七年级数学第二单元测试卷

合集下载

七年级第二单元数学测试卷

七年级第二单元数学测试卷

1、若a、b互为相反数,则下列等式中成立的是:A. a + b = 1B. a - b = 0C. ab = 1D. a/b = -1 (当b不等于0时)(答案)B2、下列哪个数既是正数又是整数:A. -3B. 0.5C. 7/3D. 5(答案)D3、在数轴上,点A表示的数是-2,点B与点A的距离是3,则点B表示的数是:A. 1B. -5C. 1或-5D. 3或-3(答案)C4、下列不等式中,解集为x > 2的是:A. 2x > 4B. x - 2 < 0C. x + 2 > 5D. 3x - 1 > 8(答案)A5、一个角的余角是这个角的补角的1/4,则这个角的大小为:A. 30°B. 45°C. 60°D. 75°(答案)C6、下列说法中,正确的是:A. 有理数就是正数和负数的统称B. 一个有理数不是整数就是分数C. 零是最小的整数D. 正分数、零、负分数统称为分数(答案)B7、若|a| = 3,|b| = 2,且a < b,则a + b的值为:A. 5B. -5C. ±1D. 1或-5(答案)D8、下列计算中,正确的是:A. 3a + 2b = 5abB. 7a - a = 6C. a2 ·a3 = a6D. (a2)3 = a6(答案)D9、下列关于绝对值的说法中,错误的是:A. 任何数的绝对值都是非负数B. 若|a| = |b|,则a = b或a = -bC. 若a < b < 0,则|a| < |b|D. 若|a| = a,则a > 0(答案)D10、已知线段AB = 5cm,点C在直线AB上,且AC = 2cm,则BC的长度为:A. 3cmB. 7cmC. 3cm或7cmD. 以上都不对(答案)C。

七年级上册数学第二单元测试卷【含答案】

七年级上册数学第二单元测试卷【含答案】

七年级上册数学第二单元测试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 如果一个三角形的两边长分别是8厘米和15厘米,那么第三边的长度可能是多少厘米?A. 3厘米B. 23厘米C. 17厘米D. 27厘米3. 下列哪个数是偶数?A. 101B. 102C. 103D. 1044. 下列哪个分数是最简分数?A. 3/6B. 4/8C. 5/10D. 6/125. 下列哪个图形是平行四边形?A. 正方形B. 长方形C. 梯形D. 圆形二、判断题(每题1分,共5分)1. 两个质数相乘,其积一定是合数。

()2. 三角形的内角和等于180度。

()3. 任何偶数乘以偶数都是偶数。

()4. 分子和分母相同的分数是最简分数。

()5. 所有平行四边形的对角线都相等。

()三、填空题(每题1分,共5分)1. 17和______是互质数。

2. 三角形的内角和等于______度。

3. 5.6是______小数。

4. 分子和分母相同的分数等于______。

5. 平行四边形的对边______且______。

四、简答题(每题2分,共10分)1. 请写出5个质数。

2. 请写出5个偶数。

3. 请写出5个分数。

4. 请写出5个三角形。

5. 请写出5个平行四边形。

五、应用题(每题2分,共10分)1. 一个长方形的长是10厘米,宽是5厘米,求这个长方形的面积。

2. 一个三角形的底是6厘米,高是4厘米,求这个三角形的面积。

3. 一个平行四边形的底是8厘米,高是5厘米,求这个平行四边形的面积。

4. 一个圆的半径是10厘米,求这个圆的周长。

5. 一个圆柱的底面半径是5厘米,高是10厘米,求这个圆柱的体积。

六、分析题(每题5分,共10分)1. 请分析两个质数相乘,其积为什么一定是合数。

2. 请分析三角形的内角和为什么等于180度。

七、实践操作题(每题5分,共10分)1. 请用直尺和圆规画一个正方形。

七年级数学下册《第二单元》单元检测卷及答案(沪科版)

七年级数学下册《第二单元》单元检测卷及答案(沪科版)

