2018年高考试题分类汇编(常用逻辑用语)
2018届浙江省基于高考试题的复习资料——常用逻辑用语

一、集合与常用逻辑用语(二)常用逻辑用语一、高考考什么?[考试说明]7.了解原命题和原命题的逆命题、否命题、逆否命题的含义,及其相互之间的关系。
8.理解命题的必要条件、充分条件、充要条件的意义,能判断并证明命题成立的充分条件、必要条件、充要条件。
[知识梳理] 1.四种命题中“‘逆’者‘交换’也”、“‘否’者‘否定’也”.原命题等价于逆否命题,但原命题与逆命题、否命题都不等价.注意:命题的否定是“条件不变,仅否定结论”,但否命题是“既否定原命题的条件,又否定原命题的结论”.2.充要条件:判断充要条件的三种方法: (1)定义法;(2)利用集合间的包含关系判断,若B A ⊆,则A 是B 的充分条件或B 是A 的必要条件;若A=B ,则A 是B 的充要条件;(3)等价法:即利用等价关系"A B B A "⇒⇔⇒判断,对于条件或结论是不等关系(或否定式)的命题,一般运用等价法。
[全面解读]主要掌握三种条件成立的意义,分清两种命题的叙述形式,即“A 成立的条件是B ”和“若A 则B ”中的条件和结论。
四种命题中的两个等价命题在判定命题真假中的应用。
利用子集的观点判断充分条件、必要条件是常用的方法。
[难度系数] ★★☆☆☆二、高考怎么考?[原题解析] [2004年](8) 在ΔABC 中,“30A >︒”是“1sin 2A >”的( ) A . 充分而不必要条件 B . 必要而不充分条件 C . 充分必要条件 D . 既不充分也不必要条件 [2005年](6)设α、β 为两个不同的平面,l m 、为两条不同的直线,且l ⊂α,m ⊂β,有如下的两个命题:①若α∥β,则l ∥m ;②若l ⊥m ,则α⊥β.那么( ) A . ①是真命题,②是假命题 B . ①是假命题,②是真命题 C . ①②都是真命题 D . ①②都是假命题(7)“0a b >>”是“222a b ab +<”的( )A . 充分而不必要条件B . 必要而不充分条件C . 充分必要条件D . 既不充分也不必要条件 [2007年](1)“1x >”是“2x x >”的( )A . 充分而不必要条件B . 必要而不充分条件C . 充分必要条件D . 既不充分也不必要条件 [2008年](3)已知a ,b 都是实数,那么“22b a >”是“a b >”的( )A . 充分而不必要条件B . 必要而不充分条件C . 充分必要条件D . 既不充分也不必要条件 [2009年](2)已知,a b 是实数,则“0,0a b >>”是0a b +>且0ab >的( )A . 充分而不必要条件B . 必要而不充分条件C . 充分必要条件D . 既不充分也不必要条件 [2010年] (6)设02x π<<,则“2sin 1x x <”是“sin 1x x <”的( )A . 充分而不必要条件B . 必要而不充分条件C . 充分必要条件D . 既不充分也不必要条件 [2011年](7)若a 、b 为实数,则“01ab <<”是“1a b <”或1b a>的( ) A . 充分而不必要条件 B . 必要而不充分条件 C . 充分必要条件 D . 既不充分也不必要条件 [2012年](3)设a R ∈,则“1a =”是“直线1:210l ax y +-=与直线2:(1)40l x a y +++=平行”的( )A . 充分而不必要条件B . 必要而不充分条件C . 充分必要条件D . 既不充分也不必要条件 [2013年](4)已知函数),0,0)(cos()(R A x A x f ∈>>+=ϕωϕω,则“)(x f 是奇函数”是 2πϕ=的( )A . 充分而不必要条件B . 必要而不充分条件C . 充分必要条件D . 既不充分也不必要条件(2)已知i 是虚数单位,R b a ∈,,则“1==b a ”是“i bi a 2)(2=+”的( ) A . 充分而不必要条件 B . 必要而不充分条件 C . 充分必要条件 D . 既不充分也不必要条件 [2015年](4)命题“**,()n N f n N ∀∈∈且()f n n ≤的否定形式是( )A. **,()n N f n N ∀∈∈且()f n n >B. **,()n N f n N ∀∈∈或()f n n >C. **00,()n N f n N ∃∈∈且00()f n n >D. **00,()n N f n N ∃∈∈或00()f n n > (6)设A ,B 是有限集,定义(,)()()d A B card AB card A B =-,其中()card A 表示有限集A 中的元素个数。
辽宁省各地市2018年高考数学最新联考试题分类大汇编(2

"辽宁省各地市2018年高考数学最新联考试题分类大汇编(2)常用
逻辑用语 "
8.(2018年东北三省四市教研协作体高三第二次调研测试文科)已知函数
2,(0)()2
,(0)x x f x x x ⎧⎪=⎨⎪<⎩
≥,则[()]1f f x ≥≥1的充要条件是 A.x
∈(,-∞ B.x
∈)+∞
C.x ∈(,1][42,)-∞-+∞
D.
x ∈(,
[4,)-∞+∞
6.(东北四校2018届高三第一次高考模拟考试文科)下列有关命题的说法中,正确的是 ( B )
A .命题“若21x >,则1x >”的否命题为“若2
1x >,则1x ≤”
B .“1x >”是“220x x +->”的充分不必要条件
C .命题“2,10x R x x ∃∈++<使得”的否定是“2,10x R x x ∀∈++>都有”
D .命题“若,tan tan αβα
β>>则”的逆命题为真命题 4.(2018年东北三校第一次模拟理科) “1λ<”是“数列2*2()n a n n n N λ=-∈为递增数列”的( A )
A .充分不必要条件
B .必要不充分条件
C .充要条件
D .既不充分也不必要条件。
常用逻辑用语近3年高考试题【精品教案】—【教学设计】

中小学教学参考资料教学设计试卷随堂检测近3年(2016——2018)《常用逻辑用语》部分高考真题一.选择题(共22小题)1.(2018•天津)设x∈R,则“x3>8”是“|x|>2”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件2.(2018•天津)设x∈R,则“|x ﹣|<”是“x3<1”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件3.(2018•上海)已知a∈R,则“a>1”是“<1”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件4.(2018•浙江)已知平面α,直线m,n满足m⊄α,n⊂α,则“m∥n”是“m∥α”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件5.(2018•北京)设a,b,c,d是非零实数,则“ad=bc”是“a,b,c,d成等比数列”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件6.(2018•北京)设,均为单位向量,则“|﹣3|=|3+|”是“⊥”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件7.(2016•四川)设p:实数x,y满足x>1且y>1,q:实数x,y满足x+y>2,则p是q的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件8.(2017•天津)设x∈R,则“2﹣x≥0”是“|x﹣1|≤1”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件9.(2017•天津)设θ∈R,则“|θ﹣|<”是“sinθ<”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件10.(2017•北京)设,为非零向量,则“存在负数λ,使得=λ”是“•<0”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件11.(2017•浙江)已知等差数列{a n}的公差为d,前n项和为S n,则“d>0”是“S4+S6>2S5”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件12.(2017•山东)已知命题p:∃x∈R,x2﹣x+1≥0.命题q:若a2<b2,则a<b,下列命题为真命题的是()A.p∧q B.p∧¬q C.¬p∧q D.¬p∧¬q13.(2016•山东)已知直线a,b分别在两个不同的平面α,β内.则“直线a和直线b相交”是“平面α和平面β相交”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件14.(2016•浙江)命题“∀x∈R,∃n∈N*,使得n≥x2”的否定形式是()A.∀x∈R,∃n∈N*,使得n<x2B.∀x∈R,∀n∈N*,使得n<x2C.∃x∈R,∃n∈N*,使得n<x2D.∃x∈R,∀n∈N*,使得n<x215.(2016•北京)设,是向量,则“||=||”是“|+|=|﹣|”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件16.(2016•浙江)已知函数f(x)=x2+bx,则“b<0”是“f(f(x))的最小值与f(x)的最小值相等”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件17.(2016•天津)设x>0,y∈R,则“x>y”是“x>|y|”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件18.(2016•上海)设a∈R,则“a>1”是“a2>1”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件19.