因式分解练习题设计好

合集下载

三十道因式分解练习题

三十道因式分解练习题

三十道因式分解练习题一、提取公因式类1. 因式分解:$6x^2 + 9x$2. 因式分解:$8a^3 12a^2$3. 因式分解:$15xy 20xz$4. 因式分解:$21m^2n 35mn^2$5. 因式分解:$4ab^2 + 6a^2b$二、公式法类6. 因式分解:$x^2 9$7. 因式分解:$a^2 4$8. 因式分解:$4x^2 25y^2$9. 因式分解:$9m^2 16n^2$10. 因式分解:$25p^2 49q^2$三、分组分解类11. 因式分解:$x^3 + x^2 2x 2$12. 因式分解:$a^3 a^2 3a + 3$13. 因式分解:$3x^2 + 3x 2x 2$14. 因式分解:$4m^2 4m 3m + 3$15. 因式分解:$5n^3 10n^2 + 3n 6$四、十字相乘法类16. 因式分解:$x^2 + 5x + 6$17. 因式分解:$a^2 7a + 10$18. 因式分解:$2x^2 9x 5$20. 因式分解:$4n^2 13n + 3$五、综合运用类21. 因式分解:$x^3 2x^2 5x + 10$22. 因式分解:$a^3 + 3a^2 4a 12$23. 因式分解:$2x^2 + 5x 3$24. 因式分解:$3m^2 7m + 2$25. 因式分解:$4n^2 + 10n 6$六、特殊因式分解类26. 因式分解:$x^4 16$27. 因式分解:$a^4 81$28. 因式分解:$16x^4 81y^4$29. 因式分解:$25m^4 49n^4$30. 因式分解:$64p^4 81q^4$一、平方差公式类1. 因式分解:$x^2 25$2. 因式分解:$4y^2 9$3. 因式分解:$49z^2 100$4. 因式分解:$25a^2 121b^2$5. 因式分解:$16m^2 36n^2$二、完全平方公式类6. 因式分解:$x^2 + 8x + 16$7. 因式分解:$y^2 10y + 25$8. 因式分解:$z^2 + 14z + 49$10. 因式分解:$b^2 + 22b + 121$三、交叉相乘法类11. 因式分解:$x^2 + 7x + 12$12. 因式分解:$y^2 5y 14$13. 因式分解:$z^2 + 11z + 30$14. 因式分解:$a^2 13a 42$15. 因式分解:$b^2 + 17b + 60$四、多项式乘法公式类16. 因式分解:$x^3 + 3x^2 + 3x + 1$17. 因式分解:$y^3 3y^2 + 3y 1$18. 因式分解:$z^3 + 6z^2 + 12z + 8$19. 因式分解:$a^3 6a^2 + 12a 8$20. 因式分解:$b^3 + 9b^2 + 27b + 27$五、分组分解法类21. 因式分解:$x^4 + 4x^3 + 6x^2 + 4x + 1$22. 因式分解:$y^4 4y^3 + 6y^2 4y + 1$23. 因式分解:$z^4 + 8z^3 + 18z^2 + 8z + 1$24. 因式分解:$a^4 8a^3 + 18a^2 8a + 1$25. 因式分解:$b^4 + 12b^3 + 54b^2 + 108b + 81$六、多项式长除法类26. 因式分解:$x^5 x^4 2x^3 + 2x^2 + x 1$27. 因式分解:$y^5 + y^4 + 2y^3 2y^2 y + 1$28. 因式分解:$z^5 3z^4 + 3z^3 z^2 + z 1$29. 因式分解:$a^5 + 3a^4 3a^3 + a^2 a + 1$30. 因式分解:$b^5 5b^4 + 10b^3 10b^2 + 5b 1$答案一、提取公因式类1. $6x^2 + 9x = 3x(2x + 3)$2. $8a^3 12a^2 = 4a^2(2a 3)$3. $15xy 20xz = 5x(3y 4z)$4. $21m^2n 35mn^2 = 7mn(3m 5n)$5. $4ab^2 + 6a^2b = 2ab(2b + 3a)$二、公式法类6. $x^2 9 = (x + 3)(x 3)$7. $a^2 4 = (a + 2)(a 2)$8. $4x^2 25y^2 = (2x + 5y)(2x 5y)$9. $9m^2 16n^2 = (3m + 4n)(3m 4n)$10. $25p^2 49q^2 = (5p + 7q)(5p 7q)$三、分组分解类11. $x^3 + x^2 2x 2 = (x^2 + 2)(x 1)$12. $a^3 a^2 3a + 3 = (a^2 3)(a 1)$13. $3x^2 + 3x 2x 2 = (3x 2)(x + 1)$14. $4m^2 4m 3m + 3 = (4m 3)(m 1)$15. $5n^3 10n^2 + 3n 6 = (5n^2 3)(n 2)$四、十字相乘法类16. $x^2 + 5x + 6 = (x + 2)(x + 3)$17. $a^2 7a + 10 = (a 2)(a 5)$18. $2x^2 9x 5 = (2x + 1)(x 5)$19. $3m^2 + 11m + 4 = (3m + 1)(m + 4)$20. $4n^2 13n + 3 = (4n 1)(n 3)$五、综合运用类21. $x^3 2x^2 5x + 10 = (x^2 5)(x 2)$22. $a^3 + 3a^2 4a 12 = (a^2 + 4)(a 3)$23. $2x^2 + 5x 3 = (2x 1)(x + 3)$24. $3m^2 7m + 2 = (3m 1)(m 2)$25. $4n^2 + 10n 6 = (2n 1)(2n + 6)$六、特殊因式分解类26. $x^4 16 = (x^2 + 4)(x + 2)(x 2)$27. $a^4 81 = (a^2 + 9)(a + 3)(a 3)$28. $16x^4 81y^4 = (4x^2 + 9y^2)(2x + 3y)(2x 3y)$29. $25m^4 49n^4 = (5m^2 + 7n^2)(5m + 7n)(5m 7n)$30. $64p^4 81q^4 = (8p^2 + 9q^2)(4p + 3q)(4p 3q)$一、平方差公式类1. $x^2 25 = (x + 5)(x 5)$2. $4y^2 9 = (2y + 3)(2y 3)$3. $49z^2 100 = (7z + 10)(7z 10)$4. $25a。

