2020年高考试题分类汇编(集合)
2020年全国高考语文试卷分类汇编

2020年全国高考语文试卷分类汇编文学类文本阅读1沈从文《从音乐和美术认识生命》阅读练习及答案(2020年北京卷高考题)四、本大题共4小题,共18分。
阅读下面作品,完成18-21题。
从音乐和美术认识生命沈从文我有一点习惯,从小时养成,即对音乐和美术的爱好。
从四五岁起始,这两种东西和生命发展,即.完全密切吻合。
初有记忆时,记住黄昏来临一个小乡镇戍卒屯丁的鼓角,在紫煜煜入夜光景中,奏得又悲壮,又凄凉。
春天的早晨,睡梦迷糊里,照例可听到高据屋脊和竹园中竹梢百舌、画眉鸟自得其乐的歌呼。
此外河边的水车声,天明以前的杀猪声,田中秧鸡、笼中竹鸡、塘中田鸡……以及通常办喜事丧事的乐曲,求神还愿的乐舞,田野山路上的唢呐独奏——一切在自然中与人生中存在的有情感的声音,陆续镶嵌在成长的生命中每一部分。
这个发展影响到成熟的生命,是直觉的容易接受伟大优美乐曲的暗示或启发。
到都市中来已三十年,在许多问题上,工作方式、生活取舍上,头脑都似乎永远有点格格不入,老是闹别扭。
即.勉强求适应,终见得顽固呆钝,难于适应,意识中有“承认”与“否定”两种力量永远在争持,显得混乱而无章次。
唯有音乐能征服我,驯柔我。
一个有生命有性格的乐章在我耳边流注,逐渐浸入脑中襞褶深处时,生命仿佛就有了定向,充满悲哀与善良情感,而表示完全皈依。
音乐对我的说教,比任何经典教义更具效果。
也许我所理解的并不是音乐,只是从乐曲节度中条.理.出“人的本性。
—切好音乐都能把我引带走向过去,走向未来,而认识当前,乐意于将全生命为当前平凡人生卑微哀乐而服务。
笔在手上工作已二十六年,总似乎为一种召唤而永远向前,任何挫折均无从阻止,从风声、水声、鸟声中,都可以得到这种鼓励与激发。
从隔船隔壁他人家常絮语与小小龃.龉.中,也同样能够得到。
即身边耳边一切静沉沉的,只要生命中有这些回音来复,来自多年以前的远方,我好像也即刻得到一线微光,一点热,于是继续摸索而前。
社会给我的教育太多了,一切由都市文明形成的强制观念,总在迷乱我,压迫我。
2020高考语文试卷现代文阅读题分类汇编含解析(及答案)

2020高考语文试卷现代文阅读题分类汇编含解析(及答案)一、高中现代文阅读1.(2019•天津)阅读下面的文字,完成小题。
“资源”这一概念,可以有狭义和广义两种理解。
狭义的资源是指人类生产活动所需要的、在自然界存在的物质(材料)和动力的天然来源。
广义的资源,则是指人类用来帮助从事一定活动、以达到一定目的的一切要素和有利条件的总和,简单地说,资源就是人类活动所必需的一切东西。
从形态上看,人类资源可分为两大类:一类是可以贮存、节约的资源,如资金、材料、能源等;另一类是不可贮存、节约的资源,如时间、注意力、记忆力、思维能力等。
在信息社会中,正确认知注意力资源,具有重要意义。
为什么说注意力是一种资源呢?人类活动的一个重要特征是它的定向性,即有意识、有计划地达到一定的目的。
人类活动的定向性,要求人在活动过程中,必须使自己的意志服从这个过程的目标。
人的定向活动是由提出的任何或某种活动计划来组织的,而要完成这种组织活动,一个重要的、不可缺少的心理因素就是注意力。
所以,注意是人的活动的基本特征,是人的有目的活动和定向探索活动的前提,是人的活动达到既定目标的必要条件;注意力决定任务完成的效率和成果的质量,是人类活动不可缺少的一种要素,是一种重要的资源。
人的心理过程的一个最基本特征是它的选择性和指向性。
当我们的心理活动指向和集中于一定事物时,就是注意。
注意和认识过程分不开,它是一切认识过程的开端。
虽然注意不是一种独立的认识活动,但它表现在认识过程(知觉、记忆、思维等)的内部而与这些过程不可分离,在人的一切活动中起着重要的作用,它对人的各种心理过程和操作活动均有调节作用。
注意力表现了人的心理过程进行的动力特征,是人的个性品质和能力结构的重要国素。
没有高度发展的往意力,就不能有效地从事各种活动,就不能从事长时间的复杂的思维活动。
在信息爆炸的时代,人的注意力是一种非常有限的心理资源。
人的主要精力每次只能执行一种主要的任务。
2020年高考语文试卷分类汇编:社科文(含答案解析)

2020年高考语文试卷分类汇编:社科文(含答案解析)1、(安徽)阅读下面的文字,完成⑴⑻题。
(24分)材料一中国四大发明之一⑶题(10分)生物电池可以利用蜗牛体内葡萄糖发电。
我们在蜗牛壳上钻孔,把覆盖着酶的电极植入聚集在蜗牛身体和壳之间的血淋巴,也就是蜗牛的血液中。
与其他类型的电池类似,我们的电池也是基于化学反应来让电子流动的;一个电极捕获血淋巴中葡萄糖的电子,之后这些电子会通过外部的回路包括我们想要供电的任何设备抵达相对的电极。
在那里,电子与血淋巴中的氧反应形成水,输出的电力很微弱,在微瓦的量级上,而且在数分钟后会因葡萄糖耗尽而断电。
收获能量之后,蜗牛通过吃喝会恢复体内的葡萄糖水平,就可以再次发电了。
而蜗牛看来并没有受到生物电池的伤害。
电池的输出功率受两个因素的限制:蜗牛微小身体内的葡萄糖含量,以及葡萄糖向电极扩散所用的时间。
如果医生把类似的某种装置植入人体而不是蜗牛体内,我们就能获得更强更持久的电流,因为人类血液中的葡萄糖含量要比蜗牛的高,而且人类的循环系统会持续把新的葡萄糖补充给电极(蜗牛没有闭合的循环系统)。
一个想法是用我们的生物电池基于人体的修改版来为植入医疗设备供电,例如起搏器,蜗牛不能为手机充电,但它能为微型传感器供电,这促成另一个想法让蜗牛、蠕虫和昆虫为环境鉴别和国土安全服务。
⑴第一段主要介绍生物电池的:第二段主要介绍生物电话的。
(4分)⑵下列对”生物电池”的阐述,不符合原文的意思的一项是(3分)( )A 生物电池可以利用蜗牛血液中的葡萄糖来发电,这种电池与其他类型电池类似,也是基于化学反应让电子流动的。
B 生物电池通过植入生物血液中覆盖着酶的电极来捕获葡萄糖中的电子,这些电子可以通过外部设备到达相对电极。
C 生物电池输出的电力分微弱,只能用微瓦来计算,短短几分钟后因血淋巴耗尽而引起断电现象。
