不充分条件,故选C.13.C 【解析】命题p 是一个特称命题,其否定是全称命题.14.A 【解析】由0:22x q >,解得0x >,易知,p 能推出q ,但q 不能推出p ,故p 是q 成立的充分不必要条件,选A.15.B 【解析】12log (2)0211x x x +<⇔+>⇔>-,因此选B.16.A 【解析】解不等式|2|1x 可得,13x,解不等式220x x 可得,2x 或1x ,所以“21x -< ”是“220x x +-> ”的充分而不必要条件.17.D 【解析】 根据全称命题的否定是特称命题,因此命题“**N ,()N n f n ∀∈∈且 ()f n n ≤”的否定为“**00N ,()N n f n ∃∈∉或00()f n n >”可知选D.18.B 【解析】因为α,β是两个不同的平面,m 是直线且m α⊂.若“m β”,则平面、αβ 可能相交也可能平行,不能推出αβ∥,反过来若αβ∥,mα,则有m β∥,则“m β∥”是“αβ∥”的必要而不充分条件.19.A 【解析】因为22cos 2cos sin 0ααα=-=,所以sin cos αα=或sin cos αα=-,因为“sin cos αα=”⇒“cos20α=”,但“sin cos αα=”⇐/“cos20α=”,所以“sin cos αα=”是“cos20α=”的充分不必要条件,故选A.20.C 【解析】设3()f x x =,(0)0f '=,但是()f x 是单调增函数,在0x =处不存在极值,故若p则q 是一个假命题,由极值的定义可得若q 则p 是一个真命题,故选C.21.A 【解析】由正弦定理sin sin a b A B=,故“b a ≤”⇔“B A sin sin ≤”. 22.C 【解析】 把量词“∀”改为“∃”,把结论否定,故选C.23.A 【解析】 当1a b ==时,22()(1)2a bi i i +=+=,反之,若i bi a 2)(2=+,则有1a b ==- 或1a b ==,因此选A.24.C 【解析】由不等式的性质可知,命题p 是真命题,命题q 为假命题,故①p q ∧为假命题,②p q ∨为真命题,③q ⌝为真命题,则()p q ∧⌝为真命题,④p ⌝为假命题,则()p q ⌝∨为假命题,所以选C.25.A 【解析】 从原命题的真假人手,由于12n n n a a a ++<{}1n n n a a a +⇔<⇔为递减数列,即原命题和否命题均为真命题,又原命题与逆否命题同真同假,则逆命题、否命题和逆否命题均为真命题,选A.26.D 【解析】 2"40"b ac -≤推不出2"0"ax bx c ++≥,因为与a 的符号不确定,所以A 不正确;当20b =时,由""a c >推不出22""ab cb >,所以B 不正确;“对任意x R ∈,有20x ≥”的否定是“存在x R ∈,有0x <”,所以C 不正确.选D.27.C 【解析】当a =0 时,()f x x =,∴()f x 在区间()0,+∞内单调递增;当0a <时,()1f x a x x a ⎛⎫=- ⎪⎝⎭中一个根10a <,另一个根为0,由图象可知()f x 在区间 ()0,+∞内单调递增;∴"0"a ≤是“函数()=(-1)f x ax x 在区间(0,+)∞内单调递增”的充分条件,相反,当()1f x a x x a ⎛⎫=- ⎪⎝⎭在区间(0,+)∞内单调递增,∴0a =或 10a<,即0a ≤;"0"a ≤是“函数()=(-1)f x ax x 在区间(0,+)∞内单调递增”的必要条件,故前者是后者的充分必要条件.所以选C.28.A 【解析】当ϕπ=时,sin 2y x =-过原点;()sin 2y x ϕ=+过原点,则,,0,,ϕππ=⋅⋅⋅-⋅⋅⋅等无数个值.选A.29.C 【解析】abi b a z R b a bi a z 2,,222+-=⇒∈+=设.对选项A: 为实数则若z b z ⇒=≥0,02,所以为实数z 为真.对选项B: 为纯虚数且则若z b a z ⇒≠=<0,0,02,所以为纯虚数z 为真.对选项C: 00,0,2<⇒≠=z b a z 且则为纯虚数若,所以02≥z 为假.对选项D: 00,0,2<⇒≠=z b a z 且则为纯虚数若,所以02<z 为真. 