(2016•天津)设{a n}是首项为正数的等比数列,公比为q,则“q<0”是“对任意的正整数n,a2n﹣1+a2n<0”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件20.(2016•上海)设f(x)、g(x)、h(x)是定义域为R的三个函数,对于命题:①f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均为增函数,则f(x)、g(x)、h(x)中至少有一个增函数;②若f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均是以T为周期的函数,则f(x)、g(x)、h (x)均是以T为周期的函数,下列判断正确的是()A.①和②均为真命题B.①和②均为假命题C.①为真命题,②为假命题D.①为假命题,②为真命题近3年(2016——2018)《常用逻辑用语》部分高考真题参考答案与试题解析一.选择题(共22小题)1.(2018•天津)设x∈R,则“x3>8”是“|x|>2”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【分析】由x3>8得到|x|>2,由|x|>2不一定得到x3>8,然后结合查充分条件、必要条件的判定方法得答案.【解答】解:由x3>8,得x>2,则|x|>2,反之,由|x|>2,得x<﹣2或x>2,则x3<﹣8或x3>8.即“x3>8”是“|x|>2”的充分不必要条件.故选:A.【点评】本题考查充分条件、必要条件及其判定方法,是基础题.2.(2018•天津)设x∈R,则“|x﹣|<”是“x3<1”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【分析】先解不等式,再根据充分条件和必要条件的定义即可求出.【解答】解:由|x﹣|<可得﹣<x﹣<,解得0<x<1,由x3<1,解得x<1,故“|x﹣|<”是“x3<1”的充分不必要条件,故选:A.【点评】本题考查了不等式的解法和充分必要条件,属于基础题.3.(2018•上海)已知a∈R,则“a>1”是“<1”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件【分析】“a>1”⇒“”,“”⇒“a>1或a<0”,由此能求出结果.【解答】解:a∈R,则“a>1”⇒“”,“”⇒“a>1或a<0”,∴“a>1”是“”的充分非必要条件.故选:A.【点评】本题考查充分条件、必要条件的判断,考查不等式的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.4.(2018•浙江)已知平面α,直线m,n满足m⊄α,n⊂α,则“m∥n”是“m∥α”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【分析】根据线面平行的定义和性质以及充分条件和必要条件的定义进行判断即可.【解答】解:∵m⊄α,n⊂α,∴当m∥n时,m∥α成立,即充分性成立,当m∥α时,m∥n不一定成立,即必要性不成立,则“m∥n”是“m∥α”的充分不必要条件.故选:A.【点评】本题主要考查充分条件和必要条件的判断,根据线面平行的定义和性质是解决本题的关键,是基础题.5.(2018•北京)设a,b,c,d是非零实数,则“ad=bc”是“a,b,c,d成等比数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】根据充分条件和必要条件的定义结合等比数列的性质进行判断即可.【解答】解:若a,b,c,d成等比数列,则ad=bc,反之数列﹣1,﹣1,1,1.满足﹣1×1=﹣1×1,但数列﹣1,﹣1,1,1不是等比数列,即“ad=bc”是“a,b,c,d成等比数列”的必要不充分条件.故选:B.【点评】本题主要考查充分条件和必要条件的判断,结合等比数列的性质是解决本题的关键.6.(2018•北京)设,均为单位向量,则“|﹣3|=|3+|”是“⊥”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】根据向量数量积的应用,结合充分条件和必要条件的对应进行判断即可.【解答】解:∵“|﹣3|=|3+|”∴平方得||2+9||2﹣6•=9||2+||2+6•,即1+9﹣6•=9+1+6•,即12•=0,则•=0,即⊥,则“|﹣3|=|3+|”是“⊥”的充要条件,故选:C.【点评】本题主要考查充分条件和必要条件的判断,结合向量数量积的公式进行转化是解决本题的关键.7.(2017•上海)已知a、b、c为实常数,数列{x n}的通项x n=an2+bn+c,n∈N*,则“存在k∈N*,使得x100+k、x200+k、x300+k成等差数列”的一个必要条件是()A.a≥0B.b≤0C.c=0D.a﹣2b+c=0【分析】由x100+k,x200+k,x300+k成等差数列,可得:2x200+k=x100+k x300+k,代入化简即可得出.【解答】解:存在k∈N*,使得x100+k、x200+k、x300+k成等差数列,可得:2[a(200+k)2+b(200+k)+c]=a(100+k)2+b(100+k)+c+a(300+k)2+b(300+k)+c,化为:a=0.∴使得x100+k,x200+k,x300+k成等差数列的必要条件是a≥0.故选:A.【点评】本题考查了等差数列的通项公式、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.8.(2017•天津)设x∈R,则“2﹣x≥0”是“|x﹣1|≤1”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【分析】求出不等式的等价条件,结合充分条件和必要条件的定义进行判断即可.【解答】解:由2﹣x≥0得x≤2,由|x﹣1|≤1得﹣1≤x﹣1≤1,得0≤x≤2.则“2﹣x≥0”是“|x﹣1|≤1”的必要不充分条件,故选:B.【点评】本题主要考查充分条件和必要条件的判断,结合充分条件和必要条件的定义以及不等式的性质是解决本题的关键.9.(2017•天津)设θ∈R,则“|θ﹣|<”是“sinθ<”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【分析】运用绝对值不等式的解法和正弦函数的图象和性质,化简两已知不等式,结合充分必要条件的定义,即可得到结论.【解答】解:|θ﹣|<⇔﹣<θ﹣<⇔0<θ<,sinθ<⇔﹣+2kπ<θ<+2kπ,k∈Z,则(0,)⊊(﹣+2kπ,+2kπ),k∈Z,可得“|θ﹣|<”是“sinθ<”的充分不必要条件.故选:A.【点评】本题考查充分必要条件的判断,同时考查正弦函数的图象和性质,运用定义法和正确解不等式是解题的关键,属于基础题.10.(2017•北京)设,为非零向量,则“存在负数λ,使得=λ”是“•<0”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】,为非零向量,存在负数λ,使得=λ,则向量,共线且方向相反,可得•<0.反之不成立,非零向量,的夹角为钝角,满足•<0,而=λ不成立.即可判断出结论.【解答】解:,为非零向量,存在负数λ,使得=λ,则向量,共线且方向相反,可得•<0.反之不成立,非零向量,的夹角为钝角,满足•<0,而=λ不成立.∴,为非零向量,则“存在负数λ,使得=λ”是•<0”的充分不必要条件.故选:A.【点评】本题考查了向量共线定理、向量夹角公式、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.11.(2017•浙江)已知等差数列{a n}的公差为d,前n项和为S n,则“d>0”是“S4+S6>2S5”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【分析】根据等差数列的求和公式和S4+S6>2S5,可以得到d>0,根据充分必要条件的定义即可判断.【解答】解:∵S4+S6>2S5,∴4a1+6d+6a1+15d>2(5a1+10d),∴21d>20d,∴d>0,故“d>0”是“S4+S6>2S5”充分必要条件,故选:C.【点评】本题借助等差数列的求和公式考查了充分必要条件,属于基础题12.(2017•山东)已知命题p:∃x∈R,x2﹣x+1≥0.命题q:若a2<b2,则a<b,下列命题为真命题的是()A.p∧q B.p∧¬q C.¬p∧q D.¬p∧¬q【分析】先判断命题p,q的真假,进而根据复合命题真假的真值表,可得答案.【解答】解:命题p:∃x=0∈R,使x2﹣x+1≥0成立.故命题p为真命题;当a=1,b=﹣2时,a2<b2成立,但a<b不成立,故命题q为假命题,故命题p∧q,¬p∧q,¬p∧¬q均为假命题;命题p∧¬q为真命题,故选:B.【点评】本题以命题的真假判断与应用为载体,考查了复合命题,特称命题,不等式与不等关系,难度中档.13.(2016•山东)已知直线a,b分别在两个不同的平面α,β内.则“直线a和直线b相交”是“平面α和平面β相交”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”⇒“平面α和平面β相交”,反之不成立.【解答】解:直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”⇒“平面α和平面β相交”,反之不成立.∴“直线a和直线b相交”是“平面α和平面β相交”的充分不必要条件.故选:A.【点评】本题考查了空间位置关系、简易逻辑的判定方法,考查了推理能力,属于基础题.14.(2016•浙江)命题“∀x∈R,∃n∈N*,使得n≥x2”的否定形式是()A.∀x∈R,∃n∈N*,使得n<x2B.∀x∈R,∀n∈N*,使得n<x2C.∃x∈R,∃n∈N*,使得n<x2D.