无损检测知识汇总
第4章无损检测基础知识

射线 铸件、焊件 表面及内部缺 陷 由照相底片或 荧光屏观察
超声 铸、锻、焊 件及板材 表面及内部 缺陷 根据回波信 号分析
磁粉
涡流
渗透 各种工件 表面缺陷 根据显示直 接观察
典型应用 探出缺陷 判伤方法
铸、锻、焊 棒、线、管 及冲压件等 材各种工件 表面及近表 表面及近表 面缺陷 面缺陷 根据磁痕直 仪表指标报 接观察 警
5)衰减特性:超声波在传播过程中,由于受到
介质及其中杂质的阻碍或吸收,其强度会产生衰 减,因此要对各种衰减进行抑制。
3. 超声波的基本参数 1)振幅:振动质点偏离平衡位置的最大距离。 2)频率(f):单位时间内质点完成全振动的次
数。其值与波动频率相等,所谓波动频率是指波 动过程中任一给定质点在单位时间内通过完整波 的个数。 3)周期(t):振动质点完成一次全振动所需要 的时间,单位为s。 4)波长(λ):单位为mm或m,波长越短分辨 力越高。 5)声速(c):单位为m/s或km/s。
质点振动方向与波的传播方向垂直 横波S(剪切波、切变波) ,只能在固体中传播。
机械波
表面波R(瑞利波)
质点的振动沿材料表面进行传播, 只能在固体中传播。 仅在频率、入射角及板厚为特定 值时才产生。按振动形态可分为 对称型和非对称型两种。只能在 厚度与波长相当的薄板中传播。
板波P(兰姆波)
纵波L
横波S
2.无损检测的作用 无损检查是提高产品质量,确保安全的重要手段 ,具有很大的经济效益和社会效益,其作用主要
有:
(1)无损探伤—对产品质量做出评价。通过对 构件等进行探测发现其表面或内部缺陷,并进行 定位定量分析。 (2)材料检查—用无损检测技术测定材料的物
理性能和组织结构,能判断材料的品种和热处理
无损检测基础知识

3)改进制造工艺 在产品工艺试验中,对工艺试样进 行无损检验,并根据检测结果改进 制造工艺,确定理想的制造工艺。
(4)降低生产成本 在产品制造过程中的适当环节正确地进行 无损检测,防止以后的工序浪费,减少返 工,降低废品率,从而降低制造成本。
3.无损检测的应用特点 1)要与破坏性检测相结合 由于无损检测具有的局限性,不是所有 的需要测试的项目和性能都能进行无损检 测,这种局限性可能来自方法本身,也可 能来自被测试对象的形状、位置等客观条 件的不允许,所以某些试验只能采用破坏 性检验。
可以发现裂纹、夹杂、发纹、白点、折叠、 冷隔和疏松等缺陷。
磁粉探伤的基本步骤
预处理; 磁化工件; 施加或磁悬液; 观察和评定磁痕显示; 退磁; 后处理。
磁粉探伤的优点
可检测出铁磁性材料表面和近表面的缺陷;
能直观地显示出缺陷的位置、形状、大小和严 重程度; 具有很高的检测灵敏度,可检测微米级宽度的 缺陷; 单个工件检验速度快,工艺简单,成本低,污 染轻; 结合使用各种磁化方法,几乎受工件大小和几 何形状的影响; 检测缺陷的重复性好; 可检验受腐蚀的表面。
其它几种常用无损探伤方法 涡流检测(Eddy current Testing )简称ET 声发射检测(Acoustic Emission)简称AE 目视检测(Visual and Optical Testing)简称 VT 泄漏检测(Leak Testing)简称LT
2.无损检测的目的 1)保证产品质量 借助仪器和器材,可以发现目视检查无法 发现的内外部宏观缺陷。 无损检测不需破坏试件就能完成检测过程, 可以对产品进行100%检验和逐件检验,为 产品质量提供有效保证。 2)保障使用安全 可以对在用设备和部件进行定期检验,保 障使用安全。
NDT 无损检测知识大全

厚度和密度[物体材料的种类]、射线种类及其穿透距离。当物体中存在缺陷时,由于缺陷部 位的厚度和密度发生变化,穿过无缺陷完好部位和有缺陷部位的射线强度不同,因而使胶片 的感光程度不同,胶片处理后,就形成了黑白不同的影像。