所以选C.30.B 【解析】由f (x )是奇函数可知f (0)=0,即cos φ=0,解出φ=π2+k π,k ∈Z ,所以选项B 正确. 31.D 【解析】否定为:存在0x R ∈,使得200x <,故选D.32.C 【解析】由命题的否定易知选C.33.A 【解析】“至少有一位学员没有降落在指定范围”即:“甲或乙没有降落在指定范围内”.34.D 【解析】存在性命题的否定为“∃”改为“∀”,后面结论加以否定,故为300,R x C Q x Q ∀∈∉.35.C 【解析】因为“若p ,则q ”的逆否命题为“若p ⌝,则q ⌝”,所以 “若4πα=,则tan 1α=”的逆否命题是 “若tan 1α≠,则4πα≠”.36.A 【解析】①,,,b m m b αβαββ⊥⊥⋂=⊂,b a b a αα⇒⊥⊂⇒⊥②如果//a m ;∵b m ⊥,一定有a b ⊥但不能保证b α⊥,既不能推出αβ⊥37.D 【解析】∵,0xx R e ∀∈>,故排除A;取x =2,则2222=,故排除B;0a b +=,取0a b ==,则不能推出1a b=-,故排除C;应选D. 38.B 【解析】0a =时i a b +不一定是纯虚数,但i a b +是纯虚数0a =一定成立,故“0a =”是“复数i a b +是纯虚数”的必要而不充分条件.39.B 【解析】根据特称命题的否定,需先将存在量词改为全称量词,然后否定结论,故该命题的否定为“任意一个无理数,它的平方不是有理数”,故选B.40.A 【解析】p :“函数()x a x f =在R 上是减函数 ”等价于10<<a ;q :“函数()()32x a x g -=在R 上是增函数”等价于02>-a ,即,20<<a 且a ≠1,故p 是q 成立的充分不必要条件.选A.41.C 【解析】命题p 为假,命题q 也为假,故选.42.A 【解析】3a b c ++=的否定是3a b c ++≠,222a b c ++≥3的否定是222a b c ++<3,故选A.43.A 【解析】由1a b +==>得, 1cos 2θ>-, 20,3πθ⎡⎫⇒∈⎪⎢⎣⎭。由1a b -==>得1cos 2θ< ,3πθπ⎛⎤⇒∈ ⎥⎝⎦.选A. 44.D 【解析】根据定义若“若a b =,则a b =-”.45.A 【解析】显然1a =时一定有N M ⊆,反之则不一定成立,如1a =-,故“1a =”是“N M ⊆” 充分不必要条件.46.D 【解析】 根据定义容易知D 正确.47.C 【解析】∵1p 是真命题,则1p ⌝为假命题;2p 是假命题,则2p ⌝为真命题,∴1q :12p p ∨ 是真命题,2q :12p p ∧是假命题,3q :()12p p ⌝∨为假命题,4q :()12p p ∧⌝为真命题,故选C.48.C 【解析】由于a >0,令函数22211()222b b y ax bx a x a a=-=--,此时函数对应的开口向上,当x =b a时,取得最小值22b a -,而0x 满足关于x 的方程ax b =,那么0x =b a ,min y =2200122b ax bx a -=-,那么对于任意的x ∈R,都有212y ax bx =-≥22b a -=20012ax bx -. 49.sin y x =(不答案不唯一)【解析】这是一道开放性试题,答案不唯一,只要满足()(0)f x f >对任意的(0,2]x ∈都成立,且函数()f x 在[0,2]上不是增函数即可,如,()sin f x x =,答案不唯一.50.1【解析】“[0,]4x π∀∈,tan x m ≤”是真命题,则tan 14m π≥=,于是实数m 的最小值为1。51.①④【解析】由“中位点”可知,若C 在线段AB 上,则线段AB 上任一点都为“中位点”,C 也不例外,故①正确;对于②假设在等腰Rt △ABC 中,∠ACB =90°,如图所示,点P 为斜边AB 中点,设腰长为2,则|P A |+|PB |+|PC |=32|AB |=而若C 为“中位点”,则|CB |+|CA |=4<故②错; 对于③,若B ,C 三等分AD ,若设|AB |=|BC |=|CD |=1,则|BA |+|BC |+|BD |=4=|CA |+|CB |+|CD |,故③错;对于④,在梯形ABCD 中,对角线AC 与BD 的交点为O ,在梯形ABCD 内任取不同于点O 的一点M ,则在△MAC 中,|MA |+|MC |>|AC |=|OA |+|OC |,同理在△MBD 中,|MB |+|MD |>|BD |=|OB |+|OD |,则得,|MA |+|MB |+|MC |+|MD |>|OA |+|OB |+|OC |+|OD |,故O 为梯形内唯一中位点是正确的.52.3或4【解析】易知方程得解都是正整数解,由判别式1640n ∆=-≥得,14n ≤≤,逐个分析,当1,2n =时,方程没有整数解;而当3n =时,方程有正整数解1、3;当4n =时,方程有正整数解2.53.【解析】对任何x R ∈,都有2250x x ++≠.。