2013年全国高考理科数学试题分类汇编13:常用逻辑用语
2013高考数学试题分类汇编:专题02 常用逻辑用语(解析版)

专题02 常用逻辑用语一、选择题1. (山东省济南市2013年1月高三上学期期末理10)非零向量,a b 使得||||||a b a b +=-成立的一个充分非必要条件是A. //a bB. 20a b +=C. ||||a ba b =D. a b =2.(山东省德州市2013年1月高三上学期期末校际联考理3)设,,,,a b R ∈则“1a ≥且1b ≥”是“2a b +≥”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件3.(山东省淄博市2013届高三上学期期末理5) “1-=m ”是“直线02)12(=+-+y m mx 与直线033=++my x 垂直”的 A .充分而不必要条件 B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】当210m -=,即12m =时,两直线方程为4x =-和13302x y ++=,此时两直线不垂直。
当0m =时,两直线方程为2y =和1x =-,此时两直线垂直。
当0m ≠且12m ≠时,两直线方程为21212m y x m m =+--和33y x m m =--,两直线的斜率为3,12m m m --,要使两直线垂直,则有3()112m m m⨯-=--,解得1-=m ,所以直线02)12(=+-+y m mx与直线033=++my x 垂直”则有1-=m 或0m =,所以1-=m 是两直线垂直的充分而不必要条件,选A.4.(山东省诸城市2013届高三12月月考理)“22ab>”是22log log a b >”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.(山东省枣庄三中2013年1月高三上学期阶段测试理)已知,a b R +∈,那么 “122<+b a ” 是“1ab a b +>+”的A.充要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件6.(山东省潍坊市四县一区2013届高三11月联考理)下列命题中的假命题是 A.02,1>∈∀-x R x B.1lg ,<∈∃x R x C.0,2>∈∀x R x D.2tan ,=∈∃x R x7.(山东省潍坊市四县一区2013届高三11月联考理)已知条件1:≤x p ,条件11:<xq ,则p 是q ⌝成立的A.充分不必要条件B.必要不充分条件C.充要条件D.既非充分也非必要条件8.(山东省泰安市2013届高三上学期期中考试理)命题“所有实数的平方都是正数”的否定为A.所有实数的平方都不是正数B.有的实数的平方是正数C.至少有一个实数的平方是正数D.至少有一个实数的平方不是正数9.(山东省实验中学2013届高三第三次诊断性测试理)设}{}2,1{2a N M ==,,则”“1=a 是”“M N ⊆的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件10.(山东省实验中学2013届高三第三次诊断性测试理)设命题p :曲线x e y -=在点),(e 1-处的切线方程是:ex y -=;命题q :b a ,是任意实数,若b a >,则1111+<+b a ,则( )A.“p 或q ”为真B.“p 且q ”为真C.p 假q 真D.p ,q 均为假命题11.(山东省实验中学2013届高三第一次诊断性测试理)如果命题 “⌝(p 或q)”为假命题,则A .p ,q 均为真命题B .p ,q 均为假命题C .p ,q 中至少有一个为真命题D . p, q 中至多有一个为真命题12.(山东省实验中学2013届高三第二次诊断性测试理)若)(x f 是R 上的增函数,且2)2(,4)1(=-=-f f ,设{}31)(|<++=t x f x P ,{}4)(|-<=x f x Q ,若“P x ∈”是“Q x ∈的充分不必要条件,则实数t 的取值范围是A.1-≤tB.1->tC.3≥tD.3>t13.(山东省聊城市东阿一中2013届高三上学期期初考试)是的( ) A .充分不必要条件 B.必要不充分条件C .充要条件D. 既不充分也不必要条件14.(山东省临沂市2013届高三上学期期中考试理)已知命题:,30xp x ∀∈>R ,则A .0:,30x p x ⌝∃∈≤RB .:,30xp x ⌝∀∈≤RC .0:,30x p x ⌝∃∈<RD .:,30xp x ⌝∀∈<R15.(山东省青岛市2013届高三上学期期中考试理)在ABC ∆中,“A B >”是“tan tan A B >”的A 充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件16.(山东省青岛市2013届高三上学期期中考试理)给出下列三个结论:(1)若命题p 为真命题,命题q ⌝为真命题,则命题“p q ∧”为真命题;(2)命题“若0xy =,则0x =或0y =”的否命题为“若0xy ≠,则0x ≠或0y ≠”;(3)命题“,20xx ∀∈>R ”的否定是“ ,20xx ∃∈≤R ”.则以上结论正确的个数为 A .3个 B .2个 C .1个 D .0个17.(山东省济南外国语学校2013届高三上学期期中考试理)"1""||1"x x >>是的( ) A .充分不必要条件 B.必要不充分条件C .充分必要条件 D .既不充分又不必要条件18.(山东省德州市乐陵一中2013届高三10月月考理)下列有关命题的说法正确的是 A .命题“若0xy =,则0x =”的否命题为:“若0xy =,则0x ≠” B .“若0=+y x ,则x ,y 互为相反数”的逆命题为真命题C .命题“R ∈∃x ,使得2210x -<”的否定是:“R ∈∀x ,均有2210x -<”D .命题“若cos cos x y =,则x y =”的逆否命题为真命题二、填空题:19.(山东省诸城市2013届高三12月月考理)已知命题P :x ∀∈[0,l],x a e ≥,命题q :“x ∃∈R ,x 2+4x+a=0”,若命题“p∧q”是真命题,则实数a 的取值范围是 ;三、解答题:20.(山东省德州市乐陵一中2013届高三10月月考理)(本小题满分12分)设命题p :实数x 满足03422<+-a ax x ,其中0<a ;命题q :实数x 满足2280,x x +->且p q ⌝⌝是的必要不充分条件,求实数a 的取值范围.21.(山东省泰安市2013届高三上学期期中考试理)(本小题满分12分)已知集合A 为函数()()()lg 1lg 1f x x x =+--的定义域,集合{}22120B x a ax x =---≥.(I )若112A B xx ⎧⎫⋂=≤<⎨⎬⎩⎭,求a 的值; (II )求证2a ≥是A B φ⋂=的充分不必要条件. 【解析】22.(山东省烟台市莱州一中20l3届高三第二次质量检测理)已知全集U=R ,非空集合{23x A xx -=-<}0,{()()22B x x a x a =---<}0. (1)当12a =时,求()U C B A ⋂;(2)命题:p x A ∈,命题:q x B ∈,若q 是p 的必要条件,求实数a 的取值范围. 【解析】23.(山东省烟台市莱州一中2013届高三10月月考理)(12分)已知{}{}m x x S x x x P ≤-=≤--=1,02082(1)若P S P ⊆⋃,求实数m 的取值范围;(2)是否存在实数m ,使得“P x ∈”是“S x ∈”的充要条件,若存在,求出m 的取值范围;若不存在,请说明理由. 【解析】。
2013年高考数学试题分类汇编A单元 集合与常用逻辑用语