因式分解经典例题练习题

因式分解经典例题练习题

提公因式法提公因式法:确定公因式的一般方法:①各项系数都是整数时,因式的系数应取各项系数的最大公约数;②字母取各项的相同的字母,而且各字母的指数取次数最低的. ③它们的乘积就是多项式的公因式例:用提公因式法分解因式(1)3a 2- 9ab 2 (2)-5x 2 + 25x 3 (3)4x 3y+2x 2y 2-6xy 3(4)-9m 2n-3mn 2+27m 3n 4 (5)2(x+y)2-4x(x+y) (6)2(a-1)+a(1-a)自我检测1、判断下列各题是否为因式分解:①m(a+b+c)= ma+mb+mc. ②a 2-b 2 = (a+b)(a-b) ③a 2-b 2 +1= (a+b)(a-b)+12、试一试:请找出下列多项式中各项的相同因式(公因式)(1) 3a+3b 的公因式是: (2)-24m 2x+16n 2x 公因式是:(3)2x(a+b)+3y(a+b)的公因式是: (4) 4ab-2a 2b 2的公因式是:3、.对下列多项式进行因式分解①-20a -25ab ②-32233b a b a - ③1+-m m aa④44252336279x a x a x a +- ⑤3a 2- 9ab4.、把下列各式分解因式①3 x 3 -3x 2 –9x ② 8a 2c+ 2b c ③ -4a 3b 3 +6 a 2 b-2ab ④ a(x-y)+by-bx5、把下列多项式分解因式① 2p 3q 2+p 2q 3 ② x n -x n y ③ a(x-y)-b(x-y)④ 4a 3b-2a 2b 2 ⑤323812a b ab c - ⑥ 323612ma ma ma -+-6、已知,x+y=2,xy=-3,求x 2y+xy 2的值.公式法(平方差公式)a 2-b 2=(a+b) (a-b)注意:①公式中的a 、b 可以是单项式(数字、字母)、还可以是多项式。

②分解因式最后结果中如果有同类项,一定要合并同类项。

因式分解练习题及答案

因式分解练习题及答案

因式分解练习题及答案在初中数学学习中,因式分解是一个重要的概念和技巧。

因式分解是将一个代数式写成若干个因式的乘积的过程,对于解决代数方程、简化复杂的代数式以及寻找多项式的零点都有重要的作用。

为了帮助大家更好地掌握因式分解的方法和技巧,以下是一些因式分解的练习题及答案。

练习题1:因式分解基础1. 将代数式完全分解:a) 4x^2 - 9b) x^2 - 6x + 9c) 2x^3 - 8x^2 + 8x - 322. 将代数式因式分解:a) x^2 - 5x + 6b) 9x^2 - 16c) x^3 + 83. 判断以下代数式是否可以进一步因式分解:a) 3x^2 - 3x + 1b) 4x^3 + 2x^2 + 4x + 2c) x^4 - 81练习题2:因式分解中的公式1. 利用差平方公式,将以下代数式因式分解:a) x^2 - 16b) 4x^2 - 9c) 16x^2 - 4y^22. 利用完全平方公式,将以下代数式因式分解:a) x^2 + 2x + 1b) x^2 - 10x + 25c) 4x^2 + 12x + 93. 利用立方差公式,将以下代数式因式分解:a) 27 - 8x^3b) 8x^3 - 27答案:练习题1:1. a) (2x + 3)(2x - 3)b) (x - 3)^2c) 2(x - 4)(x^2 + x + 4)2. a) (x - 2)(x - 3)b) (3x - 4)(3x + 4)c) (x + 2)(x^2 - 2x + 4)3. a) 不可以进一步因式分解b) 不可以进一步因式分解c) (x^2 + 9)(x - 3)(x + 3)练习题2:1. a) (x - 4)(x + 4)b) (2x - 3)(2x + 3)c) 4(x + y)(4x - y)2. a) (x + 1)^2b) (x - 5)^2c) (2x + 3)^23. a) (3 - 2x)(9 + 4x + 2x^2)b) (2x - 3)^3通过这些练习题和答案,你可以更好地掌握因式分解的方法和技巧。