七年级数学下册《第二单元》单元检测卷及答案(沪科版)一、选择题(共40分)1. 如果m >n 那么下列结论错误的是( ) A. m +2>n +2 B. m −2>n −2 C. 2m >2nD. −2m >−2n2. 实数a b c 在数轴上对应的点的位置如图所示 则下列式子中正确的是( )A. a −c >b −cB. a +c <b +cC. ac >bcD. a b <cb 3. 不等式9−2x >x +1的正整数解的个数是( ) A. 1B. 2C. 3D. 无数个4. 不等式3x −2>x +2的解集在数轴上表示正确的是( ) A.B.C.D.5. 若不等式(a −1)x >a −1的解集是x <1 则a 的取值范围是( ) A. a >1B. a <1C. a ≥1D. a ≤16. 把不等式组{3x >x −61−2x 3≤x−42中每个不等式的解集在同一条数轴上表示出来 正确的是( )A.B.C.D.7. 不等式组{x−12≤1x −2<4(x +1)的正整数解有( )A. 1个B. 2个C. 3个D. 4个8. 已知a >b >0 则下列不等式组中无解的是( ) A. {x <a,x >−bB. {x >−a,x <−bC. {x >−a,x <bD. {x >a,x <−b9. 文德中学初二年级为了奖励在英语演讲比赛中胜出的学生 年级购买了若干本课外读物准备送给他们.如果每人送4本 则还余9本;如果每人送5本 则最后一人能得到课外读物但不足2本.设初二年级有x 名学生获奖.则下列不等式组表示正确的是( )A. {4x +9−5(x −1)>04x +9−5(x −1)<2 B. {4x −9−5(x −1)>04x −9−5(x −1)<2 C. {4x +9−5(x −1)>04x +9−5(x −1)≤2D. {4x −9−5(x −1)>04x −9−5(x −1)≤210. 疫情的发生 各地积极响应政府“管住门 看住人”的要求 温华物业管理有限公司 对管辖的各小区实行门绳拦截管理 对符合3天出门一次采购生活用品的人员才能签证放行 为此 他们要把长19米的绳子剪成2米或1米的绳子 分发给各小区 请帮助公司设计有裁剪方案.( )A. 10B. 9C. 8D. 7二、填空题(共20分)11. 若a <b <0 则−4a ______ −4b(用< >连接). 12. 不等式3−2x >7的解集为______.13. 某种出租车的收费标准是起步价8元(即距离不超过3km 都付8元车费) 超过3km 以后 每增加1km 加收1.2元(不足1km 按1km 计).若某人乘这种出租车从甲地到乙地经过的路程是xkm 共付车费14元 那么x 的最大值是____________.14. 关于x 的不等式组{x−12−x+23≤1x −a >2只有3个整数解 求a 的取值范围 .三、计算题15. (8分) 解不等式3(x +2)≥4(x −1)+7 并把它的解集在数轴上表示出来.16. (8分) 解不等式组{5x −3≤2x +9,①3x >x+102,②并写出它的所有整数解. 四 解答题.17. (8分)规定:{x}表示不小于x 的最小整数 如{4}=4 {−2.6}=−2 {−5}=−5 在此规定下任意数x 都能写出如下形式:x ={x}−b 其中0⩽b <1. (1)直接写出{x} x x +1的大小关系:___________; (2)根据(1)中的关系式解决下列问题: ①满足{x +7}=4的x 的取值范围是______; ②求适合{3.5x −2}=2x +14的x 的值.18. (8分) 友谊商店A 型号笔记本电脑的售价是a 元/台.最近 该商店对A 型号笔记本电脑举行促销活动 有两种优惠方案.方案一:每台按售价的九折销售;方案二:若购买不超过5台 每台按售价销售;若超过5台 超过的部分每台按售价的八折销售.某公司一次性从友谊商店购买A 型号笔记本电脑x 台.(1)当x =8时 应选择哪种方案 该公司购买费用最少?最少费用是多少元? (2)若该公司采用方案二购买更合算 求x 的取值范围.19. (8分)为应对新冠肺炎疫情 某服装厂决定转型生产口罩 根据现有厂房大小决定购买10条口罩生产线 现有甲 乙两种型号的口罩生产线可供选择.经调查:购买3条甲型口罩生产线比购买2条乙型口罩生产线多花14万元 购买4条甲型口罩生产线与购买5条乙型口罩生产线所需款数相同. (1)求甲 乙两种型号口罩生产线的单价;(2)已知甲型口罩生产线每天可生产口罩9万只 乙型口罩生产线每天可生产口罩7万只 若每天要求产量不低于75万只 预算购买口罩生产线的资金不超过90万元 该厂有哪几种购买方案?哪种方案最省钱?最少费用是多少?20. (8分)某中学为了加强学生体育锻炼 准备购进一批篮球和足球.据调查 某体育器材专卖店销售40个足球和60个篮球一共9200元;销售100个足球和30个篮球一共11000元. (1)求足球和篮球的单价;(2)该校计划使用10420元资金用于购买足球和篮球120个 且篮球数量不少于足球数量的2倍.