A单元集合与常用逻辑用语A1集合及其运算3.A1[2013·福建卷] 若集合A={1,2,3},B={1,3,4},则A∩B的子集个数为()A.2B.3C.4 D.163.C[解析] A∩B={1,3},子集共有22=4个,故选C.1.A1[2013·全国卷] 设全集U={1,2,3,4,5},集合A={1,2},则∁U A=()A.{1,2} B.{3,4,5}C.{1,2,3,4,5} D.1.B[解析] 所求的集合是由全集中不属于集合A的元素组成的集合,显然是{3,4,5}.1.A1[2013·北京卷] 已知集合A={-1,0,1},B={x|-1≤x<1},则A∩B=()A.{0} B.{-1,0}C.{0,1} D.{-1,0,1}1.B[解析] ∵-1∈B,0∈B,1B,∴A∩B={-1,0},故选B.2.A1[2013·安徽卷] 已知A={x|x+1>0},B={-2,-1,0,1},则(∁R A)∩B=()A.{-2,-1} B.{-2}C.{-1,0,1} D.{0,1}2.A[解析] 因为A={x|x>-1},所以∁R A={x|x≤-1},所以(∁R A)∩B={-2,-1}.1.A1[2013·天津卷] 已知集合A={x∈R||x|≤2},B={x∈R|x≤1},则A∩B=() A.(-∞,2] B.[1,2]C.[-2,2] D.[-2,1]1.D[解析] A∩B={x∈R|-2≤x≤2}∩{x∈R|x≤1}={x∈R|-2≤x≤1}.1.A1[2013·四川卷] 设集合A={1,2,3},集合B={-2,2},则A∩B=()A.B.{2}C.{-2,2} D.{-2,1,2,3}1.B[解析] 集合A与B中公共元素只有2.1.A1[2013·陕西卷] 设全集为R,函数f(x)=1-x的定义域为M,则∁R M为()A.(-∞,1) B.(1,+∞)C.(-∞,1] D.[1,+∞)1.B[解析] M={x|1-x≥0}={x|x≤1},故∁R M=(1,+∞).2.A1[2013·山东卷] 已知集合A,B均为全集U={1,2,3,4}的子集,且∁U(A∪B)={4},B={1,2},则A∩∁U B=()A.{3} B.{4}C.{3,4} D.2.A[解析] ∵U={1,2,3,4},∁U(A∪B)={4},∴A∪B={1,2,3},又∵B={1,2},∴{3}A {1,2,3},∴∁U B={3,4},A∩∁U B={3}.1.A1[2013·新课标全国卷Ⅱ] 已知集合M={x|-3<x<1},N={-3,-2,-1,0,1},则M∩N =()A.{-2,-1,0,1} B.{-3,-2,-1,0}C.{-2,-1,0} D.{-3,-2,-1}1.C[解析] M∩N={-2,-1,0}.故选C.1.A1[2013·辽宁卷] 已知集合A={0,1,2,3,4},B={x||x|<2},则A∩B=()A.{0} B.{0,1}C.{0,2} D.{0,1,2}1.B[解析] 由题意可知,|x|<2,得-2<x<2,从而B={x|-2<x<2},A∩B={0,1},故选B.4.A1[2013·江苏卷] 集合{-1,0,1}共有________个子集.4.8[解析] 集合{-1,0,1}共有3个元素,故子集的个数为8.10.A1[2013·湖南卷] 已知集合U={2,3,6,8},A={2,3},B={2,6,8},则(∁U A)∩B=________.10.{6,8}[解析] 由已知得∁U A={6,8},又B={2,6,8},所以(∁U A)∩B={6,8}.1.A1[2013·湖北卷] 已知全集U={1,2,3,4,5},集合A={1,2},B={2,3,4},则B∩(∁U A)=()A.{2} B.{3,4}C.{1,4,5} D.{2,3,4,5}1.B[解析] ∁U A={3,4,5},B∩(∁U A)={3,4}.1.A1[2013·广东卷] 设集合S={x|x2+2x=0,x∈R},T={x|x2-2x=0,x∈R},则S∩T=()A.{0} B.{0,2}C.{-2,0} D.{-2,0,2}1.A[解析] S={-2,0},T={0,2},S∩T={0},故选A.1.A1[2013·广东卷] 设集合S={x|x2+2x=0,x∈R},T={x|x2-2x=0,x∈R},则S∩T=()A.{0} B.{0,2}C.{-2,0} D.{-2,0,2}1.A[解析] S={-2,0},T={0,2},S∩T={0},故选A.1.A1[2013·新课标全国卷Ⅰ] 已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B=()A.{1,4} B.{2,3}C.{9,16} D.{1,2}1.A[解析] 集合B={1,4,9,16},所以A∩B={1,4}.1.A1[2013·浙江卷] 设集合S={x|x>-2},T={x|-4≤x≤1},则S∩T=()A.[-4,+∞) B.(-2,+∞)C.[-4,1] D.(-2,1]1.D[解析] 从数轴可知,S∩T=(-2,1].所以选择D.1.A1[2013·重庆卷] 已知全集U={1,2,3,4},集合A={1,2},B={2,3},则∁U(A∪B)=() A.{1,3,4} B.{3,4}C.{3} D.{4}1.D[解析] 因为A∪B={1,2,3} ,所以∁U(A∪B)={4},故选D.A2命题及其关系、充分条件、必要条件4.A2[2013·安徽卷] “(2x-1)x=0”是“x=0”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 4.B [解析] (2x -1)x =0x =12或x =0;x =0(2x -1)x =0.故“(2x -1)x =0”是“x=0”的必要不充分条件.8.A2[2013·山东卷]给定两个命题p,q,若瘙 綈 p是q的必要而不充分条件,则p是瘙 綈 q的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件8.A[解析] ∵“若q,则瘙 綈 p”与“若p,则瘙 綈 q”互为逆否命题,又“若q,则瘙 綈 p”为真命题,故p是瘙 綈 q的充分而不必要条件.2.A2[2013·湖南卷] “1<x<2”是“x<2”成立的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2.A[解析] 1<x<2,一定有x<2;反之,x<2,则不一定有1<x<2,如x=0.故“1<x<2”是“x<2”成立的充分不必要条件,选A.3.A2[2013·湖北卷] 在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为()A.(瘙 綈 p)∨(瘙 綈 q) B.p∨(瘙 綈 q)C.(瘙 綈 p)∧(瘙 綈 q) D .p ∨q3.A [解析] “至少一位学员没降落在指定区域”即为“甲没降落在指定区域或乙没降落在指定区域”,可知选A.2.A2[2013·福建卷] 设点P(x,y),则“x =2且y =-1”是“点P 在直线l :x +y -1=0上”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件2.A [解析] 当x =2,y =-1时,x +y -1=0;但x +y -1=0不能推出x =2,y =-1,故选A.7.A2,H6[2013·北京卷] 双曲线x 2-y 2m=1的离心率大于2的充分必要条件是( )A .m>12 B .m ≥1C .m>1D .m>27.C [解析] 双曲线的离心率e =ca=1+m>2,解得m>1.