∃x∈R,∀n∈N*,使得n<x2【分析】特称命题的否定是全称命题,全称命题的否定是特称命题,依据规则写出结论即可【解答】解:“∀x∈R,∃n∈N*,使得n≥x2”的否定形式是“∃x∈R,∀n∈N*,使得n<x2“故选:D.【点评】本题考查命题的否定,解本题的关键是掌握住特称命题的否定是全称命题,书写答案是注意量词的变化.15.(2016•浙江)已知实数a,b,c.()A.若|a2+b+c|+|a+b2+c|≤1,则a2+b2+c2<100B.若|a2+b+c|+|a2+b﹣c|≤1,则a2+b2+c2<100C.若|a+b+c2|+|a+b﹣c2|≤1,则a2+b2+c2<100D.若|a2+b+c|+|a+b2﹣c|≤1,则a2+b2+c2<100【分析】本题可根据选项特点对a,b,c设定特定值,采用排除法解答.【解答】解:A.设a=b=10,c=﹣110,则|a2+b+c|+|a+b2+c|=0≤1,a2+b2+c2>100;B.设a=10,b=﹣100,c=0,则|a2+b+c|+|a2+b﹣c|=0≤1,a2+b2+c2>100;C.设a=100,b=﹣100,c=0,则|a+b+c2|+|a+b﹣c2|=0≤1,a2+b2+c2>100;故选:D.【点评】本题主要考查命题的真假判断,由于正面证明比较复杂,故利用特殊值法进行排除是解决本题的关键.16.(2016•浙江)已知函数f(x)=x2+bx,则“b<0”是“f(f(x))的最小值与f (x)的最小值相等”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【分析】求出f(x)的最小值及极小值点,分别把“b<0”和“f(f(x))的最小值与f(x)的最小值相等”当做条件,看能否推出另一结论即可判断.【解答】解:f(x)的对称轴为x=﹣,f min(x)=﹣.(1)若b<0,则﹣>﹣,∴当f(x)=﹣时,f(f(x))取得最小值f(﹣)=﹣,即f(f(x))的最小值与f(x)的最小值相等.∴“b<0”是“f(f(x))的最小值与f(x)的最小值相等”的充分条件.(2)设f(x)=t,则f(f(x))=f(t),∴f(t)在(﹣,﹣)上单调递减,在(﹣,+∞)上单调递增,若f(f(x))=f(t)的最小值与f(x)的最小值相等,则﹣≤﹣,解得b≤0或b≥2.∴“b<0”不是“f(f(x))的最小值与f(x)的最小值相等”的必要条件.故选:A.【点评】本题考查了二次函数的性质,简易逻辑关系的推导,属于基础题.17.(2016•天津)设x>0,y∈R,则“x>y”是“x>|y|”的()A.充要条件B.充分不必要条件C.必要而不充分条件D.既不充分也不必要条件【分析】直接根据必要性和充分判断即可.【解答】解:设x>0,y∈R,当x>0,y=﹣1时,满足x>y但不满足x>|y|,故由x>0,y∈R,则“x>y”推不出“x>|y|”,而“x>|y|”⇒“x>y”,故“x>y”是“x>|y|”的必要不充分条件,故选:C.【点评】本题考查了不等式的性质、充要条件的判定,考查了推理能力与计算能力,属于基础题.18.(2016•上海)设a∈R,则“a>1”是“a2>1”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件【分析】根据不等式的关系,结合充分条件和必要条件的定义进行判断即可.【解答】解:由a2>1得a>1或a<﹣1,即“a>1”是“a2>1”的充分不必要条件,故选:A.【点评】本题主要考查充分条件和必要条件的判断,利用不等式的关系结合充分条件和必要条件的定义是解决本题的关键,比较基础.19.(2016•四川)设p:实数x,y满足x>1且y>1,q:实数x,y满足x+y>2,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】由x>1且y>1,可得:x+y>2,反之不成立,例如取x=3,y=.【解答】解:由x>1且y>1,可得:x+y>2,反之不成立:例如取x=3,y=.∴p是q的充分不必要条件.故选:A.【点评】本题考查了不等式的性质、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.20.(2016•北京)设,是向量,则“||=||”是“|+|=|﹣|”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】根据向量模相等的几何意义,结合充要条件的定义,可得答案.【解答】解:若“||=||”,则以,为邻边的平行四边形是菱形;若“|+|=|﹣|”,则以,为邻边的平行四边形是矩形;故“||=||”是“|+|=|﹣|”的既不充分也不必要条件;故选:D.【点评】本题考查的知识点是充要条件,向量的模,分析出“||=||”与“|+|=|﹣|”表示的几何意义,是解答的关键.21.(2016•天津)设{a n}是首项为正数的等比数列,公比为q,则“q<0”是“对任意的正整数n,a2n+a2n<0”的()﹣1A.充要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件【分析】利用必要、充分及充要条件的定义判断即可.【解答】解:{a n}是首项为正数的等比数列,公比为q,+a2n<0”不一定成立,若“q<0”是“对任意的正整数n,a2n﹣1例如:当首项为2,q=﹣时,各项为2,﹣1,,﹣,…,此时2+(﹣1)=1>0,+(﹣)=>0;+a2n<0”,前提是“q<0”,而“对任意的正整数n,a2n﹣1+a2n<0”的必要而不充分条件,则“q<0”是“对任意的正整数n,a2n﹣1故选:C.【点评】此题考查了必要条件、充分条件与充要条件的判断,熟练掌握各自的定义是解本题的关键.22.(2016•上海)设f(x)、g(x)、h(x)是定义域为R的三个函数,对于命题:①f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均为增函数,则f(x)、g(x)、h(x)中至少有一个增函数;②若f(x)+g(x)、f(x)+h(x)、g(x)+h (x)均是以T为周期的函数,则f(x)、g(x)、h(x)均是以T为周期的函数,下列判断正确的是()A.①和②均为真命题B.①和②均为假命题C.①为真命题,②为假命题D.①为假命题,②为真命题【分析】①不成立.可举反例:f(x)=.g(x)=,h(x)=.②由题意可得:f(x)+g(x)=f(x+T)+g(x+T),f(x)+h(x)=f(x+T)+h(x+T),h(x)+g(x)=h(x+T)+g(x+T),可得:g(x)=g(x+T),h (x)=h(x+T),f(x)=f(x+T),即可判断出真假.【解答】解:①不成立.可举反例:f(x)=.g(x)=,h(x)=.②∵f(x)+g(x)=f(x+T)+g(x+T),f(x)+h(x)=f(x+T)+h(x+T),h(x)+g(x)=h(x+T)+g(x+T),前两式作差可得:g(x)﹣h(x)=g(x+T)﹣h(x+T),结合第三式可得:g (x)=g(x+T),h(x)=h(x+T),同理可得:f(x)=f(x+T),因此②正确.故选:D.【点评】本题考查了函数的单调性与周期性、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.二.填空题(共2小题)23.(2018•北京)能说明“若f(x)>f(0)对任意的x∈(0,2]都成立,则f (x)在[0,2]上是增函数”为假命题的一个函数是f(x)=sinx.【分析】本题答案不唯一,符合要求即可.【解答】解:例如f(x)=sinx,尽管f(x)>f(0)对任意的x∈(0,2]都成立,当x∈[0,)上为增函数,在(,2]为减函数,故答案为:f(x)=sinx.【点评】本题考查了函数的单调性,属于基础题.24.(2018•北京)能说明“若a>b,则<”为假命题的一组a,b的值依次为a=1,b=﹣1.【分析】根据不等式的性质,利用特殊值法进行求解即可.【解答】解:当a>0,b<0时,满足a>b,但<为假命题,故答案可以是a=1,b=﹣1,故答案为:a=1,b=﹣1.【点评】本题主要考查命题的真假的应用,根据不等式的性质是解决本题的关键.比较基础.。
高考文科数学2010—2018真题分类 专题一 集合与常用逻辑用语第二讲 常用逻辑用语(带答案)

专题一 集合与常用逻辑用语第二讲 常用逻辑用语一、选择题1.(2018浙江)已知平面α,直线m ,n 满足m α⊄,n α⊂,则“m ∥n ”是“m ∥α”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件2.(2018北京)设a ,b ,c ,d 是非零实数,则“ad bc =”是“a ,b ,c ,d 成等比数列”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 3.(2018天津)设x ∈R ,则“38x >”是“||2x >” 的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件4.(2018上海)已知a R ∈,则“1a >”是“11a<”的( ) A .充分非必要条件 B .必要非充分条件C .充要条件D .既非充分又非必要条件5.(2017天津)设x ∈R ,则“20x -≥”是“|1|1x -≤”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件6.(2017山东)已知命题p :,x ∃∈R 210x x -+≥;命题q :若22a b <,则a b <.下列命题为真命题的是A .p q ∧B .p q ⌝∧C .p q ⌝∧D .p q ⌝⌝∧7.(2017北京)设m , n 为非零向量,则“存在负数λ,使得λ=m n ”是“0⋅<m n ”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件8.(2017浙江)已知等差数列{}n a 的公差为d ,前n 项和为n S ,则“0d >” 是“465+2S S S >”的A . 