D 生物电池在利用蜗牛发电时电子与血液中的氧气发生化学反应形成水应该没有对蜗牛造成伤害。
2020年全国各地高考语文试卷分类汇编:论述类文本阅读(含答案)

1、《中国古代有儿童文学吗?》阅读练习及答案(2020年上海市高考题)二、阅读(70分)(一)阅读下文,完成第3—7题。
(16分)中国古代有儿童文学吗?①中国古代有儿童文学吗?这个问题百年来一直存在争议。
②中国儿童文学自古有之这一观点始于1913年。
当时有学者认为,中国古代虽无“儿童文学”之名,却有儿童文学之实,并以部分古代小说与民间娱儿故事为证,后来认为古代存在儿童文学的学者几乎都以此为依据。
而反对者认为,儿童文学是现代化进程中的产物,“中国古代并未发现‘儿童’,没有‘儿童’的发现作为前提,为儿童的儿童文学不可能产生。
因此,儿童文学与一般文学不同,它只有现代而没有古代。
”③应注意的是,无论观点如何,双方都是在现代的儿童文学理论基础上立论的。
不可否认,中国古代确实不存在“儿童文学”的概念,自然也就没有相应的判断标准。
要对中国儿童文学做历史考察,不妨使用现代儿童文学标准的核心部分来衡量古代作品。
之所以不是完全采用现代标准,是因为古今有别,考察时应避免以今衡古。
④在中国古代,最容易为儿童接受的文学形式莫过于童谣。
不过有很多童谣被统治阶级用来制造舆论,也有不少被用来向儿童灌输封建伦常,这些童谣都不能纳入古代儿童文学的范畴。
当然,仍有相当数量的童谣与儿童生活息息相关,这类童谣明代以后尤多,如明代杨慎所编《古今风谣》中的部分童谣、清代郑旭旦所编《天籁集》、意大利人韦大利1896年所编《北京儿歌》、美国人何德兰1900年所编《孺子图歌》。
这部分童谣,内容取自儿童日常生活,没有牵强附会,也没有强加道德诠释,且言辞质朴,多用叠音,节奏明快,适合儿童记诵,符合儿童的心理和接受能力。
⑤蒙书专为儿童编写,作启蒙发智之用,但细分又有不同。
一类为识字百科,如《三字经》《百家姓》《千字文》等,从目的和效果来看,这类书更像是后来的识字课本。
另一类则有一定的文学色彩,虽然内容简单,但都有明晰的人物、故事情节,用浅显的语言讲述故事,用符合儿童性情的方式教之以事,以事寓理,或诱之以趣,以趣入情。
2020年高考全国卷分类汇编

一、化学与STSE、古代化学1.【2020年全国I卷】国家卫健委公布的新型冠状病毒肺炎诊疗方案指出,乙醚、75%乙醇、含氯消毒剂、过氧乙酸(CH3COOOH)、氯仿等均可有效灭活病毒。
对于上述化学药品,下列说法错误的是A. CH3CH2OH能与水互溶B. NaClO通过氧化灭活病毒C. 过氧乙酸相对分子质量为76D. 氯仿的化学名称是四氯化碳2.【2020年全国II卷】北宋沈括《梦溪笔谈》中记载:“信州铅山有苦泉,流以为涧。
挹其水熬之则成胆矾,烹胆矾则成铜。
熬胆矾铁釜,久之亦化为铜”。
下列有关叙述错误的是A.胆矾的化学式为CuSO4B.胆矾可作为湿法冶铜的原料C.“熬之则成胆矾”是浓缩结晶过程D.“熬胆矾铁釜,久之亦化为铜”是发生了置换反应3.【2020年全国III卷】宋代《千里江山图》描绘了山清水秀的美丽景色,历经千年色彩依然,其中绿色来自孔雀石颜料(主要成分为Cu(OH)2·CuCO3),青色来自蓝铜矿颜料(主要成分为Cu(OH)2·2CuCO3)。
下列说法错误的是A.保存《千里江山图》需控制温度和湿度B.孔雀石、蓝铜矿颜料不易被空气氧化C.孔雀石、蓝铜矿颜料耐酸耐碱D.Cu(OH)2·CuCO3中铜的质量分数高于Cu(OH)2·2CuCO3二、有机化学1. 【2020年全国I卷】紫花前胡醇可从中药材当归和白芷中提取得到,能提高人体免疫力。
有关该化合物,下列叙述错误的是A. 分子式为C14H14O4B. 不能使酸性重铬酸钾溶液变色C. 能够发生水解反应D. 能够发生消去反应生成双键2.【2020年全国II卷】吡啶()是类似于苯的芳香化合物,2-乙烯基吡啶(VPy)是合成治疗矽肺病药物的原料,可由如下路线合成。
下列叙述正确的是A.Mpy只有两种芳香同分异构体B.Epy中所有原子共平面C.Vpy是乙烯的同系物D.反应②的反应类型是消去反应3.【2020年全国III卷】金丝桃苷是从中药材中提取的一种具有抗病毒作用的黄酮类化合物,结构式如下:下列关于金丝桃苷的叙述,错误的是A.可与氢气发生加成反应B.分子含21个碳原子C.能与乙酸发生酯化反应D.不能与金属钠反应三、化学实验1. 【2020年全国I卷】下列气体去除杂质的方法中,不能实现目的的是A.AB. BC. CD. D2.【2020年全国II卷】某白色固体混合物由NaCl、KCl、MgSO4、CaCO3中的两种组成,进行如下实验:①混合物溶于水,得到澄清透明溶液;②做焰色反应,通过钴玻璃可观察到紫色;③向溶液中加碱,产生白色沉淀。
2011—2020年十年新课标全国卷高考数学分类汇编——1

2011—2020年十年新课标全国卷高考数学分类汇编——1.集合2011年至2020年的新课标全国卷数学试题共包含8套全国卷,包括全国Ⅰ卷、Ⅱ卷、Ⅲ卷、新高考Ⅰ卷和新高考Ⅱ卷。
本资料根据全国卷的特点编写,共包含14个专题,包括集合、复数、逻辑、数学文化、新定义、平面向量、不等式、数列、三角函数与解三角形、解析几何、概率与统计、程序框图、坐标系与参数方程、不等式选讲。
通过掌握各种题型,可以把握全国卷命题的灵魂。
集合与简易逻辑是数学试题中的一个重要专题。
以下是一些选择题的例子:2020年新高考Ⅰ卷第一题:设集合A={x|1≤x≤3},B={x|2<x<4},则A∪B=()A.{x|2<x≤3} B.{x|2≤x≤3} C.{x|1≤x<4} D.{x|1<x<4}2020年全国卷Ⅰ理科第二题:设集合A={x|x2–4≤0},B={x|2x+a≤0},且A∩B={x|–2≤x≤1},则a=()A.–4 B.–2 C.2 D.42020年全国卷Ⅰ文科第一题:已知集合A={x|x23x40},B={4,1,3,5},则B={x|1<x<4}。