故选C.4.A2[2013·天津卷] 设a,b ∈R ,则“(a -b)·a 2<0”是“a<b”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件 4.A [解析] 当(a -b)·a 2<0时,易得a<b,反之当a =0,b =1时,(a -b)·a 2=0,不成立.故选A.4.A2[2013·四川卷] 设x ∈Z ,集合A 是奇数集,集合B 是偶数集.若命题p :x ∈A,2x ∈B,则( )A .瘙 綈 p:x∈A,2x∈B B.瘙 綈 p:x A,2x∈BC.瘙 綈 p:x∈A,2x B D.瘙 綈 p :x A,2x B4.C [解析] 注意“全称命题”的否定为“特称命题”. 6.A2,L4[2013·陕西卷] 设z 是复数,则下列命题中的假.命题是( ) A .若z 2≥0,则z 是实数 B .若z 2<0,则z 是虚数 C .若z 是虚数,则z 2≥0 D .若z 是纯虚数,则z 2<06.C [解析] 设z =a +bi(a,b ∈R ),则z 2=a 2-b 2+2abi,若z 2≥0,则⎩⎪⎨⎪⎧ab =0,a 2-b 2≥0,即b =0,故z 是实数,A 正确.若z 2<0,则⎩⎪⎨⎪⎧ab =0,a 2-b 2<0,即⎩⎪⎨⎪⎧a =0,b ≠0,故B 正确.若z 是虚数,则b ≠0,z 2=a 2-b 2+2abi 无法与0比较大小,故C 是假命题.若z 是纯虚数,则⎩⎪⎨⎪⎧a =0,b ≠0, z 2=-b 2<0,故D 正确.3.A2[2013·浙江卷] 若α∈R ,则“α=0”是“sin α<cos α”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件3.A [解析] 若α=0,则sin 0=0<cos 0=1,而sin α<cos α,则2sin α-π4<0,所以α=0是sin α<cos α的充分不必要条件.所以选择A.A3 基本逻辑联结词及量词5.A3[2013·新课标全国卷Ⅰ] 已知命题p :x ∈R ,2x <3x ;命题q :x ∈R ,x 3=1-x 2,则下列命题中为真命题的是( )A .p ∧qB .瘙 綈 p∧qC.p∧瘙 綈 q D.瘙 綈 p∧瘙 綈 q5.B[解析] 命题p假、命题q真,所以瘙 綈 p∧q为真命题.2.A3[2013·重庆卷] 命题“对任意x∈R,都有x2≥0”的否定为()A.存在x0∈R,使得x20<0B.对任意x∈R,都有x2<0C.存在x0∈R,使得x20≥0D.不存在x∈R,使得x2<02.A[解析] 根据定义可知命题的否定为:存在x0∈R,使得x20<0,故选A.A4单元综合16.A4,B14[2013·福建卷] 设S,T是R的两个非空子集,如果存在一个从S到T的函数y=f(x)满足:(i)T={f(x)|x∈S};(ii)对任意x1,x2∈S,当x1<x2时,恒有f(x1)<f(x2),那么称这两个集合“保序同构”.现给出以下3对集合:①A=N,B=N*;②A={x|-1≤x≤3},B={x|-8≤x≤10};③A={x|0<x<1},B=R.其中,“保序同构”的集合对的序号是________.(写出所有“保序同构”的集合对的序号)16.①②③[解析] 函数f(x)为定义域S上的增函数,值域为T.构造函数f(x)=x+1,x∈N, 则f(x)值域为N,且为增函数,①正确.构造过两点(-1,-8),(3,10)的线段对应的函数f(x)=92x-72,-1≤x≤3,满足题设条件,②正确.构造函数f(x)=tanx-12π,0<x<1,满足题设条件,③正确.。
2013年全国高考理科数学试题分类汇编13:常用逻辑用语Word版含答案

2013 年全国高考理科数学试题分类汇编13:常用逻辑用语一、选择题1.( 2013年一般高等学校招生一致考试福建数学(理)试题(纯WORD版))已知会合A1,a ,B1,2,3 ,则“ a 3”是“ A B ”的()A.充足而不用要条件B.必需而不充足条件C.充足必需条件D.既不充足也不用要条件【答案】 A2 .( 2013 年一般高等学校招生一致考试重庆数学(理)试题(含答案))命题“对随意 x R ,都有 x20”的否认为()A.对随意x R ,都有x20B.不存在x R ,都有x20C x0R ,使得0D x0R ,使得 x.存在x 2.存在2【答案】 D3.( 2013年高考四川卷(理))设 x Z ,会合 A是奇数集,会合 B是偶数集.若命题p : x A, 2x B,则()A.p :x A,2 x B B.p : x A,2 x BC.p : x A,2 x B D.p : x A,2 x B【答案】 D4 .( 2013 年高考湖北卷(理))在一次跳伞训练中,甲.乙两位学员各跳一次, 设命题p是“甲下降在指定范围”, q 是“乙下降在指定范围”,则命题“起码有一位学员没有下降在指定范围”可表示为()A.p q B.p q C.p q D.p q【答案】 A5.( 2013 年高考上海卷(理))钱大姐常说“廉价没好货”,她这句话的意思是:“不廉价”是“好货”的()A.充足条件B.必需条件C.充足必需条件D.既非充足也非必需条件【答案】B.6 .( 2013 年一般高等学校招生一致考试天津数学(理)试题(含答案))已知以下三个命题 :①若一个球的半径减小到本来的 1 ,则其体积减小到本来的 1 ;28②若两组数据的均匀数相等 ,则它们的标准差也相等 ;③直线 x + y + 1 = 0与圆 x2y21相切 .2此中真命题的序是 :()A.①②③B.①②C.②③D.②③【答案】 C7 .( 2013 年高考陕西卷(理))设z1,z2是复数,则以下命题中的假命题是()A.若 | z1 z2 | 0 , 则 z1z2B.若 z1 z2 , 则 z1z2C.若|z1| | z2|z ·z z ·z| z | | z |22 , 则D.若,则 z1z21 12212【答案】 D8 .( 2013 年一般高等学校招生一致考试山东数学(理)试题(含答案))给定两个命题p , q .若p是q的必需而不充足条件, 则p是q 的()A.充足而不用要条件B.必需而不充足条件C.充要条件(D )既不充足也不用要条件【答案】 A9 .( 2013 年高考陕西卷(理))设a ,b为向量 , 则“| a·b| | a || b|”是“a// ”的()bA.充足不用要条件B.必需不充足条件C.充足必需条件D.既不充足也不用要条件【答案】 C10 .( 2013年一般高等学校招生一致考试浙江数学(理)试题(纯WORD版))已知函数f (x)Acos(x)( A0,0,R) ,则“ f ( x) 是奇函数”是的()2A.充足不用要条件B.必需不充足条件C.充足必需条件D.既不充足也不用要条件【答案】 B11.( 2013 年一般高等学校招生一致考试安徽数学(理)试题(纯WORD版))"a 0"“是函数f (x)= (ax-1)x 在区间(0,+ )内单一递加”的()A.充足不用要条件B.必需不充足条件C.充足必需条件D.既不充足也不用要条件【答案】 C12.( 2013 年高考北京卷(理))“φ=π ”是“曲线y=sin(2x+φ)过坐标原点的”()A.充足而不用要条件B.必需而不充足条件C.充足必需条件D.既不充足也不用要条件【答案】 A13.( 2013年上海市春天高考数学试卷( 含答案 ) )已知a、b、c R ,“b24ac 0 ”是“函数 f (x) ax2bx c 的图像恒在 x 轴上方”的()A.充足非必需条件B.必需非充足条件C.充要条件D.既非充足又非必需条件【答案】 D二、填空题14.( 2013年一般高等学校招生一致考试山东数学(理)试题(含答案))定义“正对ln x0,0 x 1,现有四个命题 :数”:ln x, x1,①若 a0,b0, 则ln(a b ) b ln a ;②若 a0,b0, 则ln(ab)ln a ln b③若 a0,b0, 则ln (a)ln a ln b b④若 a0,b0, 则ln(a b)ln a ln b ln 2此中的真命题有__________________.( 写出全部真命题的编)【答案】①③④。