充分不必要条件B . 必要不充分条件C . 充分必要条件D .既不充分也不必要条件9.(2016年山东)已知直线,a b 分别在两个不同的平面α,b 内,则“直线a 和直线b 相交”是“平面α和平面β相交”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件10.(2016年浙江高考)已知函数2()f x x bx =+,则“0b <”是“(())f f x 的最小值与()f x 的最小值相等”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 11.(2015重庆)“1x =”是“2210x x -+=”的A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件12.(2015浙江)设a ,b 是实数,则“0a b +>”是“0ab >”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件13.(2015安徽)设p :3x <,q :13x -<<,则p 是q 成立的A .充分必要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件14.(2015湖北)命题“000(0,),ln 1x x x ∃∈+∞=-”的否定是A .(0,),ln 1x x x ∀∈+∞≠-B .(0,),ln 1x x x ∀∉+∞=-C .000(0,),ln 1x x x ∃∈+∞≠-D .000(0,),ln 1x x x ∃∉+∞=-15.(2015四川)设,a b 为正实数,则“1a b >>”是“22log log 0a b >>”的A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件16.(2015山东)设m R ∈,命题“若0m >,则方程20x x m +-=有实根”的逆否命题是A .若方程20x x m +-=有实根,则0m >B .若方程20x x m +-=有实根,则0m ≤C .若方程20x x m +-=没有实根,则0m >D .若方程20x x m +-=没有实根,则0m ≤17.(2015陕西)“sin cos αα=”是“cos 20α=”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件18.(2015北京)设,a b 是非零向量,“||||⋅=a b a b ”是“a ∥b ”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件19.(2015福建)“对任意(0,)2x π∈,sin cos k x x x <”是“1k <”的A .充分而不必要条件B .必要而不充分条件C . 充分必要条件D .既不充分也不必要条件20.(2014新课标2)函数()f x 在0=x x 处导数存在,若()00p f x '=:,0:q x x =是()f x 的极值点,则A .p 是q 的充分必要条件B .p 是q 的充分条件,但不是q 的必要条件C .p 是q 的必要条件,但不是q 的充分条件D .p 既不是q 的充分条件,也不是q 的必要条件21.(2014广东)在ABC ∆中,角A ,B ,C 所对应的边分别为,,,c b a 则“b a ≤”是“B A sin sin ≤”的A .充分必要条件B .充分非必要条件C .必要非充分条件D .非充分非必要条件22.(2014福建)命题“[)30,.0x x x ∀∈+∞+≥”的否定是A .()30,.0x x x ∀∈+∞+<B .()3,0.0x x x ∀∈-∞+≥C .[)30000,.0x x x ∃∈+∞+<D .[)30000,.0x x x ∃∈+∞+≥23.(2014浙江)已知i 是虚数单位,R b a ∈,,则“1==b a ”是“i bi a 2)(2=+”的A . 充分不必要条件B . 必要不充分条件C . 充分必要条件D . 既不充分也不必要条件24.(2014湖南)已知命题22:,;:,.p x y x y q x y x y >-<->>若则命题若则在命题①p q ∧ ②p q ∨ ③()p q ∧⌝ ④()p q ⌝∨中,真命题是A .①③B .①④C .②③D .②④25.(2014陕西)原命题为“若12n n n a a a ++<,n N +∈,则{}n a 为递减数列”,关于逆命题,否命题,逆否命题真假性的判断依次如下,正确的是A .真,真,真B .假,假,真C .真,真,假D .假,假,假26.(2014江西)下列叙述中正确的是A .若,,a b c R ∈,则2"0"ax bx c ++≥的充分条件是2"40"b ac -≤B .若,,a b c R ∈,则22""ab cb >的充要条件是""a c >C .命题“对任意x R ∈,有20x ≥”的否定是“存在x R ∈,有20x ≥”D .l 是一条直线,,αβ是两个不同的平面,若,l l αβ⊥⊥,则//αβ27.(2013安徽)“0a ≤”是“函数()=(-1)f x ax x 在区间(0,+)∞内单调递增”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件28.(2013北京)“ϕπ=”是“曲线()sin 2y x ϕ=+过坐标原点的”A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 29.设z 是复数, 则下列命题中的假命题是A .若20z ≥, 则z 是实数B .若20z <, 则z 是虚数C .若z 是虚数, 则20z ≥D .若z 是纯虚数, 则20z <30.(2013浙江)已知函数),0,0)(cos()(R A x A x f ∈>>+=ϕωϕω,则“)(x f 是奇函数”是2πϕ=的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件31.(2013重庆)命题“对任意x R ∈,都有20x ≥”的否定为A .对任意x R ∈,都有20x <B .不存在x R ∈,都有20x <C .存在0x R ∈,使得200x ≥D .存在0x R ∈,使得200x <32.(2013四川)设x Z ∈,集合A 是奇数集,集合B 是偶数集,若命题p :,2x A x B ∀∈∈,则 A .p ⌝:,2x A x B ∀∈∉ B .p ⌝:2x A x B ∀∉∉,C .p ⌝:2x A x B ∀∉∈,D .p ⌝:2x A x B ∀∈∉, 33.(2013湖北)在一次跳伞训练中,甲.乙两位学员各跳一次,设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为A .()()p q ⌝∨⌝B . ()p q ∨⌝C .()()p q ⌝∧⌝D .p q ∨ 34.(2012湖北)命题“0x ∃∈R Q ð,30x ∈Q ”的否定是A .0x ∃∉R Q ð,30x ∈QB .0x ∃∈R Q ð,30x ∉QC .x ∀∉R Q ð,3x ∈QD .x ∀∈R Q ð,3x ∉Q 35.(2012湖南)命题“若4πα=,则tan 1α=”的逆否命题是 A .若4πα≠,则tan 1α≠ B .若4πα=,则tan 1α≠C .若tan 1α≠,则4πα≠ D .若tan 1α≠,则4πα=36.(2012安徽)设平面α与平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且b m ⊥,则“αβ⊥”是“a b ⊥”的A .充分不必要条件B .必要不充分条件C .充要条件D . 即不充分不必要条件37.(2012福建)下列命题中,真命题是A .00,0x x R e ∃∈…B .2,2x x R x ∀∈>C .0a b +=的充要条件是1a b=- D .1a >,1b >是1ab >的充分条件 38.(2012北京)设,a b ∈R ,“0a =”是‘复数i a b +是纯虚数”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件39.(2012湖北)命题“存在一个无理数,它的平方是有理数”的否定是A .任意一个有理数,它的平方是有理数B .任意一个无理数,它的平方不是有理数C .存在一个有理数,它的平方是有理数D .存在一个无理数,它的平方不是有理数40.(2012山东)设0>a 且1≠a ,则“函数()x a x f =在R 上是减函数”是“()()32x a x g -=在R 上是增函数”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件41.(2012山东)设命题p :函数sin 2y x =的最小正周期为2π;命题q :函数cos y x =的图象关于直线2x π=对称.则下列判断正确的是A .p 为真B .q ⌝为假C .p q ∧为假D .p q ∨为真42.(2011山东)已知,,a b c R ∈,命题“若a b c ++=3,则222a b c ++≥3”,的否命题是A .若3a b c ++≠,则222a b c ++<3B .若3a b c ++=,则222a b c ++<3C .若3a b c ++≠,则222a b c ++≥3D .若222a b c ++≥3,则3a b c ++=43.(2011新课标)已知a ,b 均为单位向量,其夹角为θ,有下列四个命题12:||1[0,)3p πθ+>⇔∈a b 2:p ||1+>a b ⇔2(,]3πθπ∈ 13:||1[0,)3p πθ->⇔∈a b 4:p ||1->a b ⇔(,]3πθπ∈ 其中真命题是A .14,p pB .13,p pC .23,p pD .24,p p44.(2011陕西)设,a b 是向量,命题“若=-a b ,则=a b ”的逆命题是A .若≠a b ,则≠a bB .