高一物理力学专题提升专题05平衡中的临界问题
专题五:力学平衡中的极值临界问题

专题五:力学平衡中的极值和临界问题典例:如图所示,在绳下端挂一质量为m 的物体,用力F 拉绳使悬绳偏离竖直方向α角,且方向,当拉力F 与水平方向的夹角θ多大时F 有最小值?最小值是多少?解法一、常规解析法:以结点O 为研究对象,画出受力图,建立坐标轴,如图所示:根据平衡条件有:Fcos θ-Tsin α=0Fsin θ+Tcos α-mg =0由两式消去T可得F =mgsin α/cos (α-θ)所以当(α-θ)=0,即θ=α时F有最小值,且F min = mgsin α。
解法二:矢量图解法:结点O受三个力作用而平衡,将三个力首尾相接应构成封闭的矢量三角形。
因重力mg 的大小和方向都不变,拉力T 的方向不变,随着力F 方向的缓慢变化,可作出多种情况下的矢量三角形,如图所示。
由图可知,当F 与T 垂直,根据直角三角形的知识可得F min = mgsin α。
1、如图2所示,细绳MO 与NO 所能承受的最大拉力相同,长度MO >NO ,则在不断啬重物G 重力的过程中(绳OC 不会断)A 、 ON 绳先被拉断B OM 绳先被拉断C ON 绳和OM 绳同时被拉断D 因无具体数据,故无法判断哪条绳先被拉断2 如图所示,斜绳(与水平方向夹450)与水平绳最大承受拉力分别为20N 和10N ,竖直绳抗拉能力足够强,三绳系于O 点,问各绳均不断时,最多可悬吊多重的物体?1题 2题 3题3.如图所示,质量为5.5kg 的木块,与竖直墙壁间的动摩擦因数μ=0.5,木块在与竖直方向成θ=37o 向上的推力F 作用下,紧贴墙壁以大小为2m/s 的速度滑行,则推力F 的大小为多少?4 如图所示,用一根长为L 的细绳一端固定在O 点,另一端悬挂质量为M 的小球A,为使细绳与竖直方向成30度角且绷紧,小球A 处于静止,对小球施加的最小的力等于多少?。
5 平衡中的临界问题

【专题概述】1.临界状态:物体由某种物理状态变化为另一种物理状态时,中间发生质的飞跃的转折状态,通常称之为临界状态。
2.临界问题:涉及临界状态的问题叫做临界问题。
3. 解决临界问题的基本思路(1)认真审题,仔细分析研究对象所经历的变化的物理过程,找出临界状态。
(2)寻找变化过程中相应物理量的变化规律,找出临界条件。
(3)以临界条件为突破口,列临界方程,求解问题4.三类临界问题的临界条件(1)相互接触的两个物体将要脱离的临界条件是:相互作用的弹力为零。
(2)绳子松弛的临界条件是:绳中拉力为零页脚内容1(3)存在静摩擦的连接系统,当系统外力大于最大静摩擦力时,物体间不一定有相对滑动,相对滑动与相对静止的临界条件是:静摩擦力达最大值临界现象是量变质变规律在物理学上的生动体现。
即在一定的条件下,当物质的运动从一种形式或性质转变为另一种形式或性质时,往往存在着一种状态向另一种状态过渡的转折点,这个转折点常称为临界点,这种现象也就称为临界现象.如:静力学中的临界平衡;机车运动中的临界速度;振动中的临界脱离;碰撞中的能量临界、速度临界及位移临界;电磁感应中动态问题的临界速度或加速度;光学中的临界角;光电效应中的极限频率;带电粒子在磁场中运动的边界临界;电路中电学量的临界转折等.解决临界问题,一般有两种方法,第一是以定理、定律为依据,首先求出所研究问题的一般规律和一般解的形式,然后再分析、讨论临界特殊规律和特殊解;第二是直接分析、讨论临界状态,找出临界条件,从而通过临界条件求出临界值。
【典例精讲】典例1:倾角为θ=37°的斜面与水平面保持静止,斜面上有一重为G的物体A,物体A与斜面间的动摩擦因数μ=0.5。
现给A施加一水平力F,如图所示。
设最大静摩擦力与滑动摩擦力相等(sin37°=0.6,cos37°=0.8),如果物体A能在斜面上静止,水平推力F与G的比值不可能是()页脚内容2A.3B.2C.1D.0.5典例2:如图所示,物体A的质量为2 kg,两轻绳AB和AC(L AB=2L AC)的一端连接在竖直墙上,另一端系在物体A上.现在物体A上施加一个与水平方向成60°角的拉力F,要使两绳都能伸直,试求拉力F 大小的取值范围.(g取10 m/s2)典例3:一个质量为1kg的物体放在粗糙的水平地面上,今用最小的拉力拉它,使之做匀速运动,已知这个最小拉力为6N,g=10m/s2,则下列关于物体与地面间的动摩擦因数μ,最小拉力与水平方向的夹角θ,正确的是()页脚内容3A.μ=,θ=0B.μ=,tanθ=页脚内容4C.μ=,tanθ=D.μ=,tanθ=典例4:拖把是由拖杆和拖把头构成的擦地工具(如图).设拖把头的质量为m,拖杆质量可以忽略;拖把头页脚内容5与地板之间的动摩擦因数为常数,重力加速度为g,某同学用该拖把在水平地板上拖地时,沿拖杆方向推拖把,拖杆与竖直方向的夹角为.(1)若拖把头在地板上匀速移动,求推拖把的力的大小.(2)设能使该拖把在地板上从静止刚好开始运动的水平推力与此时地板对拖把的正压力的比值为页脚内容6.已知存在一临界角,若,则不管沿拖杆方向的推力多大,都不可能使拖把从静止开始运动.求这一临界角的正切页脚内容7.典例5:如图所示,质量为m的物体,放在一固定斜面上,当斜面倾角为时恰能沿斜面匀速下滑.对物体施加一大小为F的水平向右恒力,物体可沿斜面匀速向上滑行.设最大静摩擦力等于滑动摩擦力,当斜面倾角增大并超过某一临界角页脚内容8时,不论水平恒力F多大,都不能使物体沿斜面向上滑行,试求: (1)物体与斜面间的动摩擦因数;(2)这一临界角的大小.典例6 如图所示,两个质量均为m的小环套在一水平放置的粗糙长杆上,两根长度均为l的轻绳一端系在小环上,另一端系在质量为M的木块上,两个小环之间的距离也为l,小环保持静止.页脚内容9试求:(1)小环对杆的压力;(2)小环与杆之间的动摩擦因数至少为多大?【总结提升】所谓极值问题,一般而言,就是在一定条件下求最佳结果所需满足的极值条件.求解极值问题的方法从大的角度可分为物理方法和数学方法。
高中物理专题-平衡中的临界高中物理一轮专题复习