2013年高考数学(课标版)原创预测题(理科):专题一 集合、常用逻辑用语、不等式、函数与导数

专题一:集合、常用逻辑用语、不等式、函数与导数(新课标理)一、选择题1.已知集合},1|{2R x x y y M ∈-==,}2|{2x y x N -==,则=N M ( ) . ),1[+∞- . ]2,1[- . ),2[+∞.ϕ2.命题“存在04,2<-+∈a ax x R x 使为假命题”是命题“016≤≤-a ”的( ) .充要条件.必要不充分条件 .充分不必要条件 .既不充分也不必要条件3.设554a log 4b log c log ===25,(3),,则( ).b c a << . a c b << . c b a <<.c a b <<4.曲线21xy xe x =++在点(0,1)处的切线方程为( ) . 13+-=x y . 31y x =+ . 22+=x y. 22+-=x y5.已知函数()log x a f x a x =+(0a >且1)a ≠在[1,2]上的最大值与最小值之和为log 26a +,则a 的值为( ). 12.14. 2.4 6.求曲线2y x =与y x =所围成图形的面积,其中正确的是( ).120()d S x x x=-⎰ .120()d S x x x=-⎰.120()d S y y y=-⎰.10()d S y y y=-⎰7.设函数32()log x f x a x +=-在区间(1,2)内有零点,则实数a 的取值范围是( ).3(1,log 2)-- .3(0,log 2).3(log 2,1) .3(1,log 4)8.函数)(x f y =在定义域(3,23-)内可导,其图象如图所示,记)(x f y =的导函数为)('x f y =,则不等式0)('≤x f 的解集为( ).1[,1][2,3)3-.]38,34[]21,1[ - .]2,1[]21,23[ - .)3,38[]34,21[]1,23( --9.已知函数()|lg |f x x =,若b a <,且)()(b f a f =,则b a 4+的取值范围是( ).(2,)+∞.(22,)+∞.(4,)+∞.(5,)+∞10.如图,正方形ABCD 的顶点2(0,)2A ,2(,0)2B ,顶点C D 、位于第一象限,直线:(02)l x t t =≤≤将正方形ABCD 分成两部分,记位于直线l 左侧阴影部分的面积为()f t ,则函数()s f t =的图象大致是( )二、填空题11.若函数()2xf x e x a =--在R 上有两个零点,则实数a 的取值范围是________. 12.已知0,0a b >>,则112aba b ++_____________.13. 设变量x ,y 满足约束条件01030y x y x y ≥⎧⎪-+≥⎨⎪+-≤⎩,则y x z +=3的最大值为_____________.14.定义在R 上的函数()y f x =是减函数,且函数(1)y f x =-的图象关于(1,0)成中心对称,若s ,t 满足不等式22(2)(2)f s s f t t ---≤,则当14s ≤≤时,ts 的取值范围是___________. 三、解答题15.设函数x e x x f 221)(=.(I )求函数)(x f 的单调区间;(II )若当[]2,2-∈x 时,不等式m x f <)(恒成立,求实数m 的取值范围.16.已知函数.ln )(x a x x f -= (I )求函数)(x f 的单调增区间;(II )若函数ae xf 求实数上的最小值为在,23],1[)(的值.17.已知函数x ax x f -+=1ln )(,R a ∈.(Ⅰ)求)(x f 的极值;(Ⅱ)若0ln <-kx x 在),0(+∞上恒成立,求k 的取值范围; (Ⅲ)已知01>x ,02>x ,且e x x <+21,求证:2121x x x x >+.18.已知函数(1)()ln .1a x f x x x -=-+(Ⅰ)若函数()(0,)f x +∞在上为单调增函数,求a 的取值范围;(Ⅱ)设,,,:.ln ln 2m n m nm n m n m n -+≠<-为正实数且求证19.已知函数)1ln()ln(1)ln()(++-+=x ax x ax x f , ),0(R a a ∈≠.(Ⅰ)求函数()f x 的定义域; (Ⅱ)求函数()f x 的单调区间;(Ⅲ)当a >0时,若存在x 使得()ln(2)f x a ≥成立,求a 的取值范围.20.已知函数221()ln(1),().1f x x g x a x =+=+-(Ⅰ)求()g x 在(2,(2))P g 处的切线方程;l(Ⅱ)若()f x 的一个极值点到直线l 的距离为1,求a 的值; (Ⅲ)求方程()()f x g x =的根的个数.答案解析(专题一)1.选.由题意得}1|{-≥=y y M ,}22|{≤≤-=x x N ,所以=N M ]2,1[-.2.选.依题意,“存在04,2<-+∈a ax x R x 使为假命题”得2160a a ∆=+≤,解得016≤≤-a ,所以命题“存在04,2<-+∈a ax x R x 使为假命题”是命题“016≤≤-a ”的充要条件. 3.选,由对数函数5log y x=的图象,可得550log 3log 41<<<,∴255(log 3)log 4b =<a =,又因为4log 51,c b a c =>∴<<.4.选.2'++=xx xe e y ,切线斜率3200=++=e k ,所以切线方程为x y 31=-,即31y x =+.5.选.依题意,函数()log x a f x a x =+(0a >且1)a ≠在[1,2]上具有相同的单调性,因此62log 2log 2+=++a a a a ,解得2=a (3-a=舍去).6.选.两函数图象的交点坐标是(0,0),(1,1),故积分上限是1,下限是0,由于在[]0,1上,2x x ≥,故曲线2y x =与y x =所围成图形的面积120()d S x x x=-⎰。
2013年全国高考理科数学分类汇编(45页)

2013年全国高考理科数学分类汇编一、集合与简易逻辑辽宁2013(2)已知集合{}{}4|0log 1,|2A x x B x x AB =<<=≤=,则A .()01,B .(]02,C .()1,2D .(]12, 辽宁2013(4)下面是关于公差0d >的等差数列()n a 的四个命题:{}1:n p a 数列是递增数列;{}2:n p na 数列是递增数列; 3:n a p n ⎧⎫⎨⎬⎩⎭数列是递增数列;{}4:3n p a nd +数列是递增数列; 其中的真命题为(A )12,p p (B )34,p p (C )23,p p (D )14,p p 江西2013.1.已知集合M={1,2,zi},i ,为虚数单位,N={3,4},则复数z=A.-2iB.2iC.-4iD.4i 全国1.1、已知集合A={x |x 2-2x >0},B={x |-5<x <5},则 ( ) A 、A∩B=∅ B 、A ∪B=R C 、B ⊆A D 、A ⊆B全国2.1.已知集合{}{}3,2,1,0,1,,4)1(|2-=∈<-=N R x x x M ,则=⋂N M ( )A {}2,1,0B {}2,1,0,1-C {}3,2,0,1-D {}3,2,1,0北京2013.1.已知集合A={-1,0,1},B={x |-1≤x <1},则A∩B= ( ) A.{0} B.{-1,0} C.{0,1} D.