若=-a b ,则≠a bC .若≠a b ,则≠a bD .若=a b ,则=-a b45.(2011湖南)设集合{}{}21,2,,M N a ==则 “1a =”是“N M ⊆”的 A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分又不必要条件46.(2011安徽)命题“所有能被2整聊的整数都是偶数”的否定..是 A .所有不能被2整除的数都是偶数B .所有能被2整除的整数都不是偶数C .存在一个不能被2整除的数都是偶数D .存在一个能被2整除的数都不是偶数47.(2010新课标)已知命题1p :函数22x x y -=-在R 为增函数,2p :函数22x x y -=+在R 为减函数,则在命题1q :12p p ∨,2q :12p p ∧,3q :()12p p ⌝∨和4q :()12p p ∧⌝中,真命题是A .1q ,3qB .2q ,3qC .1q ,4qD .2q ,4q48.(2010辽宁)已知a >0,则0x 满足关于x 的方程ax b =的充要条件是A .220011,22x R ax bx ax bx ∃∈-≥- B .220011,22x R ax bx ax bx ∃∈-≤- C .220011,22x R ax bx ax bx ∀∈-≥- D .220011,22x R ax bx ax bx ∀∈-≤-二、填空题49.(2018北京)能说明“若a b >,则11a b<”为假命题的一组a ,b 的值依次为____. 50.(2013四川)设n P P P ,,,⋯⋯21为平面a 内的n 个点,在平面a 内的所有点中,若点P 到点n P P P ,,,⋯⋯21的距离之和最小,则称点P 为点12n P P P ⋅⋅⋅,,,的一个“中位点”,例如,线段AB 上的任意点都是端点A ,B 的中位点,现有下列命题:①若三个点A ,B ,C 共线,C 在线段AB 上,则C 是A ,B ,C 的中位点; ②直角三角形斜边的中点是该直角三角形三个顶点的中位点;③若四个点A ,B ,C ,D 共线,则它们的中位点存在且唯一;④梯形对角线的交点是该梯形四个顶点的唯一中位点;其中的真命题是________________(写出所有的真命题的序号).51.(2011陕西)设n N +∈,一元二次方程240x x n -+=有正数根的充要条件是n = .52.(2010安徽)命题“存在x R ∈,使得2250x x ++=”的否定是 .专题一 集合与常用逻辑用语第二讲 常用逻辑用语答案部分1.A 【解析】若m α⊄,n α⊂,m ∥n ,由线面平行的判定定理知m ∥α.若m ∥α,m α⊄,n α⊂,不一定推出m ∥n ,直线m 与n 可能异面,故“m ∥n ”是“m ∥α”的充分不必要条件.故选A .2.B 【解析】a ,b ,c ,d 是非零实数,若ad bc =,则b d a c=,此时a ,b ,c ,d 不一定成等比数列;反之,若a ,b ,c ,d 成等比数列,则a c b d=,所以ad bc =,所以“ad bc =”是“a ,b ,c ,d 成等比数列”的必要而不充分条件.故选B .3.A 【解析】由38x >,得2x >,由||2x >,得2x >或2x <-,故“38x >”是“||2x >”的充分而不必要条件,故选A .4.A 【解析】由1>a 可得11<a 成立;当11<a ,即1110--=<a a a ,解得0<a 或1>a ,推不出1>a 一定成立;所以“1a >”是“11a<”的充分非必要条件.故选A . 5.B 【解析】由20x -≥,得2x ≤,由|1|1x -≤,得02x ≤≤,所以“20x -≥”是“|1|1x -≤”的必要而不充分条件.选B .6.B 【解析】取0x =,知1p 成立;若22a b <,得||||a b =,q 为假,所以p q ⌝∧为真,选B .7.A 【解析】因为,m n 为非零向量,所以||||cos ,0⋅=<><m n m n m n 的充要条件是cos ,0<><m n .因为0λ<,则由λ=m n 可知,m n 的方向相反,,180<>=m n ,所以cos ,0<><m n ,所以“存在负数λ,使得λ=m n ”可推出“0⋅<m n ”;而0⋅<m n 可推出cos ,0<><m n ,但不一定推出,m n 的方向相反,从而不一定推得“存在负数λ,使得λ=m n ”,所以“存在负数λ,使得λ=m n ”是“0⋅<m n ”的充分而不必要条件.8.C 【解析】∵655465()()S S S S a a d ---=-=,当0d >,可得465+2S S S >;当465+2S S S >,可得0d >.所以“0d >”是“465+2S S S >” 充分必要条件,选C .9.A 【解析】根据已知,如果直线,a b 相交,则平面,αβ一定存在公共点,故其一定相交;反之,如果平面,αβ相交,分别位于这两个平面内的直线不一定相交,故为充分不必要条件,选A .10.A 【解析】当0b <时,2min ()()24b b f x f =-=-,即2()[,)4b f x ∈-+∞, 而222(())()()(())24b b f f x f x bf x f x =+=+-的对称轴也是2b -, 又2[,)24b b -∈-+∞,所以当()2b f x =-时,2min (())4b f f x =-, 故(())f f x 的最小值与()f x 的最小值相等;另一方面,取0b =,2()f x x =与4(())f f x x =有相等的最小值0,故选A .11.A 【解析】由“1x =”显然能推出“2210x x -+=”,故条件是充分的;又由“2210x x -+=”可得10)1(2=⇒=-x x ,所以条件也是必要的;故选A . 12.D 【解析】若0a b +>,取3,2a b ==-,则0ab >不成立;反之,若2,3a b =-=-,则0a b +>也不成立,因此“0a b +>”是“0ab >”的既不充分也不必要条件.13.C 【解析】∵(1,3)(,3)-⊆-∞,所以p 是q 成立的必要不充分条件.14.A 【解析】由特称命题的否定为全称命题可知,所求命题的否定为(0,)x ∀∈+∞,ln 1x x ≠-,故应选A .15.A 【解析】a >b >1时,有22log log 0a b >>成立,反之也正确.16.D 【解析】一个命题的逆否命题,要将原命题的条件、结论加以否定,并且加以互换,故选D .17.A 【解析】∵22cos 2cos sin ααα=-,当sin cos αα=时,cos 20α=,充分性成立;当cos 20α=时,即22cos sin 0αα-=,∴cos sin αα=或cos sin αα=-,必要性不成立.18.A 【解析】||||cos ,a b a b a b ⋅=⋅<>,由已知得cos ,1a b <>=,即,0a b <>=,//a b .而当a ∥b 时,,a b <>还可能是π,此时||||a b a b ⋅=-, 故“a b a b ⋅=”是“//a b ”的充分而不必要条件.19.B 【解析】∵(0,)2x π∈,所以sin 20x >.任意(0,)2x π∈,sin cos k x x x <,等价于任意(0,)2x π∈,2sin 2x k x <.当(0,)2x π∈时,02x π<<,设2t x =, 则0t π<<.设()sin f t t t =-,则()1cos f t t '=-0>,所以()sin f t t t =-在(0,)π上单调递增,所以()0f t >,所以sin 0t t >>,即1sin t t >,所以1k ≤. 所以任意(0,)2x π∈,2sin 2x k x<,等价于1k ≤.因为1k ≤⇒1k <, 但1k ≤⇐1k <,所以“对任意(0,)2x π∈,sin cos k x x x <”是 “1k <”的必要而不充分条件.20.C 【解析】设3()f x x =,(0)0f '=,但是()f x 是单调增函数,在0x =处不存在极值,故若p 则q 是一个假命题,由极值的定义可得若q 则p 是一个真命题,故选C .21.A 【解析】由正弦定理sin sin a b A B=,故“b a ≤”⇔“B A sin sin ≤”. 22.C 【解析】把量词“∀”改为“∃”,把结论否定,故选C .23.A 【解析】当1a b ==时,22()(1)2a bi i i +=+=,反之,若i bi a 2)(2=+,则有1a b ==- 或1a b ==,因此选A .24.C 【解析】由不等式的性质可知,命题p 是真命题,命题q 为假命题,故①p q ∧为假命题,②p q ∨为真命题,③q ⌝为真命题,则()p q ∧⌝为真命题,④p ⌝为假命题,则()p q ⌝∨为假命题,所以选C .25.A 【解析】从原命题的真假人手,由于12n n n a a a ++<{}1n n n a a a +⇔<⇔为递减数列,即原命题和否命题均为真命题,又原命题与逆否命题同真同假,则逆命题、否命题和逆否命题均为真命题,选A .26.D 【解析】2"40"b ac -≤推不出2"0"ax bx c ++≥,因为与a 的符号不确定,所以A不正确;当20b =时,由""a c >推不出22""ab cb >,所以B 不正确;“对任意x R ∈,有20x ≥”的否定是“存在x R ∈,有0x <”,所以C 不正确.选D .27.C 【解析】当a =0 时,()f x x =,∴()f x 在区间()0,+∞内单调递增;当0a <时,()1f x a x x a ⎛⎫=- ⎪⎝⎭中一个根10a <,另一个根为0,由图象可知()f x 在区间()0,+∞内单调递增;∴"0"a ≤是“函数()=(-1)f x ax x 在区间(0,+)∞内单调递增”的充分条件,相反,当()1f x a x x a ⎛⎫=-⎪⎝⎭在区间(0,+)∞内单调递增, ∴0a =或10a<,即0a ≤;"0"a ≤是“函数()=(-1)f x ax x 在区间(0,+)∞内 单调递增”的必要条件,故前者是后者的充分必要条件.