麦克斯韦方程组以及光的波动方程推导
由麦克斯韦方程组推导波动方程

由麦克斯韦方程组推导波动方程麦克斯韦方程组是电磁学中最为基本的方程组,它描述了电磁场在空间中的分布和变化规律。
而波动方程则是描述波动现象的基本方程,因此推导出波动方程对于电磁学的研究具有重要意义。
下面我们将从麦克斯韦方程组的物理意义出发,推导出电磁波的基本特性所遵循的波动方程。
对于自由空间中的电磁波,其传播时所遵循的方程为:$\nabla^2\vec{E}-\frac{1}{c^2}\frac{\partial^2\vec{E}}{\partial t^2}=0$ 和 $\nabla^2\vec{B}-\frac{1}{c^2}\frac{\partial^2\vec{B}}{\partial t^2}=0$要推导出电磁波所遵循的波动方程,我们先来了解一下麦克斯韦方程组所描述的物理实验。
这些实验包括:高斯定理、安培环路定理、法拉第电磁感应定律和麦克斯韦-安培定理。
这些实验所得出的结论是:在空间中存在着电场$\vec{E}$和磁场$\vec{B}$,它们之间存在着紧密的关系。
根据法拉第电磁感应定律,磁场的变化会在空间中产生电场,而根据麦克斯韦-安培定理,则是电流的产生——‘电流可以产生磁场’。
这两个定律的结合,在一定条件下就会引起空间中的波动现象,即电磁波的产生。
为了更好地理解这一点,我们来看一下麦克斯韦方程组所描述的物理实验。
在一个高斯面内,根据高斯定理:$\oint\vec{E}\cdotd\vec{S}=\frac{Q}{\varepsilon_0}$,其中Q表示该高斯面内的电荷总量。
通过对该式进行求导并应用安培环路定理:$\oint\vec{B}\cdot d\vec{l}=\mu_0I_{enc}$,其中$I_{enc}$表示该高斯面所包括的电流总量,得到:$\nabla^2\vec{E}-\frac{1}{c^2}\frac{\partial^2\vec{E}}{\partial t^2}=0$ 和$\nabla^2\vec{B}-\frac{1}{c^2}\frac{\partial^2\vec{B}}{\partialt^2}=0$这两个方程就是电磁波遵循的波动方程。
麦克斯韦方程推导

麦克斯韦方程推导
麦克斯韦方程源自20世纪几何力学的领军人物,又名二阶微分方程,被广泛
应用于解决空气动力学、流体力学、水动力学、以及大量的物理力学建模问题中。
建筑领域的实际应用更是数不胜数。
首先要明确的是,麦克斯韦方程是一个基于二阶微分的公式,一般式可以写成:u’’(t) + au’(t) + bu(t) = f(t)。
若该公式在某一区间上有一解,则该区间
称为麦克斯韦方程稳定区间。
由此可见,麦克斯韦方程是一个重要的描述均衡状态的工具,可以应用于建筑领域的实际模拟中求解均衡形状的问题。
建筑工程学中的许多理论以及应用实践,都离不开麦克斯韦方程的支持。
在一
般来说,麦克斯韦方程可应用于定量了解建筑物抗震性能、结构可靠性评价,以及振动模拟等研究中。
它可以用来求解梁板受弯曲力时的平衡状态,从而指导建筑设计者正确选定承重构件的材料和尺寸。
同样,它可以用来模拟建筑物受到地质灾害(如地震)的影响,从而控制结构抗震性能的变化。
此外,建筑设计过程伴随着众多因素的变化,例如温度变化、湿度变化等,麦
克斯韦方程也可以被用来模拟这些变化对建筑物形态和结构性能的变化情况。
那么根据麦克斯韦方程做出的形态及结构性能模拟结果,专业建筑设计师可以依此做出设计的调整,以期达到合理的建筑结构便捷性,节约原材料成本以及满足安全和美观的要求。