{-1,0,1}四川1.设集合{|20}A x x =+=,集合2{|40}B x x =-=,则AB =( )(A ){2}- (B ){2} (C ){2,2}- (D )∅ 重庆(1)已知集合{1,2,3,4}U =,集合={1,2}A ,={2,3}B ,则()U AB =ð(A ){1,3,4} (B ){3,4} (C ){3} (D ){4} 天津卷(1) 已知集合A = {x ∈R | |x |≤2}, A = {x ∈R | x ≤1}, 则A B ⋂= (A) (,2]-∞ (B) [1,2] (C) [-2,2] (D) [-2,1]2013安微(1)设集合{}{}{}1,2,3,4,5,|,,,A B M x x a b a A b B ====+∈∈则M 中元素的个数为(A )3 (B )4 (C )5 (D )6山东(2)设集合A={0,1,2},则集合B={x-y|x ∈A, y ∈A }中元素的个数是( )A. 1B. 3C. 5D.9重庆(2)命题“对任意x R ∈,都有20x ≥”的否定为(A )对任意x R ∈,使得20x < (B )不存在x R ∈,使得20x <(C )存在0x R ∈,都有200x ≥ (D )存在0x R ∈,都有200x <2013广东1.设集合M={x ∣x 2+2x=0,x ∈R},N={x ∣x 2-2x=0,x ∈R},则M ∪N= A. {0} B. {0,2} C. {-2,0} D {-2,0,2} 北京2013.3.“φ=π”是“曲线y=sin(2x +φ)过坐标原点的” A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件四川4.设x Z ∈,集合A 是奇数集,集合B 是偶数集.若命题:,2p x A x B ∀∈∈,则( ) (A ):,2p x A x B ⌝∃∈∉ (B ):,2p x A x B ⌝∀∉∉ (C ):,2p x A x B ⌝∃∉∈ (D ):,2p x A x B ⌝∃∈∈2013广东8.设整数n ≥4,集合X={1,2,3……,n }。
2013年全国高考理科数学试题分类汇编13:常用逻辑用语

2013年全国高考理科数学试题分类汇编13:常用逻辑用语一、选择题[来源:学科网]1 .(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))已知集合{}1,A a =,{}1,2,3B =,则“3a =”是“A B ⊆”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A2 .(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))命题“对任意x R ∈,都有20x ≥”的否定为( )A .对任意x R ∈,都有20x < B .不存在x R ∈,都有20x < C .存在0x R ∈,使得200x ≥D .存在0x R ∈,使得200x <【答案】D3 .(2013年高考四川卷(理))设x Z ∈,集合A 是奇数集,集合B 是偶数集.若命题:,2p x A x B ∀∈∈,则( )A .:,2p x A xB ⌝∀∃∈∉ B .:,2p x A x B ⌝∀∉∉C .:,2p x A x B ⌝∃∉∈D .:,2p x A x B ⌝∃∈∈【答案】D 4 .(2013年高考湖北卷(理))在一次跳伞训练中,甲.乙两位学员各跳一次,设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( ) A .()()p q ⌝∨⌝ B .()p q ∨⌝C .()()p q ⌝∧⌝D .p q ∨【答案】A5 .(2013年高考上海卷(理))钱大姐常说“便宜没好货”,她这句话的意思是:“不便宜”是“好货”的( )A .充分条件B .必要条件C .充分必要条件D .既非充分也非必要条件[来源:学科网]【答案】B .6 .(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))已知下列三个命题:①若一个球的半径缩小到原来的12, 则其体积缩小到原来的18;[来源:学科网] ②若两组数据的平均数相等, 则它们的标准差也相等; ③直线x + y + 1 = 0与圆2212x y +=相切. 其中真命题的序号是: ( )A .①②③B .①②C .②③D .②③ 【答案】C 7 .(2013年高考陕西卷(理))设z 1, z 2是复数, 则下列命题中的假命题是( )A .若12||0z z -=, 则12z z =B .若12z z =, 则12z z =C .若||||21z z =, 则2112··z z z z =D .若12||||z z =, 则2122z z =【答案】D8 .(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))给定两个命题p ,q .若p ⌝是q 的必要而不充分条件,则p 是q ⌝的( )A .充分而不必要条件B .必要而不充分条件C .充要条件 (D ) 既不充分也不必要条件 【答案】A9 .(2013年高考陕西卷(理))设a , b 为向量, 则“||||||=a a b b ·”是“a //b ”的 ( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C10.(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))已知函数),0,0)(cos()(R A x A x f ∈>>+=ϕωϕω,则“)(x f 是奇函数”是2πϕ=的 ( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B11.(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))"0"a ≤“是函数()=(-1)f x ax x在区间(0,+)∞内单调递增”的 ( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C12.(2013年高考北京卷(理))“φ=π”是“曲线y=sin(2x +φ)过坐标原点的” ( )A .充分而不必要条件B .必要而不充分条件 [来源:]C .充分必要条件D .既不充分也不必要条件【答案】A13.(2013年上海市春季高考数学试卷(含答案))已知 a b c R ∈、、,“240b ac -<”是“函数2()f x ax bx c =++的图像恒在x 轴上方”的( )A .充分非必要条件B .必要非充分条件 [来源:学科网]C .充要条件D .既非充分又非必要条件[来源:Z,xx,]【答案】D二、填空题14.(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))定义“正对数”:0,01,lnln ,1,x x x x +<<⎧=⎨≥⎩现有四个命题:①若0,0a b >>,则ln ()ln b a b a ++=;②若0,0a b >>,则ln ()ln ln ab a b +++=+[来源:学科网ZXXK]③若0,0a b >>,则ln ()ln ln a a b b+++≥-④若0,0a b >>,则ln ()ln ln ln 2a b a b ++++≤++[来源:Z|xx|] 其中的真命题有__________________.(写出所有真命题的编号) 【答案】①③④。
高考数学 集合与常用逻辑用语考点及知识点总结解析(理科)

②若B≠∅,则2mm+-11≥≥-m2+,1, 2m-1≤5.