所以选C .28.A 【解析】当ϕπ=时,sin 2y x =-过原点;()sin 2y x ϕ=+过原点,则,,0,,ϕππ=⋅⋅⋅-⋅⋅⋅等无数个值.选A .29.C 【解析】abi b a z R b a bi a z 2,,222+-=⇒∈+=设.对选项A: 为实数则若z b z ⇒=≥0,02,所以为实数z 为真.对选项B: 为纯虚数且则若z b a z ⇒≠=<0,0,02,所以为纯虚数z 为真.对选项C: 00,0,2<⇒≠=z b a z 且则为纯虚数若,所以02≥z 为假.对选项D: 00,0,2<⇒≠=z b a z 且则为纯虚数若,所以02<z 为真.所以选C .30.B 【解析】由f (x )是奇函数可知f (0)=0,即cos φ=0,解出φ=π2+k π,k ∈Z ,所以选项B 正确.31.D 【解析】否定为:存在0x R ∈,使得200x <,故选D . 32.C 【解析】由命题的否定易知选C .33.A 【解析】“至少有一位学员没有降落在指定范围”即为:“甲或乙没有降落在指定范围内”.34.D 【解析】存在性命题的否定为“∃”改为“∀”,后面结论加以否定,故为300,R x C Q x Q ∀∈∉.35.C 【解析】因为“若p ,则q ”的逆否命题为“若p ⌝,则q ⌝”,所以 “若4πα=, 则tan 1α=”的逆否命题是 “若tan 1α≠,则4πα≠”.36.A 【解析】①,,,b m m b αβαββ⊥⊥⋂=⊂,b a b a αα⇒⊥⊂⇒⊥②如果//a m ;∵b m ⊥,一定有a b ⊥但不能保证b α⊥,既不能推出αβ⊥37.D 【解析】∵,0x x R e ∀∈>,故排除A ;取x =2,则2222=,故排除B ;0a b +=, 取0a b ==,则不能推出1a b=-,故排除C ;应选D . 38.B 【解析】0a =时i a b +不一定是纯虚数,但i a b +是纯虚数0a =一定成立,故“0a =”是“复数i a b +是纯虚数”的必要而不充分条件.39.B 【解析】根据特称命题的否定,需先将存在量词改为全称量词,然后否定结论,故该命题的否定为“任意一个无理数,它的平方不是有理数”,故选B .40.A 【解析】p :“函数()x a x f =在R 上是减函数 ”等价于10<<a ;q :“函数()()32x a x g -=在R 上是增函数”等价于02>-a ,即,20<<a 且a ≠1,故p 是q 成立的充分不必要条件.选A .41.C 【解析】命题p 为假,命题q 也为假,故选.42.A 【解析】3a b c ++=的否定是3a b c ++≠,222a b c ++≥3的否定是222a b c ++<3,故选A .43.A 【解析】由1a b +==>得, 1cos 2θ>-, 20,3πθ⎡⎫⇒∈⎪⎢⎣⎭.由1a b -==> 得1cos 2θ<,3πθπ⎛⎤⇒∈ ⎥⎝⎦.选A . 44.D 【解析】根据定义若“若a b =,则a b =-”.45.A 【解析】显然1a =时一定有N M ⊆,反之则不一定成立,如1a =-,故“1a =”是“N M ⊆” 充分不必要条件.46.D 【解析】根据定义容易知D 正确.47.C 【解析】∵1p 是真命题,则1p ⌝为假命题;2p 是假命题,则2p ⌝为真命题,∴1q :12p p ∨ 是真命题,2q :12p p ∧是假命题,3q :()12p p ⌝∨为假命题, 4q :()12p p ∧⌝为真命题,故选C .48.C 【解析】由于a >0,令函数22211()222b b y ax bx a x a a=-=--,此时函数对应的开口向上,当x =b a 时,取得最小值22b a-,而0x 满足关于x 的方程ax b =,那么0x =b a ,min y =2200122b ax bx a-=-,那么对于任意的x ∈R , 都有212y ax bx =-≥22b a -=20012ax bx -. 49.11-(答案不唯一)【解析】由题意知,当1a =,1b =-时,满足a b >,但是11a b>,故答案可以为11-.(答案不唯一,满足0a >,0b <即可)50.①④【解析】由“中位点”可知,若C 在线段AB 上,则线段AB 上任一点都为“中位点”,C 也不例外,故①正确;对于②假设在等腰Rt △ABC 中,∠ACB =90°,如图所示,点P 为斜边AB 中点,设腰长为2,则|P A |+|PB |+|PC |=32|AB |=C 为“中位点”,则|CB |+|CA |=4<对于③,若B ,C 三等分AD ,若设|AB |=|BC |=|CD |=1,则|BA |+|BC |+|BD |=4=|CA |+|CB |+|CD |,故③错;对于④,在梯形ABCD 中,对角线AC 与BD 的交点为O ,在梯形ABCD 内任取不同于点O 的一点M ,则在△MAC 中,|MA |+|MC |>|AC |=|OA |+|OC |,同理在△MBD 中,|MB |+|MD |>|BD |=|OB |+|OD |,则得,|MA |+|MB |+|MC |+|MD |>|OA |+|OB |+|OC |+|OD |,故O 为梯形内唯一中位点是正确的.51.3或4【解析】 易知方程得解都是正整数解,由判别式1640n ∆=-≥得,14n ≤≤,逐个分析,当1,2n =时,方程没有整数解;而当3n =时,方程有正整数解1、3;当4n =时,方程有正整数解2.52.【解析】对任何x R ∈,都有2250x x ++≠.。
2018年高考数学试题分类汇编1——集合与常用逻辑用语

一、集合与常用逻辑用语一、选择题一.(重庆理2)“x <-1”是“x 2-1>0”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要【答案】A2.(天津理2)设,,x y R ∈则“2x ≥且2y ≥”是“224x y +≥”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .即不充分也不必要条件 【答案】A3.(浙江理7)若,a b 为实数,则“01m ab <<”是11a b b a <或>的 A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A4.(四川理5)函数,()f x 在点0x x =处有定义是()f x 在点0x x =处连续的 A .充分而不必要的条件 B .必要而不充分的条件 C .充要条件 D .既不充分也不必要的条件 【答案】B【解析】连续必定有定义,有定义不一定连续。
5.(陕西理一)设,a b 是向量,命题“若a b =-,则∣a ∣= ∣b ∣”的逆命题是A .若a b ≠-,则∣a ∣≠∣b ∣B .若a b =-,则∣a ∣≠∣b ∣C .若∣a ∣≠∣b ∣,则a b ≠-D .若∣a ∣=∣b ∣,则a = -b【答案】D6.(陕西理7)设集合M={y|y=2cos x —2sin x|,x ∈R},N={x||x —1i为虚数单位,x ∈R},则M ∩N 为 A .(0,一) B .(0,一]C .[0,一)D .[0,一]【答案】C7.(山东理一)设集合 M ={x|260x x +-<},N ={x|一≤x ≤3},则M ∩N =A .[一,2)B .[一,2]C .( 2,3]D .[2,3] 【答案】A8.(山东理5)对于函数(),y f x x R =∈,“|()|y f x =的图象关于y 轴对称”是“y =()f x 是奇函数”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要 【答案】B9.(全国新课标理一0)已知a ,b 均为单位向量,其夹角为θ,有下列四个命题12:||1[0,)3p a b πθ+>⇔∈ 22:||1(,]3p a b πθπ+>⇔∈13:||1[0,)3p a b πθ->⇔∈ 4:||1(,]3p a b πθπ->⇔∈其中真命题是(A ) 14,p p (B ) 13,p p (C ) 23,p p (D ) 24,p p【答案】A一0.(辽宁理2)已知M ,N 为集合I 的非空真子集,且M ,N 不相等,若 N ð=M I ∅,则=N M (A )M (B )N(C )I(D )∅【答案】A一一.(江西理8)已知1a ,2a ,3a 是三个相互平行的平面.平面1a ,2a 之间的距离为1d ,平面2a ,3a 之间的距离为2d .直线l 与1a ,2a ,3a 分别相交于1p ,2p ,3p ,那么“12PP=23P P ”是“12d d =”的 A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C一2.(湖南理2)设集合{}{}21,2,,M N a ==则 “1a =”是“N M ⊆”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件 【答案】A一3.(湖北理9)若实数a,b 满足0,0,a b ≥≥且0ab =,则称a 与b互补,记(,),a b a b ϕ=-,那么(),0a b ϕ=是a 与b 互补的A .必要而不充分的条件B .充分而不必要的条件C .充要条件D .即不充分也不必要的条件【答案】C一4.(湖北理2)已知{}21|log ,1,|,2U y y x x P y y x x ⎧⎫==>==>⎨⎬⎩⎭,则U C P =A .1[,)2+∞B .10,2⎛⎫ ⎪⎝⎭C .()0,+∞D .1(,0][,)2-∞+∞【答案】A一5.(广东理2)已知集合(){,A x y = ∣,x y 为实数,且}221x y +=,(){,B x y =,x y 为实数,且}y x=,则A B ⋂的元素个数为 A .0 B .一 C .2 D .3【答案】C一6.(福建理一)i 是虚数单位,若集合S=}{1.0.1-,则A .i S ∈B .2i S ∈C . 3i S ∈ D .2S i ∈【答案】B 一7.