综上所述,麦克斯韦方程无疑是在建筑工程学中的力学研究中不可或缺的一环,它的发展与应用使得建筑设计变得更加科学精确,不仅可以造福于生活环境资源永续利用,更能带来极大的改善让人们拥有更舒适安静的生活环境。
麦克斯韦四个基本方程公式

麦克斯韦四个基本方程公式
麦克斯韦方程组是电磁学的基础之一,其中最重要的是四个基本方程。
它们是:
1. 高斯定理
这个方程表示电场通量与电荷的关系。
它的数学表达式是:
∮E·dS = Q / ε0
其中,E是电场强度,S是任意闭合曲面,Q是曲面内的总电荷量,ε0是真空中的电介质常数。
2. 麦氏定理
这个方程表示磁场通量与电流的关系。
它的数学表达式是:
∮B·dl = μ0I
其中,B是磁场强度,l是任意闭合回路,I是通过回路的总电流,μ0是真空中的磁导率常数。
3. 法拉第电磁感应定理
这个方程表示变化的磁场可以产生电场。
它的数学表达式是:
∫E·dl = -dΦB / dt
其中,E是电场强度,l是任意回路,ΦB是磁通量,t是时间。
4. 安培定理
这个方程表示变化的电流可以产生磁场。
它的数学表达式是:
∮B·dl = μ0ε0(dΦE / dt + J)
其中,B是磁场强度,l是任意闭合回路,ΦE是电通量,t是时间,J是电流密度。
亥姆霍兹方程

, z) exp[ j (cos
x
cos
y)]d(cos )d(cos )
研究角谱的传播就是要找到上面两个角谱,即 z 0 平面 上的角谱和 z z 平面上的角谱之间的关系
18
复振幅分布及其角程讨论传播规律
19 0 6
将 U(x, y, z) 表达式代入亥姆霍兹方程,改变积分与微分的 顺序,可以推导出,二阶线性微分方程
算得到为
A( f x , f y , z) U (x, y, z) exp[ j (xf x yf y )]dxdy
由于各个不同空间频率 的空间傅里叶分量可看作是沿不同
方向传播的平面波,因此称空间频谱为平面波谱即复振幅
分布的角谱
同时有逆变换为 U (x, y, z) A( f x , f y , z) exp[ j (xf x yf y )]dfxdf y
6
球面波的复振幅表示
19 0 6
从点光源发出的光波,在各向同性介质中传播时形成球形的 波面,称为球面波。一个复杂的光源常常可以看做是许多点 光源的集合,它所发出的光波就是球面波的叠加 这些点光源互不相干时是光强相加,相干时则是复振幅相加。 球面波的等位相面是一组同心球面,每个点上的振幅与该点 到球心的距离成反比 当直角坐标的原点与球面波中心重合时,单色发散球面波在 光场中任何一点产生的复振幅可写作
exp
j
k z
x x
y
y
位相相同的点的轨迹,即等位相线方程为同心圆族
x x y y C
10
平面波的复振幅表示
19 0 6
在任意时刻、与波矢量相垂直的平面上振幅和位相为常数的 光波称为平面波 如波矢量 k 表示光波的传播方向,其大小为 k 2 ,方 向余弦为 cos,cos,cos ,则平面波传播到空间某点的复振 幅的一般表达式为 U (x, y, z) a exp( jk r)
麦克斯韦方程组的推导及说明

13-6 麦克斯韦方程组关于静电场和稳恒磁场的基本规律,可总结归纳成以下四条基本定理:静电场的高斯定理:静电场的环路定理:稳恒磁场的高斯定理:磁场的安培环路定理:上述这些定理都是孤立地给出了静电场和稳恒磁场的规律,对变化电场和变化磁场并不适用。
麦克斯韦在稳恒场理论的基础上,提出了涡旋电场和位移电流的概念:1. 麦克斯韦提出的涡旋电场的概念,揭示出变化的磁场可以在空间激发电场,并通过法拉第电磁感应定律得出了二者的关系,即上式表明,任何随时间而变化的磁场,都是和涡旋电场联系在一起的。