购买时恰逢该专卖店在做优惠活动 信息如下表:球类 购买数量低于50个购买数量不低于50个足球 原价销售 八折销售 篮球原价销售九折销售21. (12分)(1)观察发现:材料:解方程组{x +y =4 ①3(x +y)+y =14 ②将①整体代入② 得3×4+y =14 解得y =2把y =2代入① 得x =2 所以{x =2y =2这种解法称为“整体代入法” 你若留心观察 有很多方程组可采用此方法解答 请直接写出方程组{x −y −1=0, ①4(x −y)−y =5, ②的解为____(2)实践运用:请用“整体代入法”解方程组{2x −3y −2=0, ①2x −3y +57+2y =9, ②(3)拓展运用:若关于x y 的二元一次方程组{2x +y =−3m +2x +2y =4的解满足x +y <−23请求出m 的最小整数值.参考答案1.【答案】D2.【答案】B3.【答案】B4.【答案】A5.【答案】B7.【答案】C8.【答案】D 9.【答案】A10.【答案】A11.【答案】>12.【答案】x<−213.【答案】814.【答案】8≤a<9【解析】解:{x−12−x+23≤1①x−a>2②解①得解②得∴不等式组的解集为:2+a<x≤13∵不等式组只有3个整数解∴10≤2+a<11解得故答案为8≤a<9.15.【答案】解:不等式的解集为x≤3.16.【答案】解:2<x≤4.不等式组的所有整数解为34.17.【答案】解:(1)由题意可得x≤{x}<x+1(2)①∵x≤{x}<x+1∴{x+7≤44<x+7+1解得−4<x≤−3②∵{3.5x−2}=2x+1 4∴由(1)得:3.5x−2≤{3.5x−2}<(3.5x−2)+1且2x+14为整数∴3.5x−2≤2x+14<(3.5x−2)+1解得:56<x≤32∴11112<2x+14≤314∴整数2x+14是2或3当2x +14=2时 得x =78当2x +14=3时 得x =118∴适合{3.5x −2}=2x +14的x 的值是x =78或x =118. 18.【答案】(1)解:设购买A 型号笔记本电脑x 台时的费用为w 元当x =8时方案一:w =90%a ×8=7.2a方案二:w =5a +(8−5)a ×80%=7.4a a 为正数 所以7.2a <7.4a∴当x =8时 应选择方案一 该公司购买费用最少 最少费用是7.2a 元;(2)若x ⩽5 方案一每台按售价九折销售 方案二每台按售价销售 所以采用方案一购买合算; 若x >5方案一:w =90%ax =0.9ax 方案二:当x >5时 则0.9ax >a +0.8axx >10∴x 的取值范围是x >10且x 为正整数.19.【答案】解:(1)设甲型号口罩生产线的单价为x 万元 乙型号口罩生产线的单价为y 万元由题意得: {3x −2y =144x =5y解得:{x =10y =8答:甲型号口罩生产线的单价为10万元 乙型号口罩生产线的单价为8万元. (2)设购买甲型号口罩生产线m 条 则购买乙型号口罩生产线(10−m)条 由题意得:{10m +8(10−m)≤909m +7(10−m)≥75解得:2.5≤m ≤5 又∵m 为整数∴m =3 或m =4 或m =5 因此有三种购买方案: ①购买甲型3条 乙型7条; ②购买甲型4条 乙型6条; ③购买甲型5条 乙型5条.当m =3时 购买资金为:10×3+8×7=86(万元) 当m =4时 购买资金为:10×4+8×6=88(万元)当m =5时 购买资金为:10×5+8×5=90(万元)∵86<88<90∴最省钱的购买方案为:选购甲型3条 乙型7条 最少费用为86万元.20.【答案】解:(1)设足球的单价为x 元 篮球的单价为y 元依题意得 {40x +60y =9200100x +30y =11000 解得{x =80y =100答:足球的单价为80元 篮球的单价为100元; (2)设购买a 个足球 则购买篮球数为(120−a)个 依题意得 120−a ≥2a∴a ≤40 ∴120−a ≥80∴购买足球按原价 购买篮球按九折计算∴80a +90(120−a)≤10420∴a ≥38∴38≤a ≤40∵a 为整数 ∴a =38 39∴可有以下三种购买方案: 方案1:购买38个足球 82个篮球 共10420元; 方案2:购买39个足球 81个篮球 共10410元; 方案3:购买40个足球 80个篮球 共10400元. ∴购买40个足球 80个篮球共10400元 费用最少.21.【答案】解:(1)由①得:x −y =1③将③代入②得:4−y =5 即y =−1 将y =−1代入③得:x =0 则方程组的解为{x =0 y =−1.故答案为{x =0 y =−1.(2)由①得:2x −3y =2③将③代入②得:1+2y =9 即y =4 将y =4代入③得:2x −12=2 解得x =7则方程组的解为{x =7y =4(3){2x+y=−3m+2 ①x+2y=4 ②①+②得:3(x+y)=−3m+6即x+y=−m+2代入不等式得:−m+2<−23解得:m>83则满足条件m的最小整数值是3.。