射线照相法探伤是利用物质在密度不同、厚度不同时对射线的吸收程度不同(即使射 线的衰减程度不同),就会使零件下面的底片感光不同的原理,实现对材料或零件内部 质量的照相探伤。
一些其他信息,例如结构、性质、状态等,并试图通过测试掌握更多的信息。 无损评价(NDE):是将进入或目前正在进入的新阶段的名称,其内涵不仅仅是探测缺
陷、探测试件的结构、性质、状态,还要获取更全面、更深刻的、更准确的综合信息, 例如缺陷的形状、尺寸、位置、取向、缺陷部位的金相组织、残余应力等。
常用常规无损检测方法 1. 射线检测(Radiographic,简称RT) 2. 超声波检测(Ultrasonic Testing,简称UT) 3. 磁粉检测(Magnetic Testing,简称MT) 4. 渗透检测(Penetrant Testing,简称PT) 5. 涡流检测(Eddy Current,简称ET) 6. 声发射检测(Acoustic Emission,简称AE)
射线检测主要适用于体积型缺陷,如气孔等的检测;在特定的条件下,也可检测裂纹、 未焊透、未熔合等缺陷。
无损检测知识总结

射线检测(RT)超声波检测(UT)磁粉检测(MT)渗透检测(PT)涡流检测(ET)一、无损检测的定义①在不损坏受检件的物理和化学性能的前提下,对受检件内部及其表面的不连续和物理量进行检查和(或)测试的方法。
②无损检测是在现代科学基础上产生和发展的检测技术,它借助先进的技术和仪器设备,在不损坏、不改变被检测对象理化状态的情况下,对被检测对象的内部及表面的结构、性质、状态进行高灵敏度和高可靠性的检查和测试,借以评判它们的连续性、完整性、安全性以及其他性能指标。
射线检测(RT)射线在透照工件时,由于射线能量衰减程度与材料密度和厚度有关,所以有缺陷部位与无缺陷部位对射线能量的吸收不同,因而透过有缺陷部位与无缺陷部位的射线强度不同,在底片上形成的黑度不同,则可通过底片上不同黑度的影像来显示缺陷.适用于材料内部体积型缺陷:孔洞、夹杂、未焊透等;对于面积缺陷(如裂纹等)有选择性。
即缺陷平面与射线透照方向平行或接近平行时非常适用;而当缺陷平面与射线透照方向垂直时极不敏感!易出现漏检!超声波检测(UT)利用超声波在材料中传播特性,对工件内部质量进行检测;超声波在均匀介质中将直线传播,当遇到异种介质超声波将发生反射、折射、透射或发生波型转换等,利用这些波到达超探仪接收到的信号来判断工件质量状况这就是超声波检测。
适用于大多数缺陷的检测,但检出容易,分析难。
不易发现细小裂纹磁粉检测(MT)有表面和近表面缺陷的工件磁化后,当缺陷方向和磁场方向成一定角度时,由于缺陷处的磁导率的变化使磁力线逸出工件表面,产生漏磁场,可以吸附磁粉而产生磁痕显示。
渗透检测(PT)利用毛细管现象使渗透液渗入表面开口缺陷,经清洗使表面上多余渗透剂去除,而使缺陷中的渗透剂保留,再利用显像剂的毛细管作用吸附出缺陷中的余留渗透剂,而达到检验缺陷的目的。
保证产品质量应用无损检测技术,可以探测到肉眼无法看到的试件内部(或表面)的缺陷应用无损检测技术的另一优点是可以进行百分之百检验。
无损检测综合知识

无损检测综合知识屠耀元上海斯耐特无损检测技术培训中心2003.2-2005.71.1 无损检测概论1.1.1 无损检测通用方法及技术一、无损检测的定义:不破坏材料的外形和性能的情况下,检测该材料的内部结构(组织与不连续)和性能,该技术称为无损检测。
英文全称:Non Destructive Testing (NDT)二、常用无损检测方法(1)射线检测:Radiographic Testing (RT)●射线的种类与本质:χ射线、γ射线和中子射线。