2. 麦克斯韦提出的位移电流的概念,揭示出变化的电场可以在空间激发磁场,并通过全电流概念的引入,得到了一般形式下的安培环路定理在真空或介质中的表示形式,即上式表明,任何随时间而变化的电场,都是和磁场联系在一起的。
综合上述两点可知,变化的电场和变化的磁场彼此不是孤立的,它们永远密切地联系在一起,相互激发,组成一个统一的电磁场的整体。
这就是麦克斯韦电磁场理论的基本概念。
在麦克斯韦电磁场理论中,自由电荷可激发电场,变化磁场也可激发电场,则在一般情况下,空间任一点的电场强度应该表示为又由于,稳恒电流可激发磁场,变化电场也可激发磁场,则一般情况下,空间任一点的磁感强度应该表示为因此,在一般情况下,电磁场的基本规律中,应该既包含稳恒电、磁场的规律,如方程组(1),也包含变化电磁场的规律,根据麦克斯韦提出的涡旋电场和位移电流的概念,变化的磁场可以在空间激发变化的涡旋电场,而变化的电场也可以在空间激发变化的涡旋磁场。
因此,电磁场可以在没有自由电荷和传导电流的空间单独存在。
变化电磁场的规律是:1.电场的高斯定理在没有自由电荷的空间,由变化磁场激发的涡旋电场的电场线是一系列的闭合曲线。
通过场中任何封闭曲面的电位移通量等于零,故有:2.电场的环路定理由本节公式(2)已知,涡旋电场是非保守场,满足的环路定理是3.磁场的高斯定理变化的电场产生的磁场和传导电流产生的磁场相同,都是涡旋状的场,磁感线是闭合线。
麦克斯韦方程组及其解法

麦克斯韦方程组及其解法麦克斯韦方程组被公认为经典电磁学的基石,它描述了电场、磁场与电荷之间的关系,并且包含了电磁波的传播规律。
数学上,麦克斯韦方程组是四个偏微分方程,它们分别是高斯定理、安培定理、法拉第电磁感应定律和法拉第电磁感应定律的推论。
本文将介绍麦克斯韦方程组的物理及数学意义,以及解法与应用。
1. 麦克斯韦方程组的物理意义麦克斯韦方程组描述了电磁学的基本规律,其中最重要的是法拉第电磁感应定律和安培定理。
法拉第电磁感应定律表示一个变化的磁场可以在一个导体中产生感应电场,而安培定理则说明电流会产生磁场。
这两个定律统一了电场和磁场的产生原理,引出了电磁波传播的概念。
此外,高斯定理用于衡量一个电场的大小,而法拉第电磁感应定律则可以解释电磁感应现象。
麦克斯韦方程组的物理意义可以总结为电磁现象之间的相互作用。
2. 麦克斯韦方程组的数学理解麦克斯韦方程组是四个偏微分方程,写成数学形式如下:\begin{align}\mathrm{div}\;\mathbf{E} &= \frac{\rho}{\varepsilon_0} \\\mathrm{div}\;\mathbf{B} &= 0 \\\mathrm{curl}\;\mathbf{E} &= -\frac{\partial\mathbf{B}}{\partial t} \\\mathrm{curl}\;\mathbf{B} &=\mu_0\mathbf{J}+\varepsilon_0\mu_0\frac{\partial\mathbf{E}}{\partial t}\end{align}其中 $\mathbf{E}$ 表示电场,$\mathbf{B}$ 表示磁场,$\rho$ 表示电荷密度,$\mathbf{J}$ 表示电流密度,$\varepsilon_0$ 表示真空介质中的电容率,$\mu_0$ 表示真空中的磁导率。
麦克斯韦方程组四个方程

麦克斯韦方程组(Maxwell's equations)是描述电磁场(包括静电场、静磁场以及电磁波)律动基本规律的四个基本方程。
这四个方程分别是高斯电场定理、高斯磁场定理、法拉第电磁感应定律和安培环路定律。