七年级上册数学第二单元测试卷

七年级上册数学第二单元测试卷

第二单元有理数的运算七年级上册数学人教版(2024)同步练习【满分:120】一、选择题:(本大题共10小题,每小题4分,共40分,给出的四个选项中,只有一项是符合题目要求的)1.若一个数的倒数是134-,则这个数是()A.413B.413-C.134D.134-2.我国对“一带一路”沿线国家不断加大投资,目前已为有关国家创造了近1100000000美元税收,其中1100000000用科学记数法表示应为()A.80.1110⨯ B.101.110⨯ C.91.110⨯ D.81110⨯3.计算(32)4(8)-÷⨯-结果是()A.1 B.1- C.64D.64-4.下列各式中结果是负数的为()A.()5-- B.()25- C.25- D.5-5.下列各式运算错误的是()A.()()236-⨯-= B.()11262⎛⎫-⨯-=- ⎪⎝⎭C.()()()52880-⨯-⨯-=-D.()()()32530-⨯-⨯-=-6.下列说法正确的是()A.近似数3.6万精确到十分位 B.近似数0.720精确到百分位C.近似数5.78精确到百分位D.近似数3000精确到千位7.甲、乙两人用简便方法进行计算的过程如下,下列判断正确的是()甲:11(14)19(6)1119[(14)(6)]10+-+--=++-+-=.乙:71171168588855⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫--++-=-+-+-=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦.A.甲、乙都正确 B.甲、乙都不正确C.只有甲正确D.只有乙正确8.根据如图所示的程序计算,若输入x 的值为1,则输出y 的值为()A.2-B.4-C.4D.289.若||a a =,||b b -=,则a 与b 的乘积不可能是()A.-5B.16C.0D.210.观察下列算式:122=,224=,328=,4216=,5232=,6264=,72128=,82256=,…,133=,239=,3327=,4381=,53243=,63729=,732187=,836561=,…,根据上述算式中的规律,()2023202223+-的末位数字是()A.3B.5C.7D.9二、填空题(每小题4分,共20分)14.计算20221-÷15.求值:1(+三、解答题(本大题共16.(8分)用四舍五入法,对下列各数按括号中的要求取近似数.(1)0.6328(精确到0.01);(2)7.9122(精确到个位);(3)130.96(精确到十分位);(4)46021(精确到百位).17.(8分)计算:(1)()()()()81021++-----;(2)()()221310.5233⎡⎤---÷⨯--⎣⎦.18.(10分)计算:32118(3)2⎛⎫-÷-⨯- ⎪⎝⎭.莉莉的计算过程如下:解:原式1111(18)9(18)8984=-÷⨯=-⨯⨯=-.佳佳的计算过程如下:解:原式198(18)9(18)(18)16889⎛⎫⎛⎫⎛⎫=-÷⨯-=-÷-=-⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.请问莉莉和佳佳的计算过程正确吗?如果不正确,请写出正确的计算过程.19.(10分)某食品厂从生产的袋装食品中随机抽样检测每袋的质量是否符合标准质量,超过或不足的质量分别用正、负数表示,例如+2表示该袋食品超过标准质量2克.现记录如下:与标准质量的误差(单位:克)-5-60+1+3+6袋数533423(1)在抽取的样品中,最重的那袋食品的质量比最轻的那袋多多少克;(2)若标准质量为500克/袋,则这次抽样检测的总质量是多少克.20.(12分)某中学开展一分钟跳绳比赛,成绩以200次为标准数量,超过的次数记为正数,不足的次数记为负数,七年级某班8名同学组成代表队参赛,成绩(单位:次)记录如下:+8,0,-5.+12,-9,+1,+8,+15.(1)求该班参赛代表中最好成绩与最差成绩相差多少次?(2)求该班参赛代表队一共跳了多少次?(3)规定:每分钟跳绳次数为标准数量,不得分;超过标准数量,每多跳1次得2分;未达到标准数量,每少跳1次扣1分,若代表队跳绳总积分超过70分,便可得到学校的奖励,请通过计算说明该代表队能否得到学校奖励.21.(12分)观察下列等式:第1个等式:1111 1323⎛⎫=⨯-⎪⨯⎝⎭;第2个等式:1111 35235⎛⎫=⨯-⎪⨯⎝⎭;第3个等式:1111 57257⎛⎫=⨯-⎪⨯⎝⎭;第4个等式:1111 79279⎛⎫=⨯-⎪⨯⎝⎭.(1)探寻上述等式规律,写出第5个等式:_________;(2)求1111 155991320172021 ++++⨯⨯⨯⨯的值.答案以及解析1.答案:B解析:因为113344-=-,1341413⎛⎫⎛⎫-⨯-= ⎪ ⎪⎝⎭⎝⎭,所以134-的倒数是413-.2.答案:C解析:1100000000用科学记数法表示应为91.110⨯.故选:C.3.答案:C解析:()(32)4(8)=88=64-÷⨯--⨯-.故选C.4.答案:C解析:A 、(5)5--=是正数,此项不符题意;B 、2(5)25-=是正数,此项不符题意;C 、2525-=-是负数,此项符合题意;D 、55-=是正数,此项不符题意;故选:C.5.答案:B解析:A 、()()23236-⨯-=⨯=,则此项正确,不符合题意;B 、()111212622⎛⎫-⨯-=⨯= ⎪⎝⎭,则此项错误,符合题意;C 、()()()()52852880-⨯-⨯-=-⨯⨯=-,则此项正确,不符合题意;D 、()()()()32532530-⨯-⨯-=-⨯⨯=-,则此项正确,不符合题意;故选:B.6.答案:C解析:A.近似数3.6万精确到千位,原说法错误;B.近似数0.720精确到千分位,原说法错误;C.近似数5.78精确到百分位,说法正确;D.近似数3000精确到个位,原说法错误;故选:C.7.答案:D解析:11(14)19(6)1119[(14)6]30822+-+--=++-+=-=,甲不正确.711711711858858885⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫--++-=-+-+-=-+-+- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦16(1)55⎛⎫=-+-=- ⎪⎝⎭,乙正确.8.答案:C解析:输入1x =,则21242420⨯-=-=-<输入2-,则()22244-⨯-=,所以输出y 的值为:4故选:C.9.答案:A解析:因为||a a =,||b b -=,所以0a ≥,0b ≥,所以a 与b 的乘积不可能是负数,故a 与b 的乘积不可能是5-.10.答案:A 解析:由题知,122=,224=,328=,4216=,8232=,6264=,72128=,82256=,⋯,所以2n 的末位数字按2,4,6,8循环出现,又20224505÷=余2,所以20222的末位数字是4.133=,239=,3327=,4381=,53243=,63729=,732187=,836561=,…,所以3n 的末位数字按3,9,7,1循环出现,又20234505÷=余3,所以20233的末位数字是7.()20232202320202222(3)32=--+-的末位数字是3故选:A.11.答案:千解析:41.51015000⨯= ,∴近似数41.510⨯精确到千位,故答案为:千.12.答案:8112019-+-解析:8(11)(20)(19)-+--+-写成省略加号的和的形式是:8112019-+-.故答案为:8112019-+-.(2)8(3)131.0(4)44.6010⨯解析:(1)0.6328(精确到0.01)0.63≈.(2)7.9122(精确到个位)8≈.(3)130.96(精确到十分位)131.0≈.(4)46021(精确到百位)44.6010≈⨯.17.答案:(1)1(2)1.5解析:(1)()()()()81021++-----81021=-++1=;(2)2213(10.5)2(3)3⎡⎤---÷⨯--⎣⎦()19372=--⨯⨯-910.5=-+1.5=.18.答案:见解析解析:莉莉和佳佳的计算过程都不正确.正确的计算过程:原式111118918928884⎛⎫=-÷⨯-=÷⨯=⨯= ⎪⎝⎭.19.答案:(1)12(2)9985解析:试题(1)根据题意及表格得:()666612+--=+=(克),最重的食品比最轻的重12克;(2)由表格得:()()()()()556303143263-⨯+-⨯+⨯++⨯++⨯++⨯()251804618=-+-++++2510=-+15=-,则50020159985⨯-=(克).这次抽样检测的总质量是9985克.20.答案:(1)24次(2)1630次(3)该班能得到学校奖励解析:(1)15(9)15924+--=+=(次),故该班参赛代表中最好成绩与最差成绩相差24次;(2)2008(8)0(5)(12)(9)(1)(8)(15)1630⨯++++-+++-++++++=(次),故该班参赛代表队一共跳了1630次;(3)(8121815)2(59)174++++⨯-+⨯=(分),7470> ,∴该班能得到学校奖励.21.答案:(1)11119112911⎛⎫=⨯- ⎪⨯⎝⎭(2)5052021解析:(1)观察所给的等式,可得第5个等式为11119112911⎛⎫=⨯- ⎪⨯⎝⎭.故答案为11119112911⎛⎫=⨯- ⎪⨯⎝⎭.(2)原式111111120205051455920172021420212021⎛⎫=-+-++-=⨯= ⎪⎝⎭ .。