初三因式分解公式练习题

初三因式分解公式练习题

初三因式分解公式练习题因式分解是代数学中的一项基本操作,通过将多项式化简成乘积的形式,使我们更好地理解和运用代数表达式。

在初三数学中,因式分解在解题过程中经常出现。

下面是一些初三因式分解公式的练习题,帮助同学们加深对这一知识点的理解。

练习题1:因式分解多项式将以下多项式进行因式分解:1. $x^2 + 2x + 1$2. $4x^2 - 9$3. $6x^2 - 15x + 9$练习题2:因式分解含有公因式的多项式将以下多项式进行因式分解,并注意提取公因式:4. $2x^3 + 4x^2 + 2x$5. $3a^2 - 15ab + 24b^2$6. $6x^4 + 9x^3 - 15x^2$练习题3:因式分解差的平方将以下差的平方进行因式分解:7. $16y^2 - 25$8. $9x^2 - 4$练习题4:因式分解平方差将以下平方差进行因式分解:10. $9a^4 - 4b^2$11. $x^4 - 81$12. $25y^2 - 36z^4$练习题5:因式分解完全平方差将以下完全平方差进行因式分解:13. $x^4 - 16$14. $4x^6 - 1$15. $9a^6 - 36$练习题6:因式分解立方差将以下立方差进行因式分解:16. $64x^3 - 125$17. $216y^3 - 27z^3$18. $27a^3 - 8b^3$练习题7:因式分解立方和将以下立方和进行因式分解:20. $125x^3 + 8$21. $64a^3 + 125b^3$练习题的答案:1. $(x + 1)^2$2. $(2x - 3)(2x + 3)$3. $3(2x - 1)(x - 3)$4. $2x(x + 1)^2$5. $3b(a - 2b)(a - 4b)$6. $3x^2(x + 1)(2x - 5)$7. $(4y - 5)(4y + 5)$8. $(3x - 2)(3x + 2)$9. $(2m - n)(2m + n)$10. $(3a^2 - 2b)(3a^2 + 2b)$11. $(x^2 - 9)(x^2 + 9)$12. $(5y - 6z^2)(5y + 6z^2)$13. $(x^2 - 4)(x^2 + 4)$14. $(2x^3 - 1)(2x^3 + 1)$15. $3(a^2 - 2)(a^2 + 2)$16. $(4x - 5)(16x^2 + 20x + 25)$17. $(6y - 3z)(36y^2 + 18yz + 9z^2)$18. $(3a - 2b)(9a^2 + 6ab + 4b^2)$19. $(m + 3)(m^2 - 3m + 9)$20. $(5x + 2)(25x^2 - 10x + 4)$21. $(4a + 5b)(16a^2 - 20ab + 25b^2)$这些练习题旨在巩固和提升你对因式分解的理解和应用能力。

超经典的因式分解练习题有答案精品

超经典的因式分解练习题有答案精品

超经典的因式分解练习题有答案精品1. 因式分解.(1) a(a-b) -2(w-b).(2)x²-2x²+x.2.因式分解:(1)12m²κ⁻¹−8m²κ⁴;(2) x³-4x²y+4xy².3.将下列多项式因式分解:(1) 2x²-6x;(2) -6x²+12a-6;(3) 4x²-(y²-4y-4).4. 因式分解: (m+1) (m-9) +8m.5.因式分解:25x²{a-b}+49y² (b-a).6.因式分解:2x¹-8r³y8xy².7.因式分解:(1) 4a²-9;(2) 16m³-8me+n³.8. 因式分解:(1) 2ax²-2m²;(2) 3a²-6a²b+3ab².9. 因式分解:(1) m²-m;(2) x³-4x²+4x.10. 因式分解:4.²(x-1) -9 (x+7).11.因式分解:-3a+12a²-12a³.12. 因式分解:(1) m²-y³;(2) x(x-y) ty(y-x).参考答案10. 因式分解.(1) a(a-b) -2(a-b).(2) x³2x³+x.【分析】(1) 原式提取公因式分解即可;(2) 原式提取公因式,再利用完全平方公式分解即可.【解答】解: (1) a (a -b) -2(a -b) = (a-b) ( a -2).(2)x³-2x²+x=x (x²-2x-1)=x(x-1)².【点评】此题考查了提公园式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.11.因式分解:(1) 12m³k⁴-8m²n³;(2)x³-4r³y+4xy².【分析】(1) 找到公因式,提取公因式即可:(2) 先提取公因式,再看用完全平方公式.【解答】解: (1) 原式=4m²n⁴ (3m-2m²);(2)原式: =x(x²-4xy-4y²)=x (x-2y)².【点评】本题考查了整式的因式分解,掌握提取公因式法,公式法是解决本题的关键。