解得2≤m≤3.由①②可得,符合题意的实数m的取值范围为 (-∞,3].
[答案] (-∞,3]
[易错提醒] 将两个集合之间的关系准确转化为参数所满足的条 件时,应注意子集与真子集的区别,此类问题多与不等 式(组)的解集相关.确定参数所满足的条件时,一定要把 端点值代入进行验证,否则易产生增解或漏解.
考点贯通 抓高考命题的“形”与“神” 集合子集个数的判定
含有n真子集的个数为2n-2(除空集 和集合本身,此时n≥1).
[例1] 已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x
<5,x∈N},则满足条件A⊆C⊆B的集合C的个数为
()
A.1
B.2
C.3
D.4
[解析] 由x2-3x+2=0得x=1或x=2,所以A={1,2}.由
题意知B={1,2,3,4},所以满足条件的集合C为{1,2},{1,2,3},
{1,2,4},{1,2,3,4},共4个.
[答案] D
[易错提醒] (1)注意空集的特殊性:空集是任何集合的子集,是 任何非空集合的真子集. (2)任何集合的本身是该集合的子集,在列举时千万 不要忘记.
∵
2x
-
3>0
,
∴
x>
3 2
,
∴
B
=
3 xx>2
.
∴
A∩B
=
{x|1<x<3}∩xx>32 =32,3. [答案] D
高考数学真题-常用逻辑用语

1.2常用逻辑用语考点一命题及其关系1.(2015山东文,5,5分)设m∈R,命题“若m>0,则方程x 2+x-m=0有实根”的逆否命题是()A.若方程x 2+x-m=0有实根,则m>0B.若方程x 2+x-m=0有实根,则m≤0C.若方程x 2+x-m=0没有实根,则m>0D.若方程x 2+x-m=0没有实根,则m≤0答案D 命题“若m>0,则方程x 2+x-m=0有实根”的逆否命题是“若方程x 2+x-m=0没有实根,则m≤0”,故选D.2.(2014陕西理,8,5分)原命题为“若z 1,z 2互为共轭复数,则|z 1|=|z 2|”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是()A.真,假,真B.假,假,真C.真,真,假D.假,假,假答案B 先证原命题为真:当z 1,z 2互为共轭复数时,设z 1=a+bi(a,b∈R),则z 2=a-bi,则|z 1|=|z 2|=2+2,∴原命题为真,故其逆否命题为真;再证其逆命题为假:取z 1=1,z 2=i,满足|z 1|=|z 2|,但是z 1,z 2不互为共轭复数,∴其逆命题为假,故其否命题也为假.故选B.3.(2013天津理,4,5分)已知下列三个命题:①若一个球的半径缩小到原来的12,则其体积缩小到原来的18;②若两组数据的平均数相等,则它们的标准差也相等;③直线x+y+1=0与圆x 2+y 2=12相切.其中真命题的序号是()A.①②③B.①②C.①③D.②③答案C 对于命题①,设原球的半径和体积分别为r,V,变化后的球的半径和体积分别为r',V',则r'=12r,由球的体积公式可知V'=43πr'3=43π·r 3=18×43πr 3=18V,所以命题①为真命题;命题②显然为假命题,如两组数据:1,2,3和2,2,2,它们的平均数都是2,而后者的标准差为0;对于命题③,易知圆心到直线的距离所以直线与圆相切,命题③为真命题.故选C.4.(2013陕西文,6,5分)设z 是复数,则下列命题中的假.命题是()A.若z2≥0,则z是实数B.若z2<0,则z是虚数C.若z是虚数,则z2≥0D.若z是纯虚数,则z2<0答案C举反例说明,若z=i,则z2=-1<0,故选C.考点二充分条件与必要条件1.(2019北京文,6,5分)设函数f(x)=cos x+bsin x(b为常数),则“b=0”是“f(x)为偶函数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案C本题考查函数的奇偶性,充分、必要条件的判断,以及三角函数的性质;考查学生的运算求解能力和推理论证能力;考查的核心素养是逻辑推理.当b=0时,f(x)=cos x为偶函数;若f(x)为偶函数,则f(-x)=cos(-x)+bsin(-x)=cos x-bsin x=f(x),∴-bsin x=bsin x对x∈R恒成立,∴b=0.故“b=0”是“f(x)为偶函数”的充分必要条件.故选C.易错警示本题在判断必要性时,易把函数化为f(x)=1+2sin(x+φ),其中tanφ=1,再分析φ=π2+kπ(k∈Z)在什么条件下成立.事实上,当φ=π2+kπ(k∈Z)时,tanφ不存在.2.(2019天津文,3,5分)设x∈R,则“0<x<5”是“|x-1|<1”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件答案B|x-1|<1⇔-1<x-1<1⇔0<x<2.当0<x<2时,必有0<x<5;反之,不成立.所以,“0<x<5”是“|x-1|<1”的必要而不充分条件.一题多解因为{x||x-1|<1}={x|0<x<2}⫋{x|0<x<5},所以“0<x<5”是“|x-1|<1”的必要而不充分条件.3.(2018北京文,4,5分)设a,b,c,d是非零实数,则“ad=bc”是“a,b,c,d成等比数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案B本题主要考查充分条件与必要条件,等比数列的性质.由a,b,c,d成等比数列,可得ad=bc,即必要性成立;当a=1,b=-2,c=-4,d=8时,ad=bc,但a,b,c,d不成等比数列,即充分性不成立,故选B.方法总结充分条件与必要条件的判断方法:1.直接法:分别判断命题“若p,则q”和“若q,则p”的真假.2.集合法:设命题p,q中的变量构成的集合分别为P,Q.若P⫋Q,则p是q的充分不必要条件;若Q⫋P,则p是q的必要不充分条件;若P=Q,则p是q的充要条件;若P⊈Q,且Q⊈P,则p是q的既不充分也不必要条件.4.(2018天津,理4,5分)设x∈R,则“<12”是“x3<1”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件答案A本题主要考查解不等式和充分、必要条件的判断.由<12得-12<x-12<12,解得0<x<1.由x3<1得x<1.当0<x<1时能得到x<1一定成立;当x<1时,0<x<1不一定成立.所以“<12”是“x3<1”的充分而不必要条件.方法总结(1)充分、必要条件的判断.解决此类问题应分三步:①确定条件是什么,结论是什么;②尝试从条件推结论,从结论推条件;③确定条件和结论是什么关系.(2)探究某结论成立的充要、充分、必要条件.解答此类题目,可先从结论出发,求出使结论成立的必要条件,然后验证得到的必要条件是否满足充分性.5.(2018浙江,6,4分)已知平面α,直线m,n满足m⊄α,n⊂α,则“m∥n”是“m∥α”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案A∵m⊄α,n⊂α,m∥n,∴m∥α,故充分性成立.而由m∥α,n⊂α,得m∥n或m与n异面,故必要性不成立.故选A.6.(2017北京理,6,5分)设m,n为非零向量,则“存在负数λ,使得m=λn”是“m·n<0”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案A由存在负数λ,使得m=λn,可得m、n共线且反向,夹角为180°,则m·n=-|m||n|<0,故充分性成立.