χ射线和γ射线与无线电波、红外线、可见光、紫外线一样,都是电磁波;而中子射线是粒子。
●X射线的产生:X射线管、X射线机●γ射线的产生:γ射线是放射性原子核在衰变时放射出来的电磁波。
γ射线机射线检测:原理、方法与应用●利用射线透过物体时产生的吸收和散射现象,检测材料中因缺陷存在而引起射线强度改变的程度来探测缺陷的方法称为射线检测技术,可分为:⑴射线照相法;⑵荧光屏法;⑶工业电视法●检测对象类型:金属;非金属。
焊缝;铸件。
●检测缺陷类型:裂纹;气孔;未焊透;未融合;夹渣;疏松;冷隔等。
#●射线检测与超声检测比较:⑴射线检测优点是缺陷显示直观;定量、定位准确;可以定性;检测结果可以长期保留。
缺点是检测周期长;成本高;大厚度工件检测比较困难。
⑵超声检测优点是检测周期短;成本低;大厚度工件检测方便;缺点是不能显示缺陷形状;不能精确定量,不能定性。
(2)超声检测:Ultrasonic Testing (UT)●超声波的本质:机械波,它是由于机械振动在弹性介质中引起的波动过程,例如水波、声波、超声波等●超声波的类型:纵波和横波表面波(瑞利波)、板波●超声波的性质:(1)声速:与材料性质有关、与波的种类有关(2)波的叠加、干涉及驻波(3)反射、折射和波型转换●超声波的产生:仪器、探头●超声波与工件的接触:耦合剂●超声波在工件内的传播与反射、波的接收●超声波检测原理:探头发射的超声波通过耦合剂在工件中传播,遇到缺陷时反射回来被探头接收。
无损检测知识点总结

无损检测知识点总结导言无损检测是现代工程领域中一项非常重要的技术,它通过使用一系列的检测方法和设备,来对材料和构件进行检测,以发现其中可能存在的缺陷和问题。
无损检测方法可以帮助工程师和技术人员及时发现并解决问题,确保工程的安全性和可靠性。
本文将对无损检测的基本知识点进行总结,包括常用的无损检测方法、设备及应用实例等。
一、无损检测方法无损检测方法是指在不破坏被检测材料的前提下,利用物理、化学、超声波、磁力学、光学以及计算机技术等方法进行对被检测材料缺陷的检测。
目前常用的无损检测方法主要包括以下几种:1. 超声波检测(UT)超声波检测是利用超声波在被检材料中传播的变化规律,来检测材料中的缺陷。
通过测量超声波的传播速度和反射波的能量,可以获取材料内部的缺陷信息,如裂纹、气泡、夹杂物等。
超声波检测方法可以分为接触式超声波检测和非接触式超声波检测两种。
2. 射线检测(RT)射线检测是利用射线照射被检材料,通过测量射线的衰减和散射来检测材料中的缺陷。
射线检测方法可以分为X射线检测和γ射线检测两种,常用于金属材料中裂纹、气泡等缺陷的检测。
3. 磁粉检测(MT)磁粉检测是利用磁场对被检材料进行磁化,并在磁场下添加磁粉颗粒,通过观察磁粉颗粒在被检材料表面的分布情况,来检测材料中的缺陷。
磁粉检测方法可以快速、高效地检测材料表面和近表面的缺陷,如裂纹、疲劳等。
4. 涡流检测(ET)涡流检测是利用涡流流动的规律,对被检材料进行缺陷检测。
当电磁场作用于导电材料时,会在材料中产生涡流,通过测量涡流的衰减和变化,可以发现材料中的缺陷。
涡流检测方法通常用于金属材料中的裂纹、夹杂物等缺陷的检测。
5. 磁记号检测(MPI)磁记号检测是利用磁场对被检材料进行磁化,并在磁场中添加磁记号液体,通过观察磁记号液体在材料表面的分布情况,来检测材料中的缺陷。
磁记号检测方法通常用于金属材料中裂纹、焊缝、表面夹杂物等缺陷的检测。
6. 热红外检测(IRT)热红外检测是利用红外热像仪和红外热辐射技术,对被检材料进行缺陷检测。
无损检测基础知识(全)

✓ 能编制检测工艺,正确选择检测方法,并有熟练的操作技 术。
✓ 认真贯彻执行质量管理体系规定的岗位职责和国家对 NDT人员资格的规定,保持高度的责任心和敬业精神。
一 射线检测