七年级上册数学第二单元测试卷

七年级上册数学第二单元测试卷

七年级上册数学第二单元测试卷一、选择题(每题2分,共20分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 22. 如果a > b,且b > 0,那么下列哪个不等式是正确的?A. a + b > b + aB. a - b > b - aC. a × b > b × aD. a ÷ b > b ÷ a3. 以下哪个是完全平方数?A. 23B. 24C. 25D. 264. 一个数的立方根是它本身,这个数可能是:A. 1B. -1C. 0D. 85. 以下哪个数是倒数?A. 1B. -1C. 0D. 26. 一个数的绝对值是它本身,这个数可能是:A. 正数B. 负数C. 零D. 以上都是7. 如果一个数的平方是16,那么这个数可能是:A. 4B. -4C. 4或-4D. 168. 以下哪个是奇数?A. 2B. 3C. 4D. 59. 一个数的相反数是它本身,这个数是:A. 1B. -1C. 0D. 210. 以下哪个数是质数?A. 2B. 3C. 4D. 5二、填空题(每题2分,共20分)11. 一个数的平方是36,这个数是______。

12. 一个数的立方是-27,这个数是______。

13. 如果一个数的绝对值是5,那么这个数可能是______或______。

14. 一个数的倒数是1/2,这个数是______。

15. 一个数的相反数是-3,那么这个数是______。

16. 一个数的平方根是4,那么这个数是______。

17. 一个数的立方根是-2,那么这个数是______。

18. 一个数的平方和它的立方相等,这个数是______。

19. 如果a + b = 10,且a - b = 2,那么a = ______,b = ______。

20. 一个数的平方是它自身,这个数是______或______。

三、计算题(每题5分,共30分)21. 计算下列各数的平方根:√9,√16,√25。

七年级数学上册第二单元测试卷

七年级数学上册第二单元测试卷

七年级数学上册第二单元测试卷一、选择题(每题3分,共30分)1. 单项式-3x^2y的系数和次数分别是()A. -3,2B. -3,3C. 3,2D. 3,3.2. 下列式子中,是整式的是()A. (1)/(x)B. x + yC. (1)/(x + y)D. (x + y)/(z)3. 多项式3x^2-2x - 1的各项分别是()A. 3x^2,2x,1B. 3x^2, - 2x, - 1C. -3x^2,2x,1D. -3x^2, - 2x, - 14. 下列运算中,正确的是()A. 3a + 2b = 5abB. 2a^3+3a^2=5a^5C. 3a^2b - 3ba^2=0D. 5a^2-4a^2=15. 一个多项式与x^2-2x + 1的和是3x - 2,则这个多项式为()A. -x^2+5x - 3B. -x^2+x - 1C. x^2-5x + 3D. x^2-x + 16. 当a = - 2时,(a^4+4a^2+16)· a^2-4(a^4+4a^2+16)的值为()A. 64B. 32C. -64D. 0.7. 化简(2x - 3y)-3(4x - 2y)的结果为()A. -10x - 3yB. -10x + 3yC. 10x - 9yD. 10x + 9y8. 若A = 3x^2-4y^2,B=-y^2-2x^2+1,则A - B为()A. x^2-5y^2+1B. x^2-3y^2+1C. 5x^2-3y^2-1D. 5x^2-3y^2+19. 已知a - b = 3,c + d = 2,则(b + c)-(a - d)的值为()A. -1B. 1C. -5D. 15.10. 若M = 3x^2-8xy + 9y^2-4x + 6y + 13,则M的值一定是()A. 正数B. 负数C. 零D. 整数。