由m·n<0,可得m,n的夹角为钝角或180°,故必要性不成立.故选A.7.(2016北京理,4,5分)设a,b 是向量.则“|a|=|b|”是“|a+b|=|a-b|”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案D 当|a|=|b|=0时,|a|=|b|⇔|a+b|=|a-b|.当|a|=|b|≠0时,|a+b|=|a-b|⇔(a+b)2=(a-b)2⇔a·b=0⇔a⊥b,推不出|a|=|b|.同样,由|a|=|b|也不能推出a⊥b.故选D.解后反思由向量加法、减法的几何意义知:当a 、b 不共线,且|a|=|b|时,a+b 与a-b 垂直;当a⊥b时,|a+b|=|a-b|.评析本题考查向量的模及运算性质,属容易题.8.(2016天津理,5,5分)设{a n }是首项为正数的等比数列,公比为q,则“q<0”是“对任意的正整数n,a 2n-1+a 2n <0”的()A.充要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件答案C 若对任意的正整数n,a 2n-1+a 2n <0,则a 1+a 2<0,又a 1>0,所以a 2<0,所以q=21<0.若q<0,可取q=-1,a 1=1,则a 1+a 2=1-1=0,不满足对任意的正整数n,a 2n-1+a 2n <0.所以“q<0”是“对任意的正整数n,a 2n-1+a 2n <0”的必要而不充分条件.故选C.评析本题以等比数列为载体,考查了充分条件、必要条件的判定方法,属中档题.9.(2016山东,6,5分)已知直线a,b 分别在两个不同的平面α,β内.则“直线a 和直线b 相交”是“平面α和平面β相交”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案A 因为直线a 和直线b 相交,所以直线a 与直线b 有一个公共点,而直线a,b 分别在平面α,β内,所以平面α与β必有公共点,从而平面α与β相交;反之,若平面α与β相交,则直线a 与直线b 可能相交、平行、异面.故选A.评析本题考查了线面的位置关系和充要条件的判断.10.(2016四川,7,5分)设p:实数x,y 满足(x-1)2+(y-1)2≤2,q:实数x,y 满足≥t1,≥1-s ≤1,则p 是q 的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件答案A如图,作出p,q表示的区域,其中☉M及其内部为p表示的区域,△ABC及其内部(阴影部分)为q表示的区域,故p是q的必要不充分条件.11.(2015重庆理,4,5分)“x>1”是“lo g12(x+2)<0”的()A.充要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件答案B当x>1时,x+2>3>1,又y=lo g12x是减函数,∴lo g12(x+2)<lo g121=0,则x>1⇒lo g12(x+2)<0;当lo g12(x+2)<0时,x+2>1,x>-1,则lo g12(x+2)<0⇒/x>1.故“x>1”是“lo g12(x+2)<0”的充分而不必要条件.选B.12.(2015天津理,4,5分)设x∈R,则“1<x<2”是“|x-2|<1”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件答案A因为|x-2|<1等价于-1<x-2<1,即1<x<3,由于(1,2)⫋(1,3),所以“1<x<2”是“|x-2|<1”的充分而不必要条件,故选A.13.(2015湖南理,2,5分)设A,B是两个集合,则“A∩B=A”是“A⊆B”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案C若A∩B=A,任取x∈A,则x∈A∩B,∴x∈B,故A⊆B;若A⊆B,任取x∈A,都有x∈B,∴x∈A∩B,∴A⊆(A∩B),又A∩B⊆A显然成立,∴A∩B=A.综上,“A∩B=A”是“A⊆B”的充要条件,故选C.14.(2015陕西理,6,5分)“sinα=cosα”是“cos2α=0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案A由sinα=cosα,得cos2α=cos2α-sin2α=0,即充分性成立.由cos2α=0,得sinα=±cosα,即必要性不成立.故选A.15.(2014安徽理,2,5分)“x<0”是“ln(x+1)<0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案B ln(x+1)<0⇔0<x+1<1⇔-1<x<0⇒x<0;而x<0⇒/-1<x<0,故选B.16.(2014浙江理,2,5分)已知i是虚数单位,a,b∈R,则“a=b=1”是“(a+bi)2=2i”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案A当a=b=1时,有(1+i)2=2i,即充分性成立.当(a+bi)2=2i时,有a2-b2+2abi=2i,得2-2=0,B=1,解得a=b=1或a=b=-1,即必要性不成立,故选A.评析本题考查复数的运算,复数相等的概念,充分条件与必要条件的判定,属于容易题.17.(2014北京理,5,5分)设{an }是公比为q的等比数列.则“q>1”是“{an}为递增数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案D若q>1,则当a1=-1时,a n=-q n-1,{a n}为递减数列,所以“q>1”⇒/“{a n}为递增数列”;若{a n}为递增数列,则当a n时,a1=-12,q=12<1,即“{a n}为递增数列”⇒/“q>1”.故选D.考点三简单的逻辑联结词1.(2014湖南理,5,5分)已知命题p:若x>y,则-x<-y;命题q:若x>y,则x2>y2.在命题①p∧q;②p∨q;③p∧(¬q);④(¬p)∨q中,真命题是()A.①③B.①④C.②③D.②④答案C由不等式性质知:命题p为真命题,命题q为假命题,从而¬p为假命题,¬q为真命题.故p∧q为假命题,p∨q为真命题,p∧(¬q)为真命题,(¬p)∨q为假命题,故选C.2.(2014辽宁理,5,5分)设a,b,c是非零向量.已知命题p:若a·b=0,b·c=0,则a·c=0;命题q:若a∥b,b∥c,则a∥c.则下列命题中真命题是()A.p∨qB.p∧qC.(¬p)∧(¬q)D.p∨(¬q)答案A由题意知命题p为假命题,命题q为真命题,所以p∨q为真命题.故选A.3.(2014重庆文,6,5分)已知命题p:对任意x∈R,总有|x|≥0;q:x=1是方程x+2=0的根.则下列命题为真命题的是()A.p∧¬qB.¬p∧qC.¬p∧¬qD.p∧q答案A由题意知,命题p为真命题,命题q为假命题,故¬q为真命题,所以p∧¬q为真命题.4.(2013课标Ⅰ文,5,5分)已知命题p:∀x∈R,2x<3x;命题q:∃x∈R,x3=1-x2,则下列命题中为真命题的是()A.p∧qB.p∧qC.p∧qD.p∧q答案B对于命题p,由于x=-1时,2-1=12>13=3-1,所以是假命题,故p是真命题;对于命题q,设f(x)=x3+x2-1,由于f(0)=-1<0,f(1)=1>0,所以f(x)=0在区间(0,1)上有解,即存在x∈R,x3=1-x2,故命题q是真命题.综上,p∧q是真命题,故选B.考点四全称量词与存在量词1.