✓ 射线检测是利用射线探测零件内部缺陷的无损探伤方法 、利用X射线、γ射线和中子射线易于穿透物体和穿透物体 后的衰减程度不同,使胶片感光程度的不同来探测物体内 部的缺陷,对缺陷的种类、大小、位置等进行判断。
✓ 无损评价:是将进入或目前正在进入的新阶段的名称, 其内涵不仅仅是探测缺陷、探测试件的结构、性质、状态 ,还要获取更全面、更深刻的、更准确的综合信息,例如 缺陷的形状、尺寸、位置、取向、内容特、缺陷部位的金 相组织、残余应力等。
常用常规无损检测方法
➢ 射线检测 ➢ 超声检测 ➢ 磁粉检测 ➢ 渗透检测 ➢ 涡流检测 ➢ 声发射检测
射线检测基本原理
✓ 射线照相法探伤是利用物质在密度不同、厚度不同时对射 线的吸收程度不同(即使射线的衰减程度不同),就会使零件 下面的底片感光不同的原理,实现对材料或零件内部质量 的照相探伤。
✓ 当射线穿过密度大的物质,如金属或非金属材料时,射线被 吸收得多,自身衰减的程度大,使底片感光轻;当射线穿过 密度小的缺陷(空气)时。则被吸收得少,衰减小,底片感光 重。这样就获得反映零件内部质量的射线底片。
钢板:分层、裂纹、线状缺陷、非金属夹杂物、夹渣、折 叠、偏析等
使用缺陷:应力腐蚀、氢损伤、蠕变损伤、疲劳裂纹、摩 擦、冲刷等
各种检测方法易检出的缺陷
✓ MT:表面、近表面裂纹、剖口分层、夹杂物等 ✓ PT:表面开口性裂纹、针孔等 ✓ ET:表面和近表面裂纹、夹杂物等 ✓ RT:体积状缺陷和与射线入射方向一致(平行)的面型
无损检测基础知识

无损检测基础知识无损检测基础知识1.力学性能指标有:强度、硬度、塑性、韧性2.应力腐蚀脆性断裂;由于拉应力与介质腐蚀联合作用引起的低应力脆性断裂叫做应力腐蚀。
应力腐蚀产生的必要条件:1元件承受拉应力的作用2具有与材料种类相匹配的特定腐蚀介质环境3材料对应力腐蚀的敏感程度。
对钢材而言应力腐蚀的敏感性与的成分、组织及热处理情况有关。
3.热处理是将固态金属及合金按预定要求进行加热,保温和冷却,以改变其内部组织,从而获得所要求性能的一种工艺过程。
4.热处理的基本工艺过程加热,保温和冷却三个阶段构成的,温度和时间是影响热处理的主要因素5.处理工艺分: 退火、正火、淬火、回火、化学热处理6.退火目的:均匀组织、降低硬度、消除内应力、改善切削加工性能。
7.消除应力退火目的:消除焊接过程中产生的内应力、扩散焊缝的氢,提高焊缝抗裂性和韧性,也能改善焊缝和热影响区的组织,稳定结构形状。
8.正火主要目的:细化晶粒,均匀组织,降低内应力承压类特种设备常用材料应具有的特点1足够的强度;2良好的韧性;3 良好的加工工艺性能 4. 良好的低倍组织和表面质量 5 良好的耐高温性 6. 良好的抗腐蚀性能。
9.药皮的作用:稳弧作用、保护作用、冶金作用、掺合金作用、改善焊接工艺性能。
10.手工电弧焊的焊接规范:焊接电流、电弧电压、焊条直径、焊接速度、焊接层数。
11.坡口的形式的选择要考虑以下因素:1.保证焊透2.充填焊缝部位的金属要尽量少3.便于施焊,改善劳动条件,对圆筒形构件尽量减少内焊接 4.应尽量减少焊接变形量。
12.焊接变形和应力的形成:1、焊件上的温度分布不均匀2、熔敷金属的收缩3、金属组织的转变 4、焊件的刚性拘束13.焊接应力的控制措施:1.合理的装配与焊接顺序 2.焊前预热14,消除焊接应力的方法:1、热处理法 2、机械法 3、振动法15.控制焊接质量的工艺措施:1预热 2焊接能量参数 3多层焊多道焊 4紧急后热 5焊条烘烤和坡口清洁16.焊后热处理有利作用:1、减轻残余应力2、改善组织,降低淬硬性3、减少扩散氢17.低合金钢的焊接特点1热影响区的淬硬倾向比较大2容易出现冷裂纹18产生冷裂纹的主要原因;1. 氢的聚集2.淬硬组织3.焊接应力大小19.