(福建理2)若a ∈R ,则a=2是(a-一)(a-2)=0的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件 C .既不充分又不必要条件 【答案】A 一8.(北京理一)已知集合P={x ︱x 2≤一},M={a }.若P ∪M=P ,则a 的取值范围是 A .(-∞, -一] B .[一, +∞) C .[-一,一] D .(-∞,-一] ∪[一,+∞) 【答案】C 一9.(安徽理7)命题“所有能被2整聊的整数都是偶数”的否定是 (A )所有不能被2整除的数都是偶数 (B )所有能被2整除的整数都不是偶数 (C )存在一个不能被2整除的数都是偶数 (D )存在一个能被2整除的数都不是偶数 【答案】D20.(广东理8)设S 是整数集Z 的非空子集,如果,,a b S ∀∈有ab S ∈,则称S 关于数的乘法是封闭的.若T,V 是Z 的两个不相交的非空子集,,T U Z ⋃=且,,,a b c T ∀∈有;,,,abc T x y z V ∈∀∈有xyz V ∈,则下列结论恒成立的是A .,T V 中至少有一个关于乘法是封闭的B .,T V 中至多有一个关于乘法是封闭的C .,T V 中有且只有一个关于乘法是封闭的D .,T V 中每一个关于乘法都是封闭的 【答案】A 二、填空题2一.(陕西理一2)设n N +∈,一元二次方程240x x n -+=有正数根的充要条件是n = 【答案】3或422.(安徽理8)设集合{}1,2,3,4,5,6,A =}8,7,6,5,4{=B 则满足S A ⊆且S B φ≠的集合S 为 (A )57 (B )56(C )49(D )8【答案】B23.(上海理2)若全集U R =,集合{|1}{|0}A x x x x =≥≤,则U C A = 。
常用逻辑用语—(2018-2022)高考真题汇编

常用逻辑用语—(2018-2022)高考真题汇编一、单选题(共23题;共115分)1.(5分)(2022·浙江)设x∈R,则“ sinx=1”是“ cosx=0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】【解答】sinx=1,则x=π2+2kπ,k∈Z;cosx=0,则x=π2+kπ,k∈Z,若sinx=1可推出cosx=0,充分性成立;反之不成立,必要性不成立,故充分部必要条件.故答案为:A【分析】利用同角三角函数间的基本关系,充要条件的定义判定即可.2.(5分)(2022·北京)设{a n}是公差不为0的无穷等差数列,则“ {a n}为递增数列”是“存在正整数N0,当n>N0时,a n>0”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】C【解析】【解答】充分性证明:若{a n}为递增数列,则有对∀n∈N+,a n+1>a n,公差d=a n+1−a n>0,取正整数N=0[−a1d]+2(其中[−a1d]不大于−a1d的最大正整数),则当n>N0时,只要a n>0,都有a n=a1+(n−1)d>a1+([−a1d]+1)d>0;必要性证明:若存在正整数N0,当n>N0时,a n>0,因为a n=a1+(n−1)d,所以d>d−a1 n ,对∀n>N0,n∈N+都成立,因为limn→+∞d−a1n=0,且d≠0,所以d>0,对∀n∈N+,都有a n+1−a n=d>0,a n+1>a n,即{a n}为递增数列,所以{a n}为递增数列是“存在正整数N0,当n>N0时,a n>0”的充要条件.故答案为:C【分析】先证明充分性:若{a n}为递增数列,则a n+1>a n,公差d>0,取正整数N=0[−a1d]+2,则当n>N0时,只要a n>0,都有a n>a1+([−a1d]+1)d>0;再证明必要性:若存在正整数N0,当a n>0,有d>d−a1n,因为limn→+∞d−a1n=0,结合已知条件得d>0,a n+1>a n,即{a n}为递增数列,综上即可判断.3.(5分)(2021·北京)已知f(x)是定义在上[0,1]的函数,那么“函数f(x)在[0,1]上单调递增”是“函数f(x)在[0,1]上的最大值为f(1)”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】【解答】解:①【充分性】若函数f(x)在[0, 1]上单调递增,根据函数的单调性可知:函数f(x)在[0, 1]的最大值为f(1),所以“函数f(x)在[0, 1].上单调递增”为“函数f(x)在[0, 1]的最大值为f(1)“的充分条件;②【必要性】若函数f(x)在[0, 1]的最大值为f(1),函数f(x)在[0, 1]上可能先递减再递增,且最大值为f(1),所以“函数f(x)在[0, 1].上单调递增”不是“函数f(x)在[0, 1]的最大值为f(1)“的必要条件,所以“函数f(x)在[0, 1]上单调递增”是“函数f(x)在[0, 1]的最大值为f(1)“的充分而不必要条件.故答案为:A【分析】根据充分条件与必要条件的判定直接求解即可.4.(5分)(2021·浙江)已知非零向量a⃗,b⃗,c⃗,则“ a⃗⋅c⃗=b⃗⋅c⃗”是“ a⃗=b⃗”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件【答案】B【解析】【解答】若a⇀⊥b⇀且,c⇀⊥b⇀,则a⇀·c⇀=b⇀·c⇀=0,但a→= b→不一定成立, 故充分性不成立;若a⃗=b⃗时,a⇀·c⇀=b⇀·c⇀一定成立,故必要性成立,故“ a⃗⋅c⃗=b⃗⋅c⃗”是“ a⃗=b⃗”的必要不充分条件故答案为:B.【分析】先将条件等式变形,可能得到条件不充分,后者显然成立。
2012至2018年常用逻辑用语高考真题

2012至2018年常用逻辑用语高考真题1.【2018年浙江卷】已知平面α,直线m ,n 满足m α,n α,则“m ∥n ”是“m ∥α”的A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件2.【2018年理数天津卷】设,则“”是“”的A. 充分而不必要条件B. 必要而不重复条件C. 充要条件D. 既不充分也不必要条件 ,3.【2018年理北京卷】设a ,b 均为单位向量,则“”是“a ⊥b ”的A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件4.【2017天津,理4】设θ∈R ,则“ππ||1212θ-<”是“1sin 2θ<”的( ) (A )充分而不必要条件(B )必要而不充分条件(C )充要条件(D )既不充分也不必要条件5.【2017山东,理3】已知命题p:()x x ∀+>0,ln 1>0;命题q :若a >b ,则a b 22>,下列命题为真命题的是( )(A ) ∧p q (B )⌝∧p q (C ) ⌝∧p q (D )⌝⌝∧p q6.【2017北京,理13】能够说明“设a ,b ,c 是任意实数.若a >b >c ,则a +b >c ”是假命题的一组整数a ,b ,c 的值依次为______________________________.1.【2016浙江理数】命题“*x n ∀∈∃∈,R N ,使得2n x >”的否定形式是( )A .*x n ∀∈∃∈,R N ,使得2n x <B .*x n ∀∈∀∈,R N ,使得2n x <C .*x n ∃∈∃∈,R N ,使得2n x <D .*x n ∃∈∀∈,R N ,使得2n x <8.【2016山东理数】已知直线a ,b 分别在两个不同的平面α,β内.则“直线a 和直线b 相交”是“平面α和平面β相交”的( )(A )充分不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充分也不必要条件9. 【2016天津理数】设{a n }是首项为正数的等比数列,公比为q ,则“q <0”是“对任意的正整数n ,a 2n −1+a 2n <0”的( )(A )充要条件(B 充分而不必要条件(C )必要而不充分条件 (D )既不充分也不必要条件10、(2015年安徽)设p :x<3,q :-1<x<3,则p 是q 成立的( )(A )充分必要条件 (B )充分不必要条件 (C )必要不充分条件 (D )既不充分也不必要条件11、(2015年新课标1理)设命题P :∃n ∈N ,2n >2n ,则⌝P 为( )(A )∀n ∈N, 2n >2n (B )∃ n ∈N, 2n ≤2n (C )∀n ∈N, 2n ≤2n (D )∃ n ∈N, 2n =2n12、(2015年天津理科)设x R ∈ ,则“21x -< ”是“220x x +-> ”的( )(A )充分而不必要条件 (B )必要而不充分条件(C )充要条件 (D )既不充分也不必要条件13.(2014北京文)设a 、b 是实数,则“a b >”是“22a b >”的( )A.充分而不必要条件B.必要而不必要条件C.充分必要条件D.既不充分也不必要条件14.(2014湖南理)已知命题22:,;:,.p x y x y q x y x y >-<->>若则命题若则在命题( )①p q ∧②p q ∨③()p q ∧⌝④()p q ⌝∨中,真命题是A .①③B .①④C .②③D .②④15.(2014浙江文) 设四边形ABCD 的两条对角线为AC 、BD ,则“四边形ABCD 为菱形”是“BD AC ⊥”的( )A. 充分不必要条件B. 必要不成分条件C. 充要条件D. 既不充分也不必要条件16.(2013湖南文)“1<x <2”是“x <2”成立的___ ____( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件件17.(2013上海)钱大姐常说“便宜没好货”,她这句话的意思是:“不便宜”是“好货”的( )(A)充分条件 (B)必要条件 (C)充分必要条件 (D)既非充分也非必要条件18. (2013新标1文) 已知命题:p x R ∀∈,23x x <;命题:q x R ∃∈,321x x =-,则下列命题中为真命题的是:( )(A )p q ∧ (B )p q ⌝∧ (C )p q ∧⌝ (D )p q ⌝∧⌝19[2012·北京卷] 设a ,b ∈R ,“a =0”是“复数a +b i 是纯虚数”的( )A .充分而不必要条件B .必要而不充分条件C .充必条件D .既不充分也不必要条件 20[2012·安徽卷] 设平面α与平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且b ⊥m ,则“α⊥β”是“a ⊥b ”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件21[2012·浙江卷] 设a ∈R ,则“a =1”是“直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件1,A 2,A 3,C 4,A 5,B 6,-1,-2,-3(答案不唯一)7,D 8,A 9,C 10,C 11,C 12,D 13,D 14,C 15,A 16,A 17,B 18, B19,B 20,A 21,A。