初中数学因式分解50题专题训练含答案

初中数学因式分解50题专题训练含答案

初中数学因式分解50题专题训练含答案学校:___________姓名:___________班级:___________考号:___________一、解答题1.分解因式(1)()()22-1-41-m m m (2)()()23812a a b b a ---2.把下列各式分解因式:(1)22344x y xy y -+;(2)41x -.3.因式分解(1) 322m -8mn(2)a (a+4)+44.因式分解:(1)x 2﹣9(2)4y 2+16y+165.分解因式:(1)22242x xy y -+ (2)()()2m m n n m -+-6.把下列各式因式分解:(1)216y -(2)32232a b a b ab -+7.计算(1))10122-⎛⎫-- ⎪⎝⎭(2)分解因式:()222224a b a b +-8.分解因式:(1) 3x x -(2) 2363x y xy y -+9.把下列各式分解因式:(1)2221218a ab b -+; (2)222(2)(12)x y y ---.10.因式分解:(1)()()35a x y b y x --- (2)32231025ab a b a b -+11.把下列各式进行因式分解(1)22818x y - (2)322a b a b ab -+12.因式分解:(1) 33a b ab -; (2) 44-b a13.因式分解:(1)3m 2n-12mn+12n ; (2)a 2(x-y)+9(y-x)14.分解因式:(1)269y y -+(2)228x -15.因式分解(1)4a 2-25b 2(2)-3x 3y 2+6x 2y 3-3xy 416.把下面各式分解因式:(1)x 2﹣4xy +4y 2;(2)3a 3﹣27a .17.将下列各式因式分解:(1)x 3﹣x ;(2)x 4﹣8x 2y 2+16y 4.18.分解因式:(1)ax 2﹣9a ; (2)4ab 2﹣4a 2b ﹣b 3.19.因式分解:(1)ax 2-9a ;(2)(y+2)(y+4)+1.20.分解因式:(1)()()22x x y y y x -+-(2)324812x x x -++21.因式分解:(1)()()323x x x --- ;(2)3231827a a a -+-22.因式分解:(1)m 2(x +y )﹣n 2(x +y );(2)x 4﹣2x 2+1.23.因式分解(1)2(2)(2)m a m a -+- (2)()222224a b a b +-24.(1)分解因式:22344a b ab b -+(2)解方程:1224x x x x -=--25.因式分解:(1)9x 2﹣1 (2)3a 2﹣18a+27.参考答案1.(1)(m -1)(m -2)2;(2) 4(a -b )2(5a -3b )【解析】【分析】(1)先提公因式,再用完全平方公式;(2)提公因式法分解因式.【详解】解:(1)原式()()2=-1-44m m m + ()()2=-1-2m m ;(2)原式()()22-343a b a a b -+= ()()245-3a b a b =-.【点睛】本题考查因式分解的方法,熟练掌握提公因式法和完全平方公式是关键..2.(1)2(2)y x y -;(2)2(1)(1)(1)x x x ++-.【解析】【分析】(1)先提公因式,然后了利用完全平方公式进行因式分解,解题得到答案.(2)利用平方差公式进行因式分解,即可得到答案.【详解】解:(1)原式=22(44)y x xy y -+=2(2)y x y -; (2)原式=22(1)(1)x x +-=2(1)(1)(1)x x x ++-.【点睛】本题考查了因式分解的方法,解题的关键是熟练掌握提公因式法、公式法进行因式分解. 3.(1)2m (m+2n )(m-2n );()22a +.【解析】【分析】本卷由系统自动生成,请仔细校对后使用,答案仅供参考。