奥氏体不锈钢的焊接时,防止或减少晶间腐蚀的主要措施;1使焊缝形成双相组织 2严格控制含碳量 3添加稳定剂 4焊后热处理 5采用正确的焊接工艺20.奥氏体不锈钢的焊接时,防止产生热裂纹的主要措施;1在焊缝中加入形成铁素体的元素2减少母材和焊缝的含碳量3严格控制焊接规范21.锅炉定义:利用各种燃料、电或其它能源,将所盛装的液体加热到一定参数,并承载一定压力的密闭设备,其范围规定为容积大于或等于30L的承压蒸汽锅炉;出口水压大于或等于0.1Mpa(表压),且额定功率大于或等于0.1MW的承压热水锅炉;有机热载体锅炉。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
无损检测知识汇总无损检测概述无损检测,英文缩写为NDT (Non-destructive testing),就是利用声、光、磁和电等特性,在不损害或不影响被检对象使用性能的前提下,检测被检对象中是否存在缺陷或不均匀性,给出缺陷的大小、位置、性质和数量等信息,进而判定被检对象所处技术状态(如合格与否、剩余寿命等)的所有技术手段的总称。
从事无损检测的人员需要接受专业的培训,获得资质才能持证上岗。
各个国家、区域、机构针对无损检测培训资质认证均有不同的要求,受训前应该了解清楚,选择合适的标准、机构进行相关的培训与考核。
一、什么是无损检测?无损检测是工业发展必不可少的有效工具,在一定程度上反映了一个国家的工业发展水平,其重要性已得到公认。
我国在1978年11月成立了全国性的无损检测学术组织——中国机械工程学会无损检测分会。
此外,冶金、电力、石油化工、船舶、宇航、核能等行业还成立了各自的无损检测学会或协会;部分省、自治区、直辖市和地级市成立了省(市)级、地市级无损检测学会或协会;东北、华东、西南等区域还各自成立了区域性的无损检测学会或协会。
我国目前开设无损检测专业课程的高校有大连理科大学、西安工程大学、南昌航空大学等院校。
在无损检测的基础理论研究和仪器设备开发方面,我国与世界先进国家之间仍有较大的差距,特别是在红外、声发射等高新技术检测设备方面更是如此。
二、常用的无损检测方法射线照相检验(RT)、超声检测(UT)、磁粉检测(MT)和液体渗透检测(PT) 四种。
其他无损检测方法:涡流检测(ET)、声发射检测(AT)、热像/红外(TIR)、泄漏试验(LT)、交流场测量技术(ACFMT)、漏磁检验(MFL)、远场测试检测方法(RFT)等。
无损检测的应用特点1.不损坏试件材质、结构无损检测的最大特点就是能在不损坏试件材质、结构的前提下进行检测,所以实施无损检测后,产品的检查率可以达到100%。
但是,并不是所有需要测试的项目和指标都能进行无损检测,无损检测技术也有自身的局限性。
某些试验只能采用破坏性试验,因此,在目前无损检测还不能代替破坏性检测。
也就是说,对一个工件、材料、机器设备的评价,必须把无损检测的结果与破坏性试验的结果互相对比和配合,才能作出准确的评定。
2.正确选用实施无损检测的时机在无损检测时,必须根据无损检测的目的,正确选择无损检测实施的时机。
3.正确选用最适当的无损检测方法由于各种检测方法都具有一定的特点,为提高检测结果可靠性,应根据设备材质、制造方法、工作介质、使用条件和失效模式,预计可能产生的缺陷种类、形状、部位和取向,选择合适的无损检测方法。
4.综合应用各种无损检测方法任何一种无损检测方法都不是万能的,每种方法都有自己的优点和缺点。
应尽可能多用几种检测方法,互相取长补短,以保障承压设备安全运行。
此外在无损检测的应用中,还应充分认识到,检测的目的不是片面追求过高要求的“高质量”,而是应在充分保证安全性和合适风险率的前提下,着重考虑其经济性。
只有这样,无损检测在承压设备的应用才能达到预期目的。
常用的无损检测方法无损检测方法很多,据美国国家宇航局调研分析,其认为可分为六大类约70余种。