在积分形式下,麦克斯韦方程组如下:1. 高斯电场定理:∮ E • dA = Q / ε₀表示:电场 E 与穿过某一闭合曲面 A 的总电荷量 Q 的关系,ε₀是真空中的电介质常数。
1. 高斯磁场定理:∮ B • dA = 0 表示:穿过任意闭合曲面 A 的磁通量总和为零,即没有磁单极子的存在。
1. 法拉第电磁感应定律:∮ E • dl = -dΦB/dt 表示:电场 E 沿闭合路径 L 的线积分等于负的磁通量ΦB 的时间变化率。
1. 安培环路定律(含位移电流项):∮ B • dl = μ₀(I + ε₀\*dΦE/dt) 表示:磁场 B 沿闭合路径 L 的线积分等于真空磁导率μ₀(经过曲面 A 的总电流 I 加上位移电流项)。
在微分形式下,麦克斯韦方程组如下:1. 高斯电场定理:∇ • E = ρ / ε₀表示:电场 E 的散度(divergence)与电荷密度ρ的关系。
1. 高斯磁场定理:∇ • B = 0 表示:磁场 B 的散度总是为零,即不存在磁单极子。
1. 法拉第电磁感应定律:∇ × E = -∂B / ∂t 表示:电场 E 的旋度(curl)与磁场 B 随时间变化的关系。
1. 安培环路定律(含位移电流项):∇ × B = μ₀ (J + ε₀∂E / ∂t) 表示:磁场 B 的旋度与电流密度 J 及位移电流项的关系。
这四个方程构成了电磁学的基础,几乎包含了所有电磁现象的信息。
麦克斯韦方程组的推导及说明

13-6 麦克斯韦方程组关于静电场和稳恒磁场的基本规律,可总结归纳成以下四条基本定理:静电场的高斯定理:静电场的环路定理:稳恒磁场的高斯定理:磁场的安培环路定理:上述这些定理都是孤立地给出了静电场和稳恒磁场的规律,对变化电场和变化磁场并不适用。
麦克斯韦在稳恒场理论的基础上,提出了涡旋电场和位移电流的概念:1. 麦克斯韦提出的涡旋电场的概念,揭示出变化的磁场可以在空间激发电场,并通过法拉第电磁感应定律得出了二者的关系,即上式表明,任何随时间而变化的磁场,都是和涡旋电场联系在一起的。
2. 麦克斯韦提出的位移电流的概念,揭示出变化的电场可以在空间激发磁场,并通过全电流概念的引入,得到了一般形式下的安培环路定理在真空或介质中的表示形式,即上式表明,任何随时间而变化的电场,都是和磁场联系在一起的。
综合上述两点可知,变化的电场和变化的磁场彼此不是孤立的,它们永远密切地联系在一起,相互激发,组成一个统一的电磁场的整体。
这就是麦克斯韦电磁场理论的基本概念。
在麦克斯韦电磁场理论中,自由电荷可激发电场,变化磁场也可激发电场,则在一般情况下,空间任一点的电场强度应该表示为又由于,稳恒电流可激发磁场,变化电场也可激发磁场,则一般情况下,空间任一点的磁感强度应该表示为因此,在一般情况下,电磁场的基本规律中,应该既包含稳恒电、磁场的规律,如方程组(1),也包含变化电磁场的规律,根据麦克斯韦提出的涡旋电场和位移电流的概念,变化的磁场可以在空间激发变化的涡旋电场,而变化的电场也可以在空间激发变化的涡旋磁场。
因此,电磁场可以在没有自由电荷和传导电流的空间单独存在。
变化电磁场的规律是:1.电场的高斯定理在没有自由电荷的空间,由变化磁场激发的涡旋电场的电场线是一系列的闭合曲线。
通过场中任何封闭曲面的电位移通量等于零,故有:2.电场的环路定理由本节公式(2)已知,涡旋电场是非保守场,满足的环路定理是3.磁场的高斯定理变化的电场产生的磁场和传导电流产生的磁场相同,都是涡旋状的场,磁感线是闭合线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
磁通连续性原理