因式分解专项练习100题及答案

因式分解专项练习100题及答案

因式分解专项练习100题及答案一、提取公因式(1) (61)(53)(61)(23)(61)(62)m n m n m n -++---+---(2) 424266x yz x y -(3) (72)(81)(72)(74)(72)(41)x x x x x x --++--++--(4) 444245a a x y -(5) 233332361515x y z x z x z ++(6) (53)(34)(53)(33)a b a b -----+(7) 323515a c bc +(8) 431216xyz xyz -(9) 431025c b c +(10) 3333189ax y a x y +(11) 324226a bc a b c -(12) 23341435a x y x -(13) (61)(25)(91)(61)x x x x -+-+-(14) 33434332816x y z y z y z ++(15) (32)(41)(32)(75)(32)(21)x x x x x x -++-++-+(16) (52)(2)(25)(52)m n n m +-++-+(17) (65)(43)(65)(64)x x x x +--+-(18) (85)(91)(85)(94)(85)(42)a b a b a b +--+++++-+(19) (23)(35)(23)(71)(23)(93)m n m n m n --+--++---(20) (35)(32)(35)(4)(35)(1)x x x x x x ---+-++-+二、公式法(21) 2212122x xy y -+(22) 22481a b -(23) 22784529x y -(24) 212396324x x -+(25) 22289121x y -(26) 2290064a b -(27) 2281450625m mn n -+(28) 2249238289m mn n ++(29) 225628881x x ++(30) 257664x -三、分组分解法(31) 281040xy x y --+(32) 8122842ab a b --+(33) 221635262124x y xy yz zx-++-(34) 21187060ax ay bx by +--(35) 2294221469a c ab bc ca ++--(36) 45352721mx my nx ny -+-(37) 2212621728a b ab bc ca --++(38) 863224xy x y -+-+(39) 4102870ab a b +++(40) 142070100ax ay bx by +--(41) 222720452057x z xy yz zx++--(42) 2273554426a b ab bc ca ++++(43) 302064xy x y ----(44) 4101640ax ay bx by --+(45) 2212354928x y xy yz zx -+--(46) 363060mx my nx ny --+(47) 424954xy x y -++-(48) 18168172ab a b --+(49) 2438010ab a b +++(50) 819182ax ay bx by -+-四、拆添项(51) 2281491268413a b a b -+++(52) 229143024m n m n -+++(53) 4224363316x x y y -+(54) 4224364716m m n n ++(55) 228191621277m n m n ---+(56) 22449249813x y x y ----(57) 422493364m m n n -+(58) 2264251289017m n m n -+--(59) 229643611213x y x y ----(60) 2281610827x y x y -+--五、十字相乘法(61) 223579424942x xy y x y ++--(62) 2228114254545x y z xy yz ---+(63) 22458835434510x xy y x y -++-+ (64) 22145521455025x xy y x y -++-+ (65) 2221261539236x xy y x y -----(66) 2216232876a ab b a b --+++(67) 22225424450x y z yz xz -++-(68) 2243014192912m mn n m n +++++(69) 221526713152m mn n m n ++--+(70) 222523x xy y x y +-+++(71) 22228630463111x y z xy yz xz +-+-+(72) 2222415821432x y z xy yz xz -+--+(73) 2285921556742m mn n m n -+-++(74) 22915412133x xy y x y ++--+(75) 22232237a b c ab bc ac -+---(76) 2159341515x xy x y ++++(77) 226271510174x xy y x y +---+(78) 22241128602624x xy y x y --+++(79) 22812839228x xy y x y +--++(80) 23036553025p pq p q --++六、双十字相乘法(81) 2223520245342x y z xy yz xz +--+-(82) 22273422113x y z xy yz xz +-+-+(83) 22256356212910x y z xy yz xz -----(84) 22228282065198a b c ab bc ac +-+-+(85) 22264212946x y z xy yz xz -----(86) 2214133592635x xy y x y -+-++(87) 22227493042769x y z xy yz xz -+-++(88) 2226184242711x y z xy yz xz +++--(89) 22243110472921x xy y x y ++---(90) 22228101827354a