2020年全国卷Ⅱ理科第一题:已知集合U={−2,−1.1,2,3},A={−1.1},B={1,2},则CUAA.{−2,3} B.{−2,2,3} C.{−2,−1.3} D.{−2,−1.2,3}2020年全国卷Ⅱ文科第一题:已知集合A={x||x|1,x∈Z},则A∩B={–2,2}。
2020年全国卷Ⅲ理科第一题:已知集合A{(x,y)|x,y N*,y x},B{(x,y)|x y8},则A∩B中元素的个数为3.2020年全国卷Ⅲ文科第一题:已知集合A1,2,3,5,7,11,B x|3x15,则A∩B中元素的个数为4.2019·全国卷Ⅰ,理1)已知集合M={x|-4<x<2},N={x|x^2-x-6<0},则M的正确表示为A。
2020年高考数学真题分类汇编:集合

2020年高考数学真题分类汇编:集合一、单选题(共11题;共22分)1.(2分)(2020·新课标Ⅲ·文)已知集合A={1,2,3,5,7,11},B={x|3<x<15},则A∩B中元素的个数为()A.2B.3C.4D.5【答案】B【解析】【解答】由题意,A∩B={5,7,11},故A∩B中元素的个数为3.故答案为:B【分析】采用列举法列举出A∩B中元素的即可.2.(2分)(2020·新课标Ⅲ·理)已知集合A={(x,y)|x,y∈N∗,y≥x},B={(x,y)|x+y=8},则A∩B中元素的个数为()A.2B.3C.4D.6【答案】C【解析】【解答】由题意,A∩B中的元素满足{y≥xx+y=8,且x,y∈N∗,由x+y=8≥2x,得x≤4,所以满足x+y=8的有(1,7),(2,6),(3,5),(4,4),故A∩B中元素的个数为4.故答案为:C.【分析】采用列举法列举出A∩B中元素的即可.3.(2分)(2020·新课标Ⅲ·文)已知集合A={x||x|<3,x∈Z},B={x||x|>1,x∈Z},则A∩B=()A.∅B.{–3,–2,2,3)C.{–2,0,2}D.{–2,2}【答案】D【解析】【解答】因为A={x||x|<3,x∈Z}={−2,−1,0,1,2},B={x||x|>1,x∈Z}={x|x>1或x<−1,x∈Z},所以A∩B={2,−2}.故答案为:D.【分析】解绝对值不等式化简集合A,B的表示,再根据集合交集的定义进行求解即可.4.(2分)(2020·新课标Ⅲ·文)已知集合A={x|x2−3x−4<0},B={−4,1,3,5},则A∩B=()A.{−4,1}B.{1,5}C.{3,5}D.{1,3}【答案】D【解析】【解答】由x2−3x−4<0解得−1<x<4,所以A={x|−1<x<4},又因为B={−4,1,3,5},所以A∩B={1,3},故答案为:D.【分析】首先解一元二次不等式求得集合A,之后利用交集中元素的特征求得A∩B,得到结果. 5.(2分)(2020·新课标Ⅲ·理)已知集合U={−2,−1,0,1,2,3},A={−1,0,1},B={1,2},则∁U(A∪B)=()A.{−2,3}B.{−2,2,3}C.{−2,−1,0,3}D.{−2,−1,0,2,3}【答案】A【解析】【解答】由题意可得:A∪B={−1,0,1,2},则∁U(A∪B)={−2,3}.故答案为:A.【分析】首先进行并集运算,然后计算补集即可.6.(2分)(2020·新课标Ⅲ·理)设集合A={x|x2–4≤0},B={x|2x+a≤0},且A∩B={x|–2≤x≤1},则a=()A.–4B.–2C.2D.4【答案】B【解析】【解答】求解二次不等式x2−4≤0可得:A={x|−2≤x≤2},求解一次不等式2x+a≤0可得:B={x|x≤−a 2}.由于A∩B={x|−2≤x≤1},故:−a2=1,解得:a=−2.故答案为:B.【分析】由题意首先求得集合A,B,然后结合交集的结果得到关于a的方程,求解方程即可确定实数a的值.7.(2分)(2020·新高考Ⅲ)设集合A={x|1≤x≤3},B={x|2<x<4},则A∈B=()A.{x|2<x≤3}B.{x|2≤x≤3}C.{x|1≤x<4}D.{x|1<x<4}【答案】C【解析】【解答】A∪B=[1,3]∪(2,4)=[1,4)故答案为:C【分析】根据集合并集概念求解.8.(2分)(2020·天津)设全集U={−3,−2,−1,0,1,2,3},集合A={−1,0,1,2},B={−3,0,2,3},则A∩(∁U B)=()A.{−3,3}B.{0,2}C.{−1,1}D.{−3,−2,−1,1,3}【答案】C【解析】【解答】由题意结合补集的定义可知:∁U B={−2,−1,1},则A∩(∁U B)={−1,1}.故答案为:C.【分析】首先进行补集运算,然后进行交集运算即可求得集合的运算结果.9.(2分)(2020·北京)已知集合A={−1,0,1,2},B={x|0<x<3},则A∩B=().A.{−1,0,1}B.{0,1}C.{−1,1,2}D.{1,2}【答案】D【解析】【解答】A∩B={−1,0,1,2}∩(0,3)={1,2},故答案为:D.【分析】根据交集定义直接得结果.10.(2分)(2020·浙江)设集合S,T,S∈N*,T∈N*,S,T中至少有两个元素,且S,T满足:①对于任意x,y∈S,若x≠y,都有xy∈T;②对于任意x,y∈T,若x<y,则yx∈S;下列命题正确的是()A.若S有4个元素,则S∈T有7个元素B.若S有4个元素,则S∈T有6个元素C.若S有3个元素,则S∈T有4个元素D.若S有3个元素,则S∈T有5个元素【答案】A【解析】【解答】解:取:S={1,2,4},则T={2,4,8},S∈T={1,2,4,8},4个元素,排除D.S={2,4,8},则T={8,16,32},S∈T={2,4,8,16,32},5个元素,排除C;S={2,4,8,16}则T={8,16,32,64,128},S∈T={2,4,8,16,32,64,128},7个元素,排除B;故答案为:A.【分析】利用特殊集合排除选项,推出结果即可.11.(2分)(2020·浙江)已知集合P={x|1<x<4},Q={x|2<x<3},则P∩Q=()A.{x|1<x≤2}B.{x|2<x<3}C.{x|3≤x<4}D.{x|1<x<4}【答案】B【解析】【解答】解:集合P={x|1<x<4},Q={x|2<x<3},则P∩Q={x|2<x<3}.故答案为:B.【分析】直接利用交集的运算法则求解即可.二、填空题(共1题;共1分)12.(1分)(2020·江苏)已知集合A={−1,0,1,2},B={0,2,3},则A∩B=. 【答案】{0,2}【解析】【解答】∵A={−1,0,1,2}, B={0,2,3}∴A∩B={0,2}故答案为:{0,2}.【分析】根据集合的交集即可计算.。