但在实际应用中比较常见的有以下五种,也就是我们所说的常规的无损检测方法:常规无损检测方法目视检测 Visual Testing (缩写 VT);超声检测 Ultrasonic Testing(缩写 UT);射线检测Radiographic Testing(缩写 RT);磁粉检测 Magnetic particle Testing(缩写 MT);渗透检测 Penetrant Testing (缩写 PT);涡流检测 Eddy Current Testing (缩写 ET);声发射 Acoustic emission (缩写 AE)。
1、目视检测(VT)目视检测,是国内实施的比较少,但在国际上非常重视的无损检测第一阶段首要方法。
按照国际惯例,目视检测要先做,以确认不会影响后面的检验,再接着做四大常规检验。
例如BINDT的PCN认证,就有专门的VT1、2、3级考核,更有专门的持证要求。
经过国际级的培训,其VT检测技术会比较专业,而且很受国际机构的重视。
VT常常用于目视检查焊缝,焊缝本身有工艺评定标准,都是可以通过目测和直接测量尺寸来做初步检验,发现咬边等不合格的外观缺陷,就要先打磨或者修整,之后才做其他深入的仪器检测。
例如焊接件表面和铸件表面较多VT做的比较多,而锻件就很少,并且其检查标准是基本相符的。
2、超声波检测(UT)(1)超声波检测的定义:通过超声波与试件相互作用,就反射、透射和散射的波进行研究,对试件进行宏观缺陷监测、几何特性测量、组织结构和力学性能变化的检测和表征,并进而对其特定应用性进行评价的技术。
(2)、超声波工作的原理:主要是基于超声波在试件中的传播特性。
a.声源产生超声波,采用一定的方式使超声波进入试件;b.超声波在试件中传播并与试件材料以及其中的缺陷相互作用,使其传播方向或特征被改变;c.改变后的超声波通过检测设备被接收,并可对其进行处理和分析;d.根据接收的超声波的特征,评估试件本身及其内部是否存在缺陷及缺陷的特性。
(3)、超声波检测的优点:a.适用于金属、非金属和复合材料等多种制件的无损检测;b.穿透能力强,可对较大厚度范围内的试件内部缺陷进行检测。
如对金属材料,可检测厚度为1~2mm的薄壁管材和板材,也可检测几米长的钢锻件;c.缺陷定位较准确;d.对面积型缺陷的检出率较高;e.灵敏度高,可检测试件内部尺寸很小的缺陷;f.检测成本低、速度快,设备轻便,对人体及环境无害,现场使用较方便。
(4)、超声波检测的局限性:a.对试件中的缺陷进行精确的定性、定量仍须作深入研究;b.对具有复杂形状或不规则外形的试件进行超声检测有困难;c.缺陷的位置、取向和形状对检测结果有一定影响;d.材质、晶粒度等对检测有较大影响;e.以常用的手工A型脉冲反射法检测时结果显示不直观,且检测结果无直接见证记录。
(5)、超声检测的适用范围:a.从检测对象的材料来说,可用于金属、非金属和复合材料;b.从检测对象的制造工艺来说,可用于锻件、铸件、焊接件、胶结件等;c.从检测对象的形状来说,可用于板材、棒材、管材等;d.从检测对象的尺寸来说,厚度可小至1mm,也可大至几米;e.从缺陷部位来说,既可以是表面缺陷,也可以是内部缺陷。
3、射线照相法(RT)是指用X射线或g射线穿透试件,以胶片作为记录信息的器材的无损检测方法,该方法是最基本的,应用最广泛的一种非破坏性检验方法。
(1)、射线照相检验法的原理:射线能穿透肉眼无法穿透的物质使胶片感光,当X射线或r射线照射胶片时,与普通光线一样,能使胶片乳剂层中的卤化银产生潜影,由于不同密度的物质对射线的吸收系数不同,照射到胶片各处的射线能量也就会产生差异,便可根据暗室处理后的底片各处黑度差来判别缺陷。