(2015课标Ⅰ理,3,5分)设命题p:∃n∈N,n2>2n,则¬p为()A.∀n∈N,n2>2nB.∃n∈N,n2≤2nC.∀n∈N,n2≤2nD.∃n∈N,n2=2n答案C根据特称命题的否定为全称命题,知¬p:∀n∈N,n2≤2n,故选C.2.(2015浙江理,4,5分)命题“∀n∈N*,f(n)∈N*且f(n)≤n”的否定形式是()A.∀n∈N*,f(n)∉N*且f(n)>nB.∀n∈N*,f(n)∉N*或f(n)>nC.∃n0∈N*,f(n)∉N*且f(n0)>n0D.∃n0∈N*,f(n)∉N*或f(n0)>n0答案D“f(n)∈N*且f(n)≤n”的否定为“f(n)∉N*或f(n)>n”,全称命题的否定为特称命题,故选D.3.(2014湖北文,3,5分)命题“∀x∈R,x2≠x”的否定是()A.∀x∉R,x2≠xB.∀x∈R,x2=xC.∃x∉R,x2≠xD.∃x∈R,x2=x答案D原命题的否定为∃x∈R,x2=x.故选D.4.(2013重庆理,2,5分)命题“对任意x∈R,都有x2≥0”的否定为()A.对任意x∈R,都有x2<0B.不存在x∈R,使得x2<0∈R,使得02≥0 D.存在x0∈R,使得02<0C.存在x答案D全称命题的否定是特称命题.“对任意x∈R,都有x2≥0”的否定为“存在x0∈R,使得02<0”,故选D.5.(2016浙江,4,5分)命题“∀x∈R,∃n∈N*,使得n≥x2”的否定形式是()A.∀x∈R,∃n∈N*,使得n<x2B.∀x∈R,∀n∈N*,使得n<x2C.∃x∈R,∃n∈N*,使得n<x2D.∃x∈R,∀n∈N*,使得n<x2答案D先将条件中的全称量词变为存在量词,存在量词变为全称量词,再否定结论.故选D.6.(2015山东理,12,5分)若“∀x∈x≤m”是真命题,则实数m的最小值为.答案1解析∵0≤x≤π4,∴0≤tan x≤1,∵“∀x∈x≤m”是真命题,∴m≥1.∴实数m的最小值为1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年全国高考理科数学试题分类汇编13:常用逻辑用语
一、选择题
1 .(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))已知集合{}1,A a =
,{}1,2,3B =,
则“3a =”是“A B ⊆”的
( )
A .充分而不必要条件
B .必要而不充分条件
C .充分必要条件
D .既不充分也不必要条件
【答案】A
2 .(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))命题“对任意x R ∈,都有2
0x ≥”
的否定为
( )
A .对任意x R ∈,都有20x <
B .不存在x R ∈,都有20x <
C .存在0x R ∈,使得200x ≥
D .存在0x R ∈,使得200x <
【答案】D
3 .(2013年高考四川卷(理))设x Z ∈,集合A 是奇数集,集合B 是偶数集.若命题:,2p x A x B ∀∈∈,则
( )
A .:,2p x A x
B ⌝∀∃∈∉ B .:,2p x A x B ⌝∀∉∉
C .:,2p x A x B ⌝∃∉∈
D .:,2p x A x B ⌝∃∈∈
【答案】D 4 .(2013年高考湖北卷(理))在一次跳伞训练中,甲.乙两位学员各跳一次,设命题p 是“甲降落在指定范
围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为 ( ) A .()()p q ⌝∨⌝ B .()p q ∨⌝
C .()()p q ⌝∧⌝
D .p q ∨
【答案】A
5 .(2013年高考上海卷(理))钱大姐常说“便宜没好货”,她这句话的意思是:“不便宜”是“好货”的
( )
A .充分条件
B .必要条件
C .充分必要条件
D .既非充分也非必要条件
【答案】
B .
6 .(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))已知下列三个命题:
①若一个球的半径缩小到原来的
12, 则其体积缩小到原来的1
8
; ②若两组数据的平均数相等, 则它们的标准差也相等; ③直线x + y + 1 = 0与圆221
2
x y +=
相切. 其中真命题的序号是: ( )
A .①②③
B .①②
C .②③
D .②③ 【答案】C 7 .(2013年高考陕西卷(理))设z 1, z 2是复数, 则下列命题中的假命题是
( )
A .若12||0z z -=, 则12z z =
B .若12z z =, 则12z z =
C .若||||21z z =, 则2112··z z z z =
D .若12||||z z =, 则2122z z =
【答案】D
8 .(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))给定两个命题p ,q .若p ⌝是q 的
必要而不充分条件,则p 是q ⌝的
( )
A .充分而不必要条件
B .必要而不充分条件
C .充要条件 (
D ) 既不充分也不必要条件 【答案】A 9 .(2013年高考陕西卷(理))设a , b 为向量, 则“||||||=a a b b ·”是“a //b ”的
( )
A .充分不必要条件
B .必要不充分条件
C .充分必要条件
D .既不充分也不必要条件
【答案】C
10.(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))已知函数
),0,0)(cos()(R A x A x f ∈>>+=ϕωϕω,则“)(x f 是奇函数”是2
π
ϕ=
的 ( )
A .充分不必要条件
B .必要不充分条件
C .充分必要条件
D .既不充分也不必要条件
【答案】B
11.(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))"0"a ≤“是函数()=(-1)f x ax x
在区间(0,+)∞内单调递增”的 ( )
A .充分不必要条件
B .必要不充分条件
C .充分必要条件
D .既不充分也不必要条件
【答案】C
12.(2013年高考北京卷(理))“φ=π”是“曲线y=sin(2x +φ)过坐标原点的” ( )
A .充分而不必要条件
B .必要而不充分条件
C .充分必要条件
D .既不充分也不必要条件
【答案】A
13.(2013年上海市春季高考数学试卷(含答案))已知
a b c R ∈、、,“240b ac -<”是“函数
2()f x ax bx c =++的图像恒在x 轴上方”的
( )
A .充分非必要条件
B .必要非充分条件
C .充要条件
D .既非充分又非必要条件
【答案】D
二、填空题
14.(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))定义“正对数”:0,01,ln ln ,1,
x x x x +
<<⎧=⎨
≥⎩
现有四个命题:
①若0,0a b >>,则ln ()ln b a b a ++=; ②若0,0a b >>,则ln ()ln ln ab a b +++=+ ③若0,0a b >>,则ln ()ln ln a a b b
+
++
≥-
④若0,0a b >>,则ln ()ln ln ln 2a b a b ++++≤++
其中的真命题有__________________.(写出所有真命题的编号) 【答案】①③④。