2020年全国各地高考题分类汇编【数列】(北京,上海,江苏,浙江,天津卷)

2020年全国各地高考题分类汇编【数列部分】(北京、上海、江苏、浙江、天津卷)【2020年天津市高考数学试卷真题第19题】已知{a n }为等差数列,{b n }为等比数列,a 1=b 1=1,a 5=5(a 4−a 3),b 5=4(b 4−b 3). (Ⅰ)求{a n }和{b n }的通项公式;(Ⅱ)记{a n }的前n 项和为S n ,求证:S n S n+2<S n+12(n ∈N ∗); (Ⅲ)对任意的正整数n ,设c n ={(3a n −2)b na n a n+2,n 为奇数,a n−1b n+1,n 为偶数.求数列{c n }的前2n 项和.【2020年江苏省高考数学试卷真题第11题】设{a n }是公差为d 的等差数列,{b n }是公比为q 的等比数列.已知数列{a n +b n }的前n 项和S n =n 2−n +2n −1(n ∈N ∗),则d +q 的值是______.【2020年江苏省高考数学试卷真题第20题】已知数列{a n }(n ∈N ∗)的首项a 1=1,前n 项和为S n .设λ和k 为常数,若对一切正整数n ,均有S n+11k −S n 1k =λa n+11k 成立,则称此数列为“λ−k ”数列.(1)若等差数列{a n }是“λ−1”数列,求λ的值;(2)若数列{a n }是“√33−2”数列,且a n >0,求数列{a n }的通项公式;(3)对于给定的λ,是否存在三个不同的数列{a n }为“λ−3”数列,且a n ≥0?若存在,求出λ的取值范围;若不存在,说明理由.【2020年上海市高考数学试卷真题第12题】已知数列{a n }是公差不为零的等差数列,且a 1+a 10=a 9,则a 1+a 2+⋯+a 9a 10= .【2020年上海市高考数学试卷真题第21题】已知数列{a n}为有限数列,满足|a1−a2|≤|a1−a3|≤⋯≤|a1−a m|,则称{a n}满足性质P.(1)判断数列3、2、5、1和4、3、2、5、1是否具有性质P,请说明理由;(2)若a1=1,公比为q的等比数列,项数为10,具有性质P,求q的取值范围;(3)若{a n}是1,2,3,…,m的一个排列(m≥4),{b n}符合b k=a k+1(k=1,2,…,m−1),{a n}、{b n}都具有性质P,求所有满足条件的数列{a n}.【2020年浙江省高考数学试卷真题第7题】⩽1.记b1=S2,b n+1=S n+2−S2n,n∈已知等差数列{a n}的前n项和S n,公差d≠0,a1dN∗,下列等式不可能成立的是()A. 2a4=a2+a6B. 2b4=b2+b6C. a42=a2a8D. b42=b2b8【2020年浙江省高考数学试卷真题第11题】}就是二阶等我国古代数学家杨辉、宋世杰等研究过高阶等差数列求和问题,如数列{n(n+1)2},(n∈N∗)的前3项和______.差数列,数列{n(n+1)2【2020年浙江省高考数学试卷真题第20题】⋅c n(n∈已知数列{a n},{b n},{c n}满足a1=b1=c1=1,c n+1=a n+1−a n,c n+1=b nb n+2N∗).(1)若{b n}为等比数列,公比q>0,且b1+b2=6b3,求q的值及数列{a n}的通项公式;(2)若{b n}为等差数列,公差d>0,证明:c1+c2+c3+⋯+c n<1+1,n∈N∗.d【2020年北京市高考数学试卷真题第8题】在等差数列{a n}中,a1=−9,a5=−1.记T n=a1a2…a n(n=1,2,…),则数列{T n}()A. 有最大项,有最小项B. 有最大项,无最小项C. 无最大项,有最小项D. 无最大项,无最小项【2020年北京市高考数学试卷真题第21题】已知{a n}是无穷数列.给出两个性质:=a m;①对于{a n}中任意两项a i,a j(i>j),在{a n}中都存在一项a m,使得 a i2a j②对于{a n}中任意一项a n(n≥3),在{a n}中都存在两项a k,a l(k>l),使得a n=a k2.a l (Ⅰ)若a n=n(n=1,2,…),判断数列{a n}是否满足性质①,说明理由;(Ⅱ)若a n=2n−1(n=1,2,…),判断数列{a n}是否同时满足性质①和性质②,说明理由;(Ⅲ)若{a n}是递增数列,且同时满足性质①和性质②,证明:{a n}为等比数列.2020年全国各地高考题分类汇编【数列部分】 (北京、上海、江苏、浙江、天津卷)【答案】【2020年天津市高考数学试卷真题第19题】已知{a n }为等差数列,{b n }为等比数列,a 1=b 1=1,a 5=5(a 4−a 3),b 5=4(b 4−b 3). (Ⅰ)求{a n }和{b n }的通项公式;(Ⅱ)记{a n }的前n 项和为S n ,求证:S n S n+2<S n+12(n ∈N ∗); (Ⅲ)对任意的正整数n ,设c n ={(3a n −2)b na n a n+2,n 为奇数,a n−1b n+1,n 为偶数.求数列{c n }的前2n 项和.