二、填空题(每题3分,共18分)11. 单项式frac{-2π ab^2}{3}的系数是_(-2π)/(3),次数是_3。

七年级上册数学第二章单元测试卷(含答案)

七年级上册数学第二章单元测试卷(含答案)知识要点一:单项式1.正确的说法是:C。

-x的系数是-1.2.正确的说法是:C。

x2-3xy2+2x2y3-1是五次多项式。

3.单项式-x2yz2的系数、次数分别是:C。

-1.5.4.单项式(-1)mabm的系数是(-1)m,次数是m+1.5.若单项式a4b-2m+1与-2am2bm+7是同类项,则m的值为:B。

2或-2.6.若-2axbx-y与5a2b5的和仍是单项式,则x=1,y=10.7.单项式-3x2yz37的系数是-3,次数是7.8.四次单项式(m-n)xm-3y的系数为-3,求m,n的值:m=4,n=1.9.如果单项式3a2b3m-4的次数与单项式1x3y23的次数相同,试求m的值:m=2.知识要点二:多项式11.多项式4x3-3x2y4+2m-7的项数与次数分别是:A。

4,9.12.如果m是三次多项式,n是三次多项式,那么m+n一定是:C。

三次多项式。

13.一个五次多项式,它任何一项的次数:D。

都不大于5.14.2a4-a3b2-5ab3+a2-1是次项式。

它的最高次项是a4,常数项是-1.把它按a的升幂排列是:a4-a3b2-5ab3+a2-1.15.如果多项式3xm-(n-1)x+1是关于x的二次二项式,则m=2,n=4.1.多项式-3xy+1/2x^2-5x的项分别是-3xy。

1/2x^2.-5x。

2.已知多项式-3/5x^2ym+1+x^2y^2-3y^2+8是六次四项式,单项式2x^2ny^5-m与该多项式的次数相同,求m,n的值。

由题可得2n+m+6=4,解得m=2-2n。

又因为单项式2x^2ny^5-m的次数为2n+5-m,与多项式的次数相同,代入可得2n+5-m=6,代入m=2-2n,解得n=1,m=0.3.当m为何值时,(m+2)xm^2y^2-3xy^3是六次二项式?由题可知该多项式的次数为6,即m+2+2=6,解得m=2.4.若k(k-1)x^2-kx+x+8是关于x的一次多项式,求k的值。

七年级上册数学第二单元测试卷含答案.doc

七年级上册数学第二单元测试卷含答案一、选择题(每小题3分,共30分)1.计算2×(- )的结果是 ( )A.-1B.1C.-2D.22.下列关于有理数-10的表述正确的是 ( )A.-(-1O)- C.-102O3.已知两数相乘大于0,两数相加小于0,则这两数的符号为( )A.同正B.同负C.一正一负D.无法确定4.若-2减去一个有理数的差是-5,则-2乘这个有理数的积是( )A.10B.-10C.6D.-65.算式( --)×24的值为 ( )A.-16B.-18C.16D.-246.下列各对数中,互为相反数的是 ( )A.-|-7|和+(-7)B.+(-10)和-(+10)C.(-4)3和-43D.(-5)4和-547.尽管受到国际金融危机的影响,但义乌市经济依然保持了平稳增长.据统计,截止到今年4月底,该市金融机构存款余额约为1193亿元,用科学记数法应记为 ( )A.1.193×1010元B.1.193×1011元C.1.193×1012元D.1.193×1013元8.某城市按以下规定收取每月煤气费,用煤气不超过60立方米,按每立方米0.8元收费;如果超过60立方米,超过部分按每立方米1.2元收费.已知甲用户某月份用煤气80每立方米,那么这个月甲用户应交煤气费 ( )A.64元B.66元C.72元D.96元9. 3是3 的近似值,其中3 叫做真值,若某数由四舍五入得到的近似数是27,则下列各数中不可能是27的真值的是 ( )A.26.48B.26.53C.26.99D.27.0210.小华和小丽最近测了自己的身高,小华量得自己约 1.6m,小丽测得自己的身高约为 1.60m,下列关于她俩身高的说法正确的是( )A.小华和小丽一样高B.小华比小丽高C.小华比小丽低D.无法确定谁高二、填空题(每小题4分,共24分)11.-的倒数是;-的平方是 .12.(1)近似数2.50万精确到位;有效数字分别是;(2)1纳米等于十亿分之一米,用科学记数法表示25米= 纳米.13.数轴上表示有理数-3.5与4.5两点的距离是 .14.(-1)2+(-1)3+…+(-1)2010= .15.李明明与王伟在玩一种计算的游戏,计算的规则是 | |=ad-bc,李明轮到计算| |,根据规则| |=3×1-2×5=3-10=-7,,现在轮到王伟计算| |,请你帮忙算一算,得 .16.a是不为1的有理数,我们把称为a的差倒数.如:3的差倒数是 =-,-1的差倒数是 = .已知a1=2,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,…,依此类推,则a2010= 。