(2)、射线照相法的特点:射线照相法的优点和局限性总结如下:a.可以获得缺陷的直观图像,定性准确,对长度、宽度尺寸的定量也比较准确;b.检测结果有直接记录,可长期保存;c. 对体积型缺陷(气孔、夹渣、夹钨、烧穿、咬边、焊瘤、凹坑等)检出率很高,对面积型缺陷(未焊透、未熔合、裂纹等),如果照相角度不适当,容易漏检;d.适宜检验厚度较薄的工件而不宜较厚的工件,因为检验厚工件需要高能量的射线设备,而且随着厚度的增加,其检验灵敏度也会下降;e.适宜检验对接焊缝,不适宜检验角焊缝以及板材、棒材、锻件等;f.对缺陷在工件中厚度方向的位置、尺寸(高度)的确定比较困难;g.检测成本高、速度慢;h.具有辐射生物效应,能够杀伤生物细胞,损害生物组织,危及生物器官的正常功能。
总的来说,RT的特性是——定性更准确,有可供长期保存的直观图像,总体成本相对较高,而且射线对人体有害,检验速度会较慢。
无损检测X光机用于工业部门的工业检验X光机通常为工业无损检测X光机(无损耗检测),此类便携式X光机可以检测各类工业元器件、电子元件、电路内部。
例如插座插头橡胶内部线路连接,二极管内部焊接等的检测。
BJI-XZ、BJI-UC等工业检测X光机是可连接电脑进行图像处理的X光机,此类工业检测便携式X光机为工厂家电维修领域提供了出色的解决方案。
4、磁粉检测(MT)(1). 磁粉检测的原理:铁磁性材料和工件被磁化后,由于不连续性的存在,使工件表面和近表面的磁力线发生局部畸变而产生漏磁场,吸附施加在工件表面的磁粉,形成在合适光照下目视可见的磁痕,从而显示出不连续性的位置、形状和大小。
(2). 磁粉检测的适用性和局限性:a.磁粉探伤适用于检测铁磁性材料表面和近表面尺寸很小、间隙极窄(如可检测出长0.1mm、宽为微米级的裂纹),目视难以看出的不连续性。
b.磁粉检测可对原材料、半成品、成品工件和在役的零部件检测,还可对板材、型材、管材、棒材、焊接件、铸钢件及锻钢件进行检测。
c.可发现裂纹、夹杂、发纹、白点、折叠、冷隔和疏松等缺陷。
d.磁粉检测不能检测奥氏体不锈钢材料和用奥氏体不锈钢焊条焊接的焊缝,也不能检测铜、铝、镁、钛等非磁性材料。
对于表面浅的划伤、埋藏较深的孔洞和与工件表面夹角小于20°的分层和折叠难以发现。
5、渗透检测(PT)(1).液体渗透检测的基本原理:零件表面被施涂含有荧光染料或着色染料的渗透剂后,在毛细管作用下,经过一段时间,渗透液可以渗透进表面开口缺陷中;经去除零件表面多余的渗透液后,再在零件表面施涂显像剂,同样,在毛细管的作用下,显像剂将吸引缺陷中保留的渗透液,渗透液回渗到显像剂中,在一定的光源下(紫外线光或白光),缺陷处的渗透液痕迹被现实,(黄绿色荧光或鲜艳红色),从而探测出缺陷的形貌及分布状态。
(2).渗透检测的优点:a.可检测各种材料,金属、非金属材料;磁性、非磁性材料;焊接、锻造、轧制等加工方式;b.具有较高的灵敏度(可发现0.1μm宽缺陷)c.显示直观、操作方便、检测费用低。
(3).渗透检测的缺点及局限性:a.它只能检出表面开口的缺陷;b.不适于检查多孔性疏松材料制成的工件和表面粗糙的工件;c.渗透检测只能检出缺陷的表面分布,难以确定缺陷的实际深度,因而很难对缺陷做出定量评价。
检出结果受操作者的影响也较大。
6、涡流检测(ET)(1).涡流检测的基本原理:将通有交流电的线圈置于待测的金属板上或套在待测的金属管外(见图)。
这时线圈内及其附近将产生交变磁场,使试件中产生呈旋涡状的感应交变电流,称为涡流。
涡流的分布和大小,除与线圈的形状和尺寸、交流电流的大小和频率等有关外,还取决于试件的电导率、磁导率、形状和尺寸、与线圈的距离以及表面有无裂纹缺陷等。
因而,在保持其他因素相对不变的条件下,用一探测线圈测量涡流所引起的磁场变化,可推知试件中涡流的大小和相位变化,进而获得有关电导率、缺陷、材质状况和其他物理量(如形状、尺寸等)的变化或缺陷存在等信息。