【答案】解:(Ⅰ)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q , 由a 1=1,a 5=5(a 4−a 3),则1+4d =5,可得d =1, ∴a n =1+n −1=n ,∵b 1=1,b 5=4(b 4−b 3), ∴q 4=4(q 3−q 2), 解得q =2, ∴b n =2n−1; 证明(Ⅱ)由(Ⅰ)可得S n =n(n+1)2,∴S n S n+2=14n(n +1)(n +2)(n +3),(S n+1)2=14(n +1)2(n +2)2,∴S n S n+2−S n+12=−12(n +1)(n +2)<0,∴S n S n+2<S n+12(n ∈N ∗);解:(Ⅲ),当n 为奇数时,c n =(3a n −2)b n a n a n+2=(3n−2)2n−1n(n+2)=2n+1n+2−2n−1n,当n 为偶数时,c n = a n−1b n+1=n−12n,对任意的正整数n ,有∑c 2k−1n k=1=∑(n k=122k 2k+1−22k−22k−1)=22n 2n+1−1,和∑c 2k n k=1=∑2k−14kn k=1=14+342+543+⋯+2n−14n,①, 由①×14可得14∑c 2k n k=1=142+343+⋯+2n−34 n +2n−14n+1,②,①−②得34∑c 2k n k=1=14+242+243+⋯+24 n −14--2n−14n+1, ∴∑c 2k n k=1=59−6n+59×4n ,因此∑c 2k 2n k=1=∑c 2k−1n k=1+∑c 2k nk=1=4n 2n+1−6n+59×4−49.数列{c n }的前2n 项和4n2n+1−6n+59×4n −49. 【解析】(Ⅰ)分别根据等差数列的通项公式和等比数列的通项公式即可求出; (Ⅱ)根据等差数列的求和公式和作差法即可比较大小,则课证明; (Ⅲ)分类讨论,再根据错位相减法即可求出前2n 项和.本题考查了等差数列等比数列的通项公式和求和公式,考查了不等式的大小比较,考查了数列求和的方法,考查了运算求解能力,转化与化归能力,分类与整合能力,属于难题.【2020年江苏省高考数学试卷真题第11题】设{a n }是公差为d 的等差数列,{b n }是公比为q 的等比数列.已知数列{a n +b n }的前n 项和S n =n 2−n +2n −1(n ∈N ∗),则d +q 的值是______. 【答案】4【解析】解:因为{a n +b n }的前n 项和S n =n 2−n +2n −1(n ∈N ∗),因为{a n }是公差为d 的等差数列,设首项为a 1;{b n }是公比为q 的等比数列,设首项为b 1, 所以{a n }的通项公式a n =a 1+(n −1)d ,所以其前n 项和S a n =n[a 1+a 1+(n−1)d]2=d2n 2+(a 1−d2)n ,当{b n }中,当公比q =1时,其前n 项和S b n =nb 1,所以{a n +b n }的前n 项和S n =S a n +S b n =d2n 2+(a 1−d2)n +nb 1=n 2−n +2n −1(n ∈N ∗),显然没有出现2n ,所以q ≠1, 则{b n }的前n 项和为S b n =b 1(q n −1)q−1=b 1q n q−1+b 1q−1,所以S n =S a n +S b n =d2n 2+(a 1−d2)n +b 1q n q−1−b1q−1=n 2−n +2n −1(n ∈N ∗),由两边对应项相等可得:{d2=1a 1−d 2=−1q =2b 1q−1=1解得:d =2,a 1=0,q =2,b 1=1,所以d +q =4, 故答案为:4.由{a n +b n }的前n 项和S n =n 2−n +2n −1(n ∈N ∗),由{a n }是公差为d 的等差数列,设首项为a 1;求出等差数列的前n 项和的表达式;{b n }是公比为q 的等比数列,设首项为b 1,讨论当q 为1和不为1时的前n 项和的表达式,由题意可得q ≠1,由对应项的系数相等可得d ,q 的值,进而求出d +q 的值.本题考查等差数列及等比数列的综合及由前n 项和求通项的性质,属于中档题.【2020年江苏省高考数学试卷真题第20题】已知数列{a n }(n ∈N ∗)的首项a 1=1,前n 项和为S n .设λ和k 为常数,若对一切正整数n ,均有S n+11k −S n 1k =λa n+11k 成立,则称此数列为“λ−k ”数列.(1)若等差数列{a n }是“λ−1”数列,求λ的值;(2)若数列{a n }是“√33−2”数列,且a n >0,求数列{a n }的通项公式;(3)对于给定的λ,是否存在三个不同的数列{a n }为“λ−3”数列,且a n ≥0?若存在,求出λ的取值范围;若不存在,说明理由.【答案】解:(1)k =1时,a n+1=S n+1−S n =λa n+1,由n 为任意正整数,且a 1=1,a n ≠0,可得λ=1; (2)√S n+1−√S n =√33√a n+1,则a n+1=S n+1−S n =(√S n+1−√S n )⋅(√S n+1+√S n )=√33⋅√a n+1(√S n+1+√S n ),因此√S n+1+√S n =√3⋅√a n+1,即√S n+1=23√3a n+1,S n+1=43a n+1=43(S n+1−S n ), 从而S n+1=4S n ,又S 1=a 1=1,可得S n =4n−1, a n =S n −S n−1=3⋅4n−2,n ≥2, 综上可得a n ={1,n =13⋅4n−2,n ≥2,n ∈N ∗;(3)若存在三个不同的数列{a n }为“λ−3”数列, 则S n+113−S n 13=λa n+113,则S n+1−3S n+123S n 13+3S n+113S n 23−S n =λ3a n+1=λ3(S n+1−S n ), 由a 1=1,a n ≥0,且S n >0,令p n =(S n+1S n)13>0,则(1−λ3)p n 3−3p n 2+3p n −(1−λ3)=0,λ=1时,p n =p n 2,由p n >0,可得p n =1,则S n+1=S n , 即a n+1=0,此时{a n }唯一,不存在三个不同的数列{a n },λ≠1时,令t =31−λ3,则p n 3−tp n 2+tp n −1=0,则(p n −1)[p n 2+(1−t)p n +1]=0, ①t ≤1时,p n2+(1−t)p n +1>0,则p n =1,同上分析不存在三个不同的数列{a n }; ②1<t <3时,△=(1−t)2−4<0,p n2+(1−t)p n +1=0无解, 则p n =1,同上分析不存在三个不同的数列{a n };③t =3时,(p n −1)3=0,则p n =1,同上分析不存在三个不同的数列{a n }.