b c ab bc ac -++++七、因式定理 (91) 3222x x x +--(92) 321845192a a a -+-(93) 323744x x x +++(94) 3228115x x x +++(95)32--+671510y y y (96)3212351710++-x x x (97)32x x x+++526356 (98)32+++x x x157911745 (99)32-+-522236x x x (100)32--+35159x x x因式分解专项练习100题答案一、提取公因式 (1) (61)(32)m n --- (2) 426()x y z y - (3) (72)(114)x x --+ (4) 442(45)a x y - (5) 2333(255)x z y x ++ (6) (53)(67)a b --+ (7) 235(3)c a bc + (8) 34(34)xyz z - (9) 425(25)c b c + (10) 3229(2)ax y a y + (11) 32(3)a bc c ab - (12) 3237(25)x a y x - (13) (61)(74)x x --- (14) 33338(42)y z x z z ++ (15) (32)(137)x x -+ (16) (52)(3)m n +- (17) (65)(21)x x -+- (18) (85)(45)a b +-+ (19) (23)(137)m n ---(20) (35)(3)x x --+ 二、公式法 (21) 2(11)x y - (22) (29)(29)a b a b +- (23) (2823)(2823)x y x y +- (24) 2(1118)x - (25) (17)(17)x y x y +- (26) (308)(308)a b a b +- (27) 2(925)m n - (28) 2(717)m n + (29) 2(169)x + (30) (248)(248)x x +- 三、分组分解法 (31) 2(5)(4)x y -- (32) 2(27)(23)a b -- (33) (87)(253)x y x y z -+- (34) (310)(76)a b x y -+ (35) (7)(926)a c a b c -+- (36) (53)(97)m n x y +- (37) (4)(367)a b a b c +-+ (38) 2(4)(43)x y -+-(39) 2(7)(25)a b ++ (40) 2(5)(710)a b x y -+ (41) (94)(355)x z x y z -+- (42) (7)(756)a b a b c +++ (43) 2(51)(32)x y -++ (44) 2(4)(25)a b x y -- (45) (357)(47)x y z x y --+ (46) 3(10)(2)m n x y -- (47) (49)(6)x y --- (48) (29)(98)a b -- (49) (310)(81)a b ++ (50) (92)(9)a b x y +- 四、拆添项(51) (971)(9713)a b a b ++-+ (52) (32)(312)m n m n ++-+(53) 2222(694)(694)x xy y x xy y ++-+ (54) 2222(64)(64)m mn n m mn n ++-+ (55) (937)(9311)m n m n +--- (56) (271)(2713)x y x y ++-- (57) 2222(398)(398)m mn n m mn n ++-+ (58) (8517)(851)m n m n ++--(59) (381)(3813)x y x y ++-- (60) (99)(93)x y x y ++-- 五、十字相乘法 (61) (577)(76)x y x y +-+ (62) (925)(975)x y z x y z +--+ (63) (955)(572)x y x y -+-+ (64) (275)(735)x y x y -+-+ (65) (731)(356)x y x y ++-- (66) (832)(23)a b a b ++-+ (67) (524)(526)x y z x y z --+- (68) (423)(74)m n m n ++++ (69) (32)(571)m n m n +-+- (70) (23)(1)x y x y -+++ (71) (465)(76)x y z x y z +++- (72) (434)(652)x y z x y z ++-+ (73) (76)(837)m n m n ---- (74) (33)(341)x y x y +-+- (75) (2)(32)a b c a b c --+- (76) (533)(35)x y x +++ (77) (634)(51)x y x y --+- (78) (346)(874)x y x y -+++(79)(847)(24)x y x y--+-(80)(65)(565)p p q---六、双十字相乘法(81)(544)(756)x y z x y z-+--(82)(3)(74)x y z x y z+++-(83)(852)(773)x y z x y z++--(84)(745)(474)a b c a b c+-++ (85)(273)(364)x y z x y z--++ (86)(27)(735)x y x y----(87)(975)(376)x y z x y z++-+ (88)(334)(26)x y z x y z+-+-(89)(853)(327)x y x y+++-(90)(456)(723)a b c a b c++-+七、因式定理(91)(1)(1)(2)x x x+-+(92)(2)(61)(31)a a a---(93)2(2)(32)x x x+++(94)2(1)(265)x x x+++(95)2(2)(655)y y y-+-(96)(2)(31)(45)x x x+-+ (97)(3)(51)(2)x x x+++(98)(3)(35)(53)x x x+++ (99)(1)(52)(3)x x x---(100)2(3)(343)x x x-+-。