七年级数学第二章测试卷

一、选择题(每题2分,共20分)1. 下列各数中,正数是()A. -3B. 0C. 3D. -52. 下列各数中,有理数是()A. √9B. √16C. √25D. √-43. 下列各数中,无理数是()A. √4B. √9C. √16D. √-14. 若a=2,b=-3,则a+b的值是()A. 5B. -5C. 1D. -15. 下列各数中,绝对值最大的是()A. 3B. -2C. -3D. 26. 若|a|=5,|b|=3,则a+b的取值范围是()A. -8≤a+b≤2B. -2≤a+b≤8C. -8≤a+b≤8D. 2≤a+b≤87. 若a=3,b=-2,则|a-b|的值是()A. 5B. 1C. 3D. 28. 下列各数中,互为相反数的是()A. 3和-3B. 2和-2C. 0和-1D. 5和-59. 若a和b互为相反数,则|a|和|b|的关系是()A. |a|≠|b|B. |a|=|b|C. |a|>|b|D. |a|<|b|10. 下列各数中,既是正数又是整数的是()A. 3B. -2C. 0D. -5二、填空题(每题2分,共20分)11. 若a=-2,b=3,则a-b的值是______。

12. 若|a|=4,|b|=6,则|a+b|的最大值是______。

13. 下列各数中,有理数是______。

14. 下列各数中,无理数是______。

15. 若a=2,b=-3,则a+b的值是______。

16. 下列各数中,绝对值最大的是______。

17. 若a和b互为相反数,则|a|和|b|的关系是______。

18. 下列各数中,既是正数又是整数的是______。

19. 若|a|=5,|b|=3,则a+b的取值范围是______。

20. 若a=3,b=-2,则|a-b|的值是______。

三、解答题(每题10分,共30分)21. 已知a=5,b=-3,求a+b和|a-b|的值。

初中数学人教版七年级上册第二单元《有理数的运算》综合测试卷

初中数学人教版七年级上册第二单元《有理数的运算》综合测试卷一、选择题1.(2024·天津)计算3−(−3)的结果是()A.6B.3C.0D.-62.(2023七上·合肥期中)根据教育部统计,2023届高校毕业生的规模将达到1158万人,数据1158万用科学记数法表示为()A.1.158×104B.1.158×107C.1.158×108D.0.1158×1083.下面算法正确的是()A.(−5)+9=−(9−5)B.7−(−10)=7−10C.(−5)×0=−5D.(−8)÷(−4)=8÷4.4.(2022七上·上杭期中)用四舍五入法,把2.345精确到百分位的近似数是()A.2.3B.2.34C.2.35D.2.305.(2024七上·播州期末)一件衣服的进价为100元,商家提高80%进行标价,为了吸引顾客,商店进行打7折促销活动,商家出售这件衣服时,获得的利润是()A.26元B.44元C.56元D.80元6.下列两个数互为相反数的是()A.3和13B.−(−3)和|−3|C.(−3)2和−32D.(−3)3和−337.(2024七上·黔西南期末)若(m﹣2)2+|n+3|=0,则﹣(2m+n)2024的值是()A.﹣1B.1C.2024D.﹣20248.(2024七上·南宁期末)如图,数轴上点A和点B分别表示数a和b,则下列式子正确的是()A.a>0B.ab>0C.a-b>0D.a+b<0 9.(2024七上·雅安期末)若a2=4,|b|=5,且ab<0,则a+b的值是()A.3B.−3C.3或−3D.−3或−7 10.(2024七上·通道期末)王华写出下列四个计算式子中,你认为错误的是()A.(−1)2n=1(n是正整数)B.(−96)−(−2)=−94C.(−2)(−3)(−4)=−24D.(−3)÷13=−1二、填空题11.(2024·浙江模拟)计算:−22−(−2)2=.12.太阳的半径约为696 000千米,用科学记数法表示数696 000为.13.(2024七下·肇源开学考)绝对值小于4的所有整数的和是.14.如果a、b互为倒数,c、d互为相反数,且m=−1,则代数式2ab−(c+d)+m2=.15.如图所示的程序图,当输入﹣1时,输出的结果是.三、解答题16.(2024七上·盘州期末)计算:(1)−20+|−8|+9+(−4);(2)−22×(−2+14)−8÷(−4).17.(2023七上·桦甸期中)一辆新能源电动出租车一天上午以商场A为出发地,在一条东西走向的通路上载客行驶,规定向东为正,向西为负,出租车载客的行驶里程如下(单位,千米):+8,−7,−3,−8,+6,+8.(1)将最后一名乘客送到目的地时,求出租车距商场A多远.(2)已知这辆新能源电动出租车每千米耗电成本为0.2元,求它这天上午载客行驶里程的总耗电成本.18.(2024七上·防城期末)为了增强体质,小明给自己设定:以每天跑步a千米为基准,超过的部分记为正,不足的部分记为负,手机应用程序统计小明一周跑步情况,记录如下:小明周六和周日共跑了21.6千米.(1)求a的值.(2)小明本周共跑了多少千米?19.(2024七上·高州期末)一辆货车从超市出发,向东走了3千米到达小彬家,继续走2.5千米到达小颖家,然后向西走了10千米到达小明家,最后回到超市.(1)以超市为原点,以向东的方向为正方向,用1个单位长度表示1千米,用A,B,C分别表示小明家,小彬家,小颖家,在如图数轴上表示出A,B,C的位置.(2)小明家距小彬家千米.(3)货车一共行驶了多少其纳米?20.(2024七上·绍兴期末)目前,某城市“一户一表”居民用电实行阶梯电价,具体收费标准如下.(1)若该市某户12月用电量为200度,该户应交电费元;(2)若该市某户12月用电量为x度,请用含x的代数式分别表示0≤x≤180和x>180时该户12月应交电费多少元;(3)若该市某户12月应交电费125元,则该户12月用电量为多少度?21.如图.在数轴上原点О表示的数是o,A点丧示的数是m ,B点表示的数是n,且(m+4)2+[n-8|=0.(1)m=,n=(2)①在数轴上表示出点A、B;②已知点C是线段AB的中点,则点C表示的数是▲ ,线段CO的长是▲ ,在数轴上表示出点C:(3)若点M是线段OA 的中点.点N是线段OB上的一点.且BN=2ON.试求线段.MN的长.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学第二单元测试卷
姓名:分数
一、选一选(每小题3分,共36分)
1.下表是我国几个城市某年一月份的平均气温,其中气温最低的城市是()
A.哈尔滨 B.广州 C.武汉 D.北京
2.下列各数中互为相反数的是()
A.
1
2
与0.2 B.
1
3
与-0.33 C.-2.25与
1
2
4
D.5与-(-5)
3.对于(-2)4与-24,下列说法正确的是()
A.它们的意义相同B.它的结果相等
C.它的意义不同,结果相等D.它的意义不同,结果不等4.下列四个数中,在-2到0之间的数是()
A.-1 B. 1 C.-3 D.3
5.下列计算错误的是()
A.0.14=0.0001 B.3÷9×(-1
9
)=-3
C.8÷(-1
4
)=-32 D.3×23=24
6.若x是有理数,则x2+1一定是()
A.等于1
B.大于1
C.不小于1
D.不大于1 7.在数轴上与-3的距离等于4的点表示的数是 ( )
A.1 B.-7 C.1或-7 D.无数个
8.两个有理数的积是负数,和也是负数,那么这两个数( )
A. 都是负数
B. 其中绝对值大的数是正数,另一个是负数
C. 互为相反数
D. 其中绝对值大的数是负数,另一个是正数
9.一个有理数的绝对值等于其本身,这个数是( )
A 、正数
B 、非负数
C 、零
D 、负数
10.四个互不相等整数的积为9,则和为( )
A .9
B .6
C .0
D .3-
11.28 cm 接近于( ).
A .珠穆朗玛峰的高度
B .三层楼的高度
C .姚明的身高
D .一张纸的厚度
12.地球上的水的总储量约为1.39×1018 m3,但目前能被人们生产、生活利用的水
只占总储量的0.77%,即约为0.010 7×1018 m3,因此我们要节约用水.请将0.010
7×1018 m3用科学记数法表示是( ).
A .1.07×1016 m3
B .0.107×1017 m3
C .10.7×1015 m3
D .1.07×1017 m3
二、填一填(每小题3分,共30分)
1.一天早晨的气温是-5℃,中午又上升了10℃,半夜又下降了8℃,则半夜的气
温是________.
2.用“<”“=”或“>”号填空:
-2_____0 98- _____10
9- -(+5) _____-(-|-5|) 3.计算:737()()848
-÷-= ;232(1)---= . 4.若a 与-5互为相反数,则a =______;若b 的绝对值是2
1-,则b =_________. 5.如果n >0,那么n n
= ;如果n n
=-1,则n 0。