④t >3时,即0<λ<1时,△=(1−t)2−4>0,p n2+(1−t)p n +1=0有两解α,β, 设α<β,α+β=t −1>2,αβ=1>0,则0<α<1<β,则对任意n ∈N ∗,S n+1S n=1或S n+1S n=α3或S n+1S n=β3,此时S n =1,S n ={1,n =1β3,n ≥2,S n={1,n =1,2β3,n ≥3均符合条件. 对应a n ={1,n =10,n ≥2,a n ={1,n =1β3−1,n =20,n ≥3,a n ={1,n =1β3−1,n =30,n =2,n ≥4,则存在三个不同的数列{a n }为“λ−3”数列,且a n ≥0,综上可得0<λ<1.【解析】(1)由“λ−1”数列可得k =1,结合数列的递推式,以及等差数列的定义,可得λ的值;(2)运用“√33−2”数列的定义,结合数列的递推式和等比数列的通项公式,可得所求通项公式;(3)若存在三个不同的数列{a n }为“λ−3”数列,则Sn+113−S n 13=λa n+113,由两边立方,结合数列的递推式,以及t 的讨论,二次方程的实根分布和韦达定理,即可判断是否存在λ,并可得取值范围.本题考查数列的新定义的理解和运用,考查等差数列和等比数列的通项公式的运用,以及数列的递推式的运用,考查分类讨论思想,以及运算能力和推理论证能力,是一道难题.【2020年上海市高考数学试卷真题第12题】已知数列{a n }是公差不为零的等差数列,且a 1+a 10=a 9,则a 1+a 2+⋯+a 9a 10= .【答案】278【解析】【分析】本题考查等差数列的前n 项和与等差数列通项公式的应用,注意分析a 1与d 的关系,属于基础题.根据等差数列的通项公式可由a 1+a 10=a 9,得a 1=−d ,在利用等差数列前n 项和公式化简a 1+a 2+⋯+a 9a 10即可得出结论.【解答】解:根据题意,等差数列{a n }满足a 1+a 10=a 9,即a 1+a 1+9d =a 1+8d ,变形可得a 1=−d , 所以a 1+a 2+⋯+a 9a 10=9a 1+9×8d 2a 1+9d=9a 1+36d a 1+9d=−9d+36d −d+9d=278.故答案为:278.【2020年上海市高考数学试卷真题第21题】已知数列{a n}为有限数列,满足|a1−a2|≤|a1−a3|≤⋯≤|a1−a m|,则称{a n}满足性质P.(1)判断数列3、2、5、1和4、3、2、5、1是否具有性质P,请说明理由;(2)若a1=1,公比为q的等比数列,项数为10,具有性质P,求q的取值范围;(3)若{a n}是1,2,3,…,m的一个排列(m≥4),{b n}符合b k=a k+1(k=1,2,…,m−1),{a n}、{b n}都具有性质P,求所有满足条件的数列{a n}.【答案】解:(1)对于数列3,2,5,1,有|2−3|=1,|5−3|=2,|1−3|=2,满足题意,该数列满足性质P;对于第二个数列4、3、2、5、1,|3−4|=1,|2−4|=2,|5−4|=1.不满足题意,该数列不满足性质P.(2)由题意:|a1−a1q n|≥|a1−a1q n−1|,可得:|q n−1|≥|q n−1−1|,n∈{2,3,…,9},两边平方可得:q2n−2q n+1≥q2n−2−2q n−1+1,整理可得:(q−1)q n−1[q n−1(q+1)−2]≥0,当q≥1时,得q n−1(q+1)−2≥0此时关于n恒成立,所以等价于n=2时,q(q+1)−2≥0,所以,(q+2)(q−1)≥0,所以q≤−2,或q≥1,所以取q≥1,当0<q≤1时,得q n−1(q+1)−2≤0,此时关于n恒成立,所以等价于n=2时,q(q+ 1)−2≤0,所以(q+2)(q−1)≤0,所以−2≤q≤1,所以取0<q≤1.当−1≤q<0时:q n−1[q n−1(q+1)−2]≤0,当n为奇数时,得q n−1(q+1)−2≤0,恒成立,当n为偶数时,q n−1(q+1)−2≥0,不恒成立;故当−1≤q<0时,矛盾,舍去.当q<−1时,得q n−1[q n−1(q+1)−2]≤0,当n为奇数时,得q n−1(q+1)−2≤0,恒成立,当n为偶数时,q n−1(q+1)−2≥0,恒成立;故等价于n=2时,q(q+1)−2≥0,所以(q+2)(q−1)≥0,所以q≤−2或q≥1,所以取q≤−2,综上.(3)设a1=p,p∈{3,4,…,m−3,m−2},因为a1=p,a2可以取p−1,或p+1,a3可以取p−2,或p+2,如果a2或a3取了p−3或p+3,将使{a n}不满足性质P;所以{a n}的前5项有以下组合:①a1=p,a2=p−1;a3=p+1;a4=p−2;a5=p+2;②a1=p,a2=p−1;a3=p+1;a4=p+2;a5=p−2;③a1=p,a2=p+1;a3=p−1;a4=p−2;a5=p+2;④a1=p,a2=p+1;a3=p−1;a4=p+2;a5=p−2;对于①,b1=p−1,|b2−b1|=2,|b3−b1|=1,与{b n}满足性质P矛盾,舍去;对于②,b1=p−1,|b2−b1|=2,|b3−b1|=3,|b4−b1|=2与{b n}满足性质P矛盾,舍去;对于③,b1=p+1,|b2−b1|=2,|b3−b1|=3,|b4−b1|=1与{b n}满足性质P矛盾,舍去;对于④b1=p+1,|b2−b1|=2,|b3−b1|=1,与{b n}满足性质P矛盾,舍去;所以P∈{3,4,…,m−3,m−2},均不能同时使{a n}、{b n}都具有性质P.