专题三 逻辑用语 2004-2018浙江高考真题分类汇编(学生版)

专题三逻辑用语(必考)近五年考查率:100% 考查要点:充分与必要条件;命题的否定;判断真命题与假命题一、知识梳理1.命题的概念(1)一般地,在数学中,我们把用语言、符号或式子表达的,可以__________的陈述句叫做命题,其中__________的语句叫做真命题,____________的语句叫做假命题.(2)一般地,设“若p,则q”为原命题,那么______________就叫做原命题的逆命题;________________就叫做原命题的否命题;________________就叫做原命题的逆否命题.2.四种命题间的相互关系(1)四种命题间的相互关系图(请你补全)(2)真假关系①两个命题互为逆否命题,它们具有________的真假性,即等价;②两个命题为互逆命题或互否命题,它们的真假性________.3.充分条件和必要条件(1)如果p⇒q,则称p是q的______,q是p的_______________.(2)如果________,且________,那么称p是q的充分必要条件,简称p是q的__________,记作________.(3)如果p⇒q,但q p,那么称p是q的________条件.(4)如果________,但________,那么称p是q的必要不充分条件.(5)如果________,且________,那么称p是q的既不充分也不必要条件.4.逻辑联结词命题中的“或”“且”“非”称为____________________.5.全称量词“所有的”“任意一个”“每一个”等短语在逻辑中通常叫做____________,并用符号“________”表示.含有全称量词的命题称为____________,全称命题“对M中任意一个x,有p(x)成立”可用符号简记为:∀x∈M,p(x).6.存在量词“存在一个”“至少有一个”等短语在逻辑中通常叫做______________,并用符号“________”表示.含有存在量词的命题称为______________,特称命题“存在M中的元素x0,使p(x0)成立”可用符号简记为:∃x0∈M,p(x0).注:特称命题也称存在性命题.7.因此,全称命题的否定是________命题;特称命题的否定是________命题. 8.命题p ∧q ,p ∨q ,p 的真假判断(真值表)p假假○10 ⑪⑫注:“p ∧q ”“p ∨q ”“ p ”统称为复合命题,构成复合命题的p 命题,q 命题称为简单命题.二、历年真题1.(2004•浙江,8)在ΔABC 中,“A>30º”是“sinA>21”的 (A) 充分而不必要条件 (B) 必要而不充分条件 (C) 充分必要条件 (D) 既不充分也必要条件2.(2005•浙江,6)设α、β 为两个不同的平面,l 、m 为两条不同的直线,且l ⊂α,m ⊂β,有如下的两个命题:①若α∥β,则l ∥m ;②若l ⊥m ,则α⊥β.那么(A) ①是真命题,②是假命题 (B) ①是假命题,②是真命题 (C) ①②都是真命题 (D) ①②都是假命题3.(2006•浙江,7)“a >b >0”是“222b a ab +<”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件4.(2007•浙江,1)“1x >”是“2x x >”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件5.(2008•浙江,3)已知a ,b 都是实数,那么“22b a >”是“a >b ”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件6.(2009•浙江,2)已知,a b 是实数,则“0a >且0b >”是“0a b +>且0ab >”的 ( )A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件7.(2010•浙江,4)设20π<<x ,则“1sin 2<x x ”是“1sin <x x ”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件8.(2011•浙江,7)若a 、b 为实数,则“01ab <<”是“1a b <或1b a>”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件9.(2012•浙江,3)设a ∈R ,则“a =1”是“直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件10.(2013•浙江,4)已知函数()cos()(0f x A x A ωϕ=+>,0ω>,)R ϕ∈,则“()f x 是 奇函数”是“2πϕ=”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件11.(2014•浙江,2)已知i 是虚数单位,a ,b ∈R ,则“a=b=1”是“(a+bi )2=2i ”的( )12.(2015•浙江,6)设是有限集,定义:,其中表示有限集A 中的元素个数,命题①:对任意有限集,“”是“ ”的充分必要条件; 命题②:对任意有限集,, A. 命题①和命题②都成立 B. 命题①和命题②都不成立 C. 命题①成立,命题②不成立 D. 命题①不成立,命题②成立12.(2015•浙江,4)命题“ 且()n f n n ≤的否定形式是( ) A. **,()n N f n N ∀∈∉,且 B. **,()n N f n N ∀∈∉或 C. **00,()n N f n N ∃∈∉且 D. **00,()n N f n N ∃∈∉或13.(2016•浙江,4)命题”“*,N n R x ∈∃∈∀,使得”的否定形式是A. ”“*,N n R x ∈∃∈∀使得B. ”“*,N n R x ∈∀∈∀使得C. ”“*,N n R x ∈∃∈∃使得D. ”“*,N n R x ∈∀∈∃使得14.(2017•浙江,6)已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4 + S 6>2S 5”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件15.(2018•浙江,6)已知平面α,直线m ,n 满足m ⊄α,n ⊂α,则“m ∥n ”是“m ∥α”的( )A . 充分不必要条件B . 必要不充分条件C . 充分必要条件D . 既不充分也不必要条件,A B (,)()()d A B card A B card A B =-()card A ,A B A B ≠(,)0d A B >,,A B C (,)(,)(,)d A C d A B d B C ≤+**,()n N f n N ∀∈∈()f n n >()f n n >00()f n n >00()f n n >。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年高考试题分类汇编(常用逻辑用语) 第 1 页 共 1 页
2018年高考试题分类汇编(常用逻辑用语) 第 1 页 共 1 页
2018年高考试题分类汇编(常用逻辑用语)
考点1 简单的命题
1.(2018·北京卷·理科)能说明“若()(0)f x f >对任意的(0,2]x ∈都成立,则()f x 在[0,2]上是增函数”为假命题的一个函数是_______.
2.(2018·北京卷·文科)能说明“若a b >,则
11a b
<”为假命题的一组,a b 的值依次为_____. 考点2 充分、必要条件
1.(2018·北京卷·理科)设,a b 均为单位向量,则“33a b a b -=+”是“a b ⊥”的
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件
2.(2018·北京卷·文科)设,,,a b c d 是非零实数,则“ad bc =”是“,,,a b c d 成等比数列”的
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件 3.(2018·天津卷·理科)设x R ∈,则“11||22
x -<”是“31x <”的 A.充分而不必要条件 B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件
4.(2018·天津卷·文科)设x R ∈,则“38x >”是“2x >” 的
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件
5.(2018·浙江卷)已知平面α,直线,m n 满足m α⊄,n α⊂,则“m ∥n ”是“m ∥α”的
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件。