因式分解专项练习题(含答案)

因式分解专项练习题(含答案)

整式的乘除与因式分解全章复习与巩固要点一、幂的运算1. 同底数幂的乘法:(为正整数);同底数幂相乘,底数不变,指数相加.2. 幂的乘方:(为正整数);幂的乘方,底数不变,指数相乘.3. 积的乘方:(为正整数);积的乘方,等于各因数乘方的积.4 .同底数幂的除法:(≠0, 为正整数,并且).同底数幂相除,底数不变,指数相减.5. 零指数幂:即任何不等于零的数的零次方等于1.要点诠释:公式中的字母可以表示数,也可以表示单项式,还可以表示多项式;灵活地双向应用运算性质,使运算更加方便、简洁要点二、整式的乘法和除法1. 单项式乘以单项式单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.2. 单项式乘以多项式单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.即(都是单项式).3. 多项式乘以多项式多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.要点诠释:运算时,要注意积的符号,多项式中的每一项前面的“+”“-”号是性质符号,单项式乘以多项式各项的结果,要用“+”连结,最后写成省略加号的代数和的形式.根据多项式的乘法,能得出一个应用比较广泛的公式:.4. 单项式相除把系数、相同字母的幂分别相除作为商的因式,对于只在被除式里出现的字母,则连同它的指数一起作为商的一个因式要点三、乘法公式1. 平方差公式:两个数的和与这两个数的差的积,等于这两个数的平方差.要点诠释:在这里,既可以是具体数字,也可以是单项式或多项式.平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.2. 完全平方公式:;两数和(差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍.要点诠释:公式特点:左边是两数的和(或差)的平方,右边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍要点四、因式分解把一个多项式化成几个整式的积的形式,像这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.因式分解的方法主要有: 提公因式法, 公式法, 分组分解法, 十字相乘法, 添、拆项法等.要点诠释:落实好方法的综合运用:首先提取公因式,然后考虑用公式;两项平方或立方,三项完全或十字;四项以上想分组,分组分得要合适;几种方法反复试,最后须是连乘式;因式分解要彻底,一次一次又一次因式分解专题过关1.将下列各式分解因式(1)3p2﹣6pq;(2)2x2+8x+8分析:(1)提取公因式3p整理即可;(2)先提取公因式2,再对余下的多项式利用完全平方公式继续分解.解答:解:(1)3p2﹣6pq=3p(p﹣2q),(2)2x2+8x+8,=2(x2+4x+4),=2(x+2)2.2.将下列各式分解因式(1)x3y﹣xy (2)3a3﹣6a2b+3ab2.分析:(1)首先提取公因式xy,再利用平方差公式进行二次分解即可;(2)首先提取公因式3a,再利用完全平方公式进行二次分解即可.解答:解:(1)原式=xy(x2﹣1)=xy(x+1)(x﹣1);(2)原式=3a(a2﹣2ab+b2)=3a(a﹣b)2.3.分解因式(1)a2(x﹣y)+16(y﹣x);(2)(x2+y2)2﹣4x2y2.分析:(1)先提取公因式(x﹣y),再利用平方差公式继续分解;(2)先利用平方差公式,再利用完全平方公式继续分解.解答:解:(1)a2(x﹣y)+16(y﹣x),=(x﹣y)(a2﹣16),=(x﹣y)(a+4)(a﹣4);(2)(x2+y2)2﹣4x2y2,=(x2+2xy+y2)(x2﹣2xy+y2),=(x+y)2(x﹣y)2.4.分解因式:(1)2x2﹣x;(2)16x2﹣1;(3)6xy2﹣9x2y﹣y3;(4)4+12(x﹣y)+9(x﹣y)2.分析:(1)直接提取公因式x即可;(2)利用平方差公式进行因式分解;(3)先提取公因式﹣y,再对余下的多项式利用完全平方公式继续分解;(4)把(x﹣y)看作整体,利用完全平方公式分解因式即可.解答:解:(1)2x2﹣x=x(2x﹣1);(2)16x2﹣1=(4x+1)(4x﹣1);(3)6xy2﹣9x2y﹣y3,=﹣y(9x2﹣6xy+y2),=﹣y(3x﹣y)2;(4)4+12(x﹣y)+9(x﹣y)2,=[2+3(x﹣y)]2,=(3x﹣3y+2)2.5.因式分解:(1)2am2﹣8a;(2)4x3+4x2y+xy2分析:(1)先提公因式2a,再对余下的多项式利用平方差公式继续分解;(2)先提公因式x,再对余下的多项式利用完全平方公式继续分解.解答:解:(1)2am2﹣8a=2a(m2﹣4)=2a(m+2)(m﹣2);(2)4x3+4x2y+xy2,=x(4x2+4xy+y2),=x(2x+y)2.6.将下列各式分解因式:(1)3x﹣12x3(2)(x2+y2)2﹣4x2y2.分析:(1)先提公因式3x,再利用平方差公式继续分解因式;(2)先利用平方差公式分解因式,再利用完全平方公式继续分解因式.解答:解:(1)3x﹣12x3=3x(1﹣4x2)=3x(1+2x)(1﹣2x);(2)(x2+y2)2﹣4x2y2=(x2+y2+2xy)(x2+y2﹣2xy)=(x+y)2(x﹣y)2.7.