当p=1时,有数列{a n}:1,2,3,…,m−1,m满足题意.当p=m时,有数列{a n}:m,m−,…,3,2,1满足题意.当p=2时,有数列{a n}:2,1,3,…,m−1,m满足题意.当p=m−1时,有数列{a n}:m−1,m,m−2,m−3,…,3,2,1满足题意.所以满足题意的数列{a n}只有以上四种.【解析】本题考查数列的综合应用,不等式以及不等关系,二次函数的性质以及函数的相关性质的综合应用,考查分析问题解决问题的能力是难度大的题目,必须由高的数学思维逻辑修养才能解答.(1)根据定义,验证两个数列3、2、5、1和4、3、2、5、1是否具有性质P即可;(2)假设公比q的等比数列满足性质p,可得:|a1−a1q n|≥|a1−a1q n−1|,推出(q−1)q n−1[q n−1(q+1)−2]≥0,通过q≥1,0<q≤1时,−1≤q<0时:q<−1时,四种情况讨论求解即可.(3)设a1=p,分p=1时,当p=m时,当p=2时,当p=m−1时,以及P∈{3,4,…,m−3,m−2},五种情况讨论,判断数列{a n}的可能情况,分别推出{b n}判断是否满足性质P即可.【2020年浙江省高考数学试卷真题第7题】已知等差数列{a n}的前n项和S n,公差d≠0,a1d⩽1.记b1=S2,b n+1=S n+2−S2n,n∈N∗,下列等式不可能成立的是()A. 2a4=a2+a6B. 2b4=b2+b6C. a42=a2a8D. b42=b2b8【答案】B【解析】解:在等差数列{a n}中,a n=a1+(n−1)d,S n+2=(n+2)a1+(n+2)(n+1)2d,S2n=2na1+2n(2n−1)2d,b1=S2=2a1+d,b n+1=S n+2−S2n=(2−n)a1−3n2−5n−22d.∴b2=a1+2d,b4=−a1−5d,b6=−3a1−24d,b8=−5a1−55d.A.2a4=2(a1+3d)=2a1+6d,a2+a6=a1+d+a1+5d=2a1+6d,故A正确;B.2b4=−2a1−10d,b2+b6=a1+2d−3a1−24d=−2a1−22d,若2b4=b2+b6,则−2a1−10d=−2a1−22d,即d=0不合题意,故B错误;C.若a42=a2a8,则(a1+3d)2=(a1+d)(a1+7d),即a12+6a1d+9d2=a12+8a1d+7d2,得a1d=d2,∵d≠0,∴a1=d,符合a1d⩽1,故C正确;D.若b42=b2b8,则(−a1−5d)2=(a1+2d)(−5a1−55d),即2(a1d )2+25a1d+45=0,则a1d有两不等负根,满足a1d⩽1,故D正确.∴等式不可能成立的是B.故选:B.由已知利用等差数列的通项公式判断A与C;由数列递推式分别求得b2,b4,b6,b8,分析B,D成立时是否满足公差d≠0,a1d⩽1判断B与D.本题考查数列递推式,等差数列的通项公式与前n项和,考查转化思想和计算能力,是中档题.【2020年浙江省高考数学试卷真题第11题】我国古代数学家杨辉、宋世杰等研究过高阶等差数列求和问题,如数列{n(n+1)2}就是二阶等差数列,数列{n(n+1)2},(n∈N∗)的前3项和______.【答案】10【解析】【分析】本题考查数列求和,数列通项公式的应用,是基本知识的考查.求出数列的前3项,然后求解即可.【解答】解:数列{a n}满足a n=n(n+1)2,可得a1=1,a2=3,a3=6,所以S3=1+3+6=10.故答案为:10.【2020年浙江省高考数学试卷真题第20题】已知数列{a n},{b n},{c n}满足a1=b1=c1=1,c n+1=a n+1−a n,c n+1=b nb n+2⋅c n(n∈N∗).(1)若{b n}为等比数列,公比q>0,且b1+b2=6b3,求q的值及数列{a n}的通项公式;(2)若{b n}为等差数列,公差d>0,证明:c1+c2+c3+⋯+c n<1+1d,n∈N∗.【答案】(1)解:由题意,b2=q,b3=q2,∵b1+b2=6b3,∴1+q=6q2,整理,得6q2−q−1=0,解得q=−13(舍去),或q=12,∴c n+1=b nb n+2⋅c n=1b n+2b n⋅c n=1q2⋅c n=1(12)2⋅c n=4⋅c n,∴数列{c n}是以1为首项,4为公比的等比数列,∴c n=1⋅4n−1=4n−1,n∈N∗.∴a n+1−a n=c n+1=4n,则a1=1,a2−a1=41,a3−a2=42,⋅⋅⋅a n−a n−1=4n−1,各项相加,可得a n=1+41+42+⋯+4n−1=1−4n1−4=4n−13.(2)证明:依题意,由c n+1=b nb n+2⋅c n(n∈N∗),可得b n+2⋅c n+1=b n⋅c n,两边同时乘以b n+1,可得b n+1b n+2c n+1=b n b n+1c n,∵b1b2c1=b2=1+d,∴数列{b n b n+1c n}是一个常数列,且此常数为1+d,b n b n+1c n=1+d,∴c n=1+db n b n+1=1+dd⋅db n b n+1=(1+1d)⋅b n+1−b nb n b n+1=(1+1d)(1b n−1b n+1),∴c1+c2+⋯+c n=(1+1d)(1b1−1b2)+(1+1d)(1b2−1b3)+⋯+(1+1d)(1b n−1b n+1) =(1+1d)(1b1−1b2+1b2−1b3+⋯+1b n−1b n+1)=(1+1d)(1b1−1b n+1)=(1+1d)(1−1b n+1)<1+1d,∴c1+c2+⋯+c n<1+1d,故得证.【解析】本题主要考查数列求通项公式,等差数列和等比数列的基本量的运算,以及和式不等式的证明问题.考查了转化与化归思想,整体思想,方程思想,累加法求通项公式,裂项相消法求和,放缩法证明不等式,以及逻辑推理能力和数学运算能力.本题属综合性较强的偏难题.