6.若a ,b 互为相反数,c ,d 互为倒数,m =2,则(a +b )·d
c +3c
d -m 2= .
7.从数-6,1,-3,5,-2中任取二个数相乘,其积最小的是___________.
8.若有理数a 、b 满足()23120a b -+-=,则b a 的值为 .
9.把下列各数填在相应的大括号里:
1,45-,8.9,-7,56,-3.2,+1 008,-0.06,28,-9.
正整数集合:{ …};
负整数集合:{ …};
正分数集合:{ …};
负分数集合:{ …}.
10.任取四个1至13之间的自然数,将这四个数(且每个数只能用一次)进行“+、
-、×、÷”四则运算,使其结果为24.现有四个有理数:3,4,-6,10,运用上
述规则,写出一个运算: .
三、做一做(本大题共38分)
1.(8分)计算:
(1)(
12-13)÷(-16)+(-2)2×(-14) (2)—14—〔1—(1—0.5×31)〕×6
(3)
)75.2()412(21152--+--- (4)(-73)×(12-0.5)÷(-829)
2.小明的家、学校、书店同在一条马路上,如图,请你用学过的数学知识标明它们
三者间的距离。

小明步行速度是5千米/小时,小明中午11:30放学,下午1:30
上课,吃饭要用30分钟,中午他要到书店买完书再到校上课,选书时间是5分钟,
请你帮他设计一下什么时间出发,上课才能不迟到?
3、6分)一场游戏规则如下:(1)每人每次抽4张卡片,如果抽到形如 的卡片,那么加上卡片上的数字,如果抽到形如 的卡片,那么减去卡片
上的数字;(2)比较两人所抽到的4张卡片的计算结果,结果大的为胜者.
请你通过计算(要求有计算过程)回答本次游戏获胜的是谁?
小亮抽到的卡片如图所示:
小丽抽到的卡片如图所示:
4.(8分)某巡警骑摩托车在一条南北大道上巡逻,某天他从岗亭出发,晚上停留
在A 处,规定向北方向为正,当天行驶纪录如下(单位:千米)
+10,-9,+7,-15,+6,-14,+4,-2
(1)A 在岗亭何方?距岗亭多远?
(2)若摩托车行驶1千米耗油0.05升,这一天共耗油多少升?
书店 · · · 学校 小明家。

相关文档
最新文档