任一闭合面穿出的净磁通等于零,即穿出的磁通等于 穿入的磁通。 磁场场线闭合,无头无尾,不存在单一“磁荷”。
精品课件
显示技术中心
麦克斯韦方程组微分形式
(1) E C
dl
S
B t
ds
斯托克斯定理: Edl Eds
C
S
微分形式:
E B t
精品课件
显示技术中心
麦克斯韦方程组微分形式
(1)
t
H E
(2)
t
(1)式:
左边= ( E ) ( E ) 2 E = 2 E
2
右边= ( H ) ( H ) E
t
t
t2
精品课件
显示技术中心
光的波动方程
光的波动方程
2E
2E t 2
0
2H 2H 0
光波传播速度
t 2
v 1
精品课件
显示技术中心
(2) D ds dV
S
V
散度定理: DdsDdV
S
V
微分形式: D
精品课件
显示技术中心
麦克斯韦方程组微分形式
(3)
H
C
dl
S(jD t)
ds
斯托克斯定理: Hdl Hds
C
S
微分形式:
H j D t
精品课件
显示技术中心
麦克斯韦方程组微分形式
(4) B ds 0
S
斯托克斯定理: BdsBdV
精品课件
显示技术中心
麦克斯韦方程组积分形式
(1) E dl B ds 法拉第电磁感应定律
C
S t
穿过闭合线圈的磁通量发生变化时,线圈中产生感生 电动势。
d dt
d dt
B ds
S
E dl C
精品课件
显示技术中心
麦克斯韦方程组积分形式
(2) D ds dV
S
V
电场的高斯定律
通过任意闭合曲面的电通量等于该闭合曲面所包围的 所有电荷量的代数和。
D ds q
S
q = dV V
精品课件
显示技术中心
麦克斯韦方程组积分形式
(3)
H
C
dl
S(jD t)
ds
全电流定律
任意一个闭合回路上的总磁压等于被这个闭合回线所 包围的面内穿过的全部电流的代数和。
全电流=传导电流+位移电流
S
V
微分形式:
B0
精品课件
显示技术中心
麦克斯韦方程组微分形式
E B t
D H j D
t B 0
变化的磁场可以产生电场 自由电荷可以产生电场 变化的电场可以产生磁场 没有自由磁荷
精品课件
显示技术中心
波动方程推导
光传播的理想化条件
光波在各种介质中传播实际上就是光与介质相互作 用的过程。 (1)区域内自由电荷的体密度为0,且媒质是均匀、 线性、各向同性的
ρ=0
(2)介质透明,对光没有吸收,为绝缘体,电导 率为0
σ=0
精品课件
显示技术中心
波动方程推导
化简后的麦克斯韦方程组
B 0 D E B
t H D
t
物质方程
j = σE B = μH D = εE
σ:电导率 ε:介电常数 μ:介质磁导率
精品课件
显示技术中心
波动方程推导
E H
光的波动方程
精品课件
麦克斯韦方程组
B
C
E
dl
S
t
ds
D ds dV
S
V
C
H
dl
( j
S
D ) ds t
B ds 0
S
精品课件
(1) (2) (3) (4)
显示技术中心
麦克斯韦方程组
D:电感应强度 E:电场强度 B:磁感应强度 H:磁场强度 ρ:自由电荷体密 度 j: 传导电流密度
位移电流是指穿过某曲面的电位移通量随时间的变化 率。
精品课件
显示技术中心
麦克斯韦方程组积分形式
(3)
H
C
dl
S(jD t)
ds
全电流定律
总磁压= H d l
C
全电流=传导电流+位移电流
= =
SS(JJds+Dt )t
S
ds
D
ds
精品课件
显示技术中心
麦克斯韦方程组积分形式
(4) B ds 0 S
光的波动方程
光的波动方程
2E 1 2E 0 v2 t2
2H 1 2H 0 v2 t2
精品课件
显示技术中心
谢谢!
显 示 精品技课件术 中 心