(1)先根据等比数列的通项公式将b2=q,b3=q2代入b1+b2=6b3,计算出公比q的值,然后根据等比数列的定义化简c n+1=b nb n+2⋅c n可得c n+1=4c n,则可发现数列{c n}是以1为首项,4为公比的等比数列,从而可得数列{c n}的通项公式,然后将通项公式代入c n+1= a n+1−a n,可得a n+1−a n=c n+1=4n,再根据此递推公式的特点运用累加法可计算出数列{a n}的通项公式;(2)通过将已知关系式c n+1=b nb n+2⋅c n不断进行转化可构造出数列{b n b n+1c n},且可得到数列{b n b n+1c n}是一个常数列,且此常数为1+d,从而可得b n b n+1c n=1+d,再计算得到c n=1+db n b n+1,根据等差数列的特点进行转化进行裂项,在求和时相消,最后运用放缩法即可证明不等式成立.【2020年北京市高考数学试卷真题第8题】在等差数列{a n}中,a1=−9,a5=−1.记T n=a1a2…a n(n=1,2,…),则数列{T n}()A. 有最大项,有最小项B. 有最大项,无最小项C. 无最大项,有最小项D. 无最大项,无最小项【答案】B【解析】【分析】本题考查等差数列的通项公式,考查数列的函数特性,考查分析问题与解决问题的能力,是中档题.由已知求出等差数列的通项公式,分析可知数列{a n}是单调递增数列,且前5项为负值,自第6项开始为正值,进一步分析得答案.【解答】解:设等差数列{a n}的首项为d,由a1=−9,a5=−1,得d=a5−a15−1=−1−(−9)4=2,∴a n=−9+2(n−1)=2n−11.由a n=2n−11=0,得n=112,而n∈N∗,可知数列{a n}是单调递增数列,且前5项为负值,自第6项开始为正值.可知T1=−9<0,T2=63>0,T3=−315<0,T4=945>0为最大项,自T5起均小于0,且逐渐减小.∴数列{T n}有最大项,无最小项.故选:B.【2020年北京市高考数学试卷真题第21题】已知{a n}是无穷数列.给出两个性质:①对于{a n}中任意两项a i,a j(i>j),在{a n}中都存在一项a m,使得 a i2a j=a m;②对于{a n}中任意一项a n(n≥3),在{a n}中都存在两项a k,a l(k>l),使得a n=a k2a l.(Ⅰ)若a n=n(n=1,2,…),判断数列{a n}是否满足性质①,说明理由;(Ⅱ)若a n=2n−1(n=1,2,…),判断数列{a n}是否同时满足性质①和性质②,说明理由;(Ⅲ)若{a n}是递增数列,且同时满足性质①和性质②,证明:{a n}为等比数列.【答案】解:(Ⅰ)不满足,理由:a 32a 2=92∉N ∗,不存在一项a m 使得a 32a 2=a m .(Ⅱ)数列{a n }同时满足性质①和性质②,理由:对于任意的i 和j ,满足a i 2a j=22i−j−1,因为i ∈N ∗,j ∈N ∗且i >j ,所以2i −j ∈N ∗,则必存在m =2i −j ,此时,2m−1∈{a i }且满足a i2a j=22i−j−1=a m ,性质①成立,对于任意的n ,欲满足a n =2n−1=a k2a l=22k−l−1,满足n =2k −l 即可,因为k ∈N ∗,l ∈N ∗,且k >l ,所以2k −l 可表示所有正整数,所以必有一组k ,l 使n =2k −l ,即满足a n =a k2a l,性质②成立.(Ⅲ)首先,先证明数列恒正或恒负, 反证法:假设这个递增数列先负后正,那么必有一项a l 绝对值最小或者有a l 与a l+1同时取得绝对值最小, 如仅有一项a l 绝对值最小,此时必有一项a m =a l2a j,此时|a m |<|a l |与前提矛盾,如有两项a l 与a l+1 同时取得绝对值最小值,那么必有a m =a i 2a i+1,此时|a m |<|a l |,与前提条件矛盾, 所以数列必然恒正或恒负,在数列恒正的情况下,由②知,存在k ,l 使得a k 2a l=a 3,因为是递增数列,a 3>a k >a l ,即3>k >l ,所以a 22a 1=a 3,此时a 1,a 2,a 3成等比数列,数学归纳法:(1)已证n =3时,满足{a n }是等比数列,公比q =a2a 1,(2)假设n =k 时,也满足{a k }是等比数列,公比q =a2a 1,那么由①知a k 2a k−1=qa k 等于数列的某一项a m ,证明这一项为a k+1即可,反证法:假设这一项不是a k+1,因为是递增数列,所以该项a m =a l2a l−1=qa k >a k+1,那么a k <a k+1<qa k ,由等比数列{a k }得a 1q k−1<a k+1<a 1q k , 由性质②得a 1qk−1<a m2a l<a 1q k,同时a k+1=a m2a l>a m >a l ,s 所以k +1>m >l ,所以a m ,a l 分别是等比数列{a k }中两项,即a m =a 1q m−1,a l =a 1q l−1,原式变为a 1q k−1<a 1q 2m−l−1<a 1q k ,所以l −1<2m −l −1<k ,又因为k ∈N ∗,m ∈N ∗,l ∈N ∗,不存在这组解,所以矛盾, 所以知a k 2ak−1=qa k =a k+1,前{a k+1}为等比数列,由数学归纳法知,{a n }是等比数列得证, 同理,数列恒负,{a n }也是等比数列.【解析】(Ⅰ)由a 32a 2=92∉N ∗,即可知道不满足性质.(Ⅱ)对于任意的i 和j ,满足a i2a j=22i−j−1,⇒2i −j ∈N ∗,必存在m =2i −j ,可得满足性质①;对于任意的n ,欲满足a n =2n−1=a k2a l=22k−l−1,⇒n =2k −l 即可,必存在有一组k ,l 使使得它成立,故满足性质②.(Ⅲ)先用反证法证明数列必然恒正或恒负,再用数学归纳法证明{a n }也是等比数列,即可.本题属于新定义题,考查等比数列的性质,数学归法等,考查逻辑思维能力,属于难题.。