因式分解:(1)x2y﹣2xy2+y3;(2)(x+2y)2﹣y2.分析:(1)先提取公因式y,再对余下的多项式利用完全平方式继续分解因式;(2)符合平方差公式的结构特点,利用平方差公式进行因式分解即可.解答:解:(1)x2y﹣2xy2+y3=y(x2﹣2xy+y2)=y(x﹣y)2;(2)(x+2y)2﹣y2=(x+2y+y)(x+2y﹣y)=(x+3y)(x+y).8.对下列代数式分解因式:(1)n2(m﹣2)﹣n(2﹣m);(2)(x﹣1)(x﹣3)+1.分析:(1)提取公因式n(m﹣2)即可;(2)根据多项式的乘法把(x﹣1)(x﹣3)展开,再利用完全平方公式进行因式分解.解答:解:(1)n2(m﹣2)﹣n(2﹣m)=n2(m﹣2)+n(m﹣2)=n(m﹣2)(n+1);(2)(x﹣1)(x﹣3)+1=x2﹣4x+4=(x﹣2)2.9.分解因式:a2﹣4a+4﹣b2.分析:本题有四项,应该考虑运用分组分解法.观察后可以发现,本题中有a的二次项a2,a的一次项﹣4a,常数项4,所以要考虑三一分组,先运用完全平方公式,再进一步运用平方差公式进行分解.解答:解:a2﹣4a+4﹣b2=(a2﹣4a+4)﹣b2=(a﹣2)2﹣b2=(a﹣2+b)(a﹣2﹣b).10.分解因式:a2﹣b2﹣2a+1分析:当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题中有a的二次项,a的一次项,有常数项.所以要考虑a2﹣2a+1为一组.解答:解:a2﹣b2﹣2a+1=(a2﹣2a+1)﹣b2=(a﹣1)2﹣b2=(a﹣1+b)(a﹣1﹣b).11.把下列各式分解因式:(1)x4﹣7x2+1;(2)x4+x2+2ax+1﹣a2(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2(4)x4+2x3+3x2+2x+1分析:(1)首先把﹣7x2变为+2x2﹣9x2,然后多项式变为x4﹣2x2+1﹣9x2,接着利用完全平方公式和平方差公式分解因式即可求解;(2)首先把多项式变为x4+2x2+1﹣x2+2ax﹣a2,然后利用公式法分解因式即可解;(3)首先把﹣2x2(1﹣y2)变为﹣2x2(1﹣y)(1﹣y),然后利用完全平方公式分解因式即可求解;(4)首先把多项式变为x4+x3+x2++x3+x2+x+x2+x+1,然后三个一组提取公因式,接着提取公因式即可求解.解答:解:(1)x4﹣7x2+1=x4+2x2+1﹣9x2=(x2+1)2﹣(3x)2=(x2+3x+1)(x2﹣3x+1);(2)x4+x2+2ax+1﹣a=x4+2x2+1﹣x2+2ax﹣a2=(x2+1)﹣(x﹣a)2=(x2+1+x﹣a)(x2+1﹣x+a);(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2=(1+y)2﹣2x2(1﹣y)(1+y)+x4(1﹣y)2=(1+y)2﹣2x2(1﹣y)(1+y)+[x2(1﹣y)]2=[(1+y)﹣x2(1﹣y)]2=(1+y﹣x2+x2y)2(4)x4+2x3+3x2+2x+1=x4+x3+x2++x3+x2+x+x2+x+1=x2(x2+x+1)+x(x2+x+1)+x2+x+1=(x2+x+1)2.12.把下列各式分解因式:(1)4x3﹣31x+15;(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4;(3)x5+x+1;(4)x3+5x2+3x﹣9;(5)2a4﹣a3﹣6a2﹣a+2.分析:(1)需把﹣31x拆项为﹣x﹣30x,再分组分解;(2)把2a2b2拆项成4a2b2﹣2a2b2,再按公式法因式分解;(3)把x5+x+1添项为x5﹣x2+x2+x+1,再分组以及公式法因式分解;(4)把x3+5x2+3x﹣9拆项成(x3﹣x2)+(6x2﹣6x)+(9x﹣9),再提取公因式因式分解;(5)先分组因式分解,再用拆项法把因式分解彻底.解答:解:(1)4x3﹣31x+15=4x3﹣x﹣30x+15=x(2x+1)(2x﹣1)﹣15(2x﹣1)=(2x﹣1)(2x2+1﹣15)=(2x﹣1)(2x﹣5)(x+3);(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4=4a2b2﹣(a4+b4+c4+2a2b2﹣2a2c2﹣2b2c2)=(2ab)2﹣(a2+b2﹣c2)2=(2ab+a2+b2﹣c2)(2ab﹣a2﹣b2+c2)=(a+b+c)(a+b﹣c)(c+a﹣b)(c﹣a+b);(3)x5+x+1=x5﹣x2+x2+x+1=x2(x3﹣1)+(x2+x+1)=x2(x﹣1)(x2+x+1)+(x2+x+1)=(x2+x+1)(x3﹣x2+1);(4)x3+5x2+3x﹣9=(x3﹣x2)+(6x2﹣6x)+(9x﹣9)=x2(x﹣1)+6x(x﹣1)+9(x﹣1)=(x﹣1)(x+3)2;(5)2a4﹣a3﹣6a2﹣a+2=a3(2a﹣1)﹣(2a﹣1)(3a+2)=(2a﹣1)(a3﹣3a﹣2)=(2a﹣1)(a3+a2﹣a2﹣a﹣2a﹣2)=(2a﹣1)[a2(a+1)﹣a(a+1)﹣2(a+1)]=(2a﹣1)(a+1)(a2﹣a﹣2)=(a+1)2(a﹣2)(2a﹣1).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档