平衡中的临界、极值问题一、知识要点临界问题是指:当某种物理现象(或物理状态)变为另一种物理现象(或另一物理状态)的转折状态叫临界状态.可理解成“恰好出现”或“恰好不出现”.解决此类问题重在形成清晰的物理图景,分析清楚物理过程,从而找出临界条件或达到极值的条件。
解决问题的过程中经常要使用到“解析法”、“矢量三角”及“极限思想”等方法的使用常见问题的出现:1.与摩擦力相关的临界;2.与最大张力相关的临界;3.与弹力发生突然变化的临界二、例题分析例题1、如图所示,跨过定滑轮的轻绳两端,分别系着物体A 和B ,物体A 放在倾角为α的斜面上,已知物体A 的质量为m ,物体B 和斜面间动摩擦因数为μ(μ<tg θ),滑轮的摩擦不计,要使物体静止在斜面上,求物体B 质量的取值范围.练习1.如图所示,一球A 夹在竖直墙与三角劈B 的斜面之间,三角劈的重力为G ,劈的底部与水平地面间的动摩擦因数为μ,劈的斜面与竖直墙面是光滑的。
问:欲使三角劈静止不动,球的重力不能超过多大?(设劈的最大静摩擦力等于滑动摩擦力)例题2、如图所示,半径为R ,重为G有厚为h 的木块,若不计摩擦,用至少多大的水平推力F 开地面.例题3、重为G 的木块与水平地面间的动摩擦因数为,的作用力F练习2、如图,重为G 的木块,在力F 若木块与地面间的动摩擦因数为μ,F 与水平方向成α过某一个值时,不论推力F例题4、如图所示,物体的质量为2kg ,两根轻绳AB 和AC 于竖直墙上,另一端系于物体上,60°的拉力F ,若要使两绳都能伸直,求拉力F 的大小范围。
同步练习:1.三段不可伸长的细绳OA 、OB 、OC 能承受的最大拉力相同,它们共同悬挂一重物,如图所示,其中OB 是水平的,A 端、B 端固定.若逐渐增加C 端所挂物体的质量,则最先断的绳( ) A.必定是OA B.必定是OBC.必定是OCD.可能是OB ,也可能是OC2.如图所示,能承受最大拉力为10N 的细线OA 与竖直方向成角,能承受最大拉力为5N 的细线OB 水平,细线OC 能承受足够大的拉力,为使OA 、OB 均不被拉断,OC 下端所悬挂物体的最大重力是多少?3.如图所示,C 点为光滑转轴,绳AB 能承受的最大拉力为1000 N ,杆AC 能承受的最大压力为2000 N.问A 点最多能挂多重的物体?(绳、杆的自重不计)4.一个底面粗糙、质量为M 的劈放在粗糙的水平面上,劈的斜面光滑且与水平面夹角为30°,用一端固定的轻绳系一小球,小球放在斜面上,轻绳与斜面的夹角为 30°,如图所示.若地面对劈的最大静摩擦力等于地面对劈的支持力的k 倍,为使整个系统静止,k。
5-平衡中的临界问题

【专题概述】1.临界状态:物体由某种物理状态变化为另一种物理状态时,中间发生质的飞跃的转折状态,通常称之为临界状态。
2.临界问题:涉及临界状态的问题叫做临界问题。
3. 解决临界问题的基本思路(1)认真审题,仔细分析研究对象所经历的变化的物理过程,找出临界状态。
(2)寻找变化过程中相应物理量的变化规律,找出临界条件。
(3)以临界条件为突破口,列临界方程,求解问题4.三类临界问题的临界条件(1)相互接触的两个物体将要脱离的临界条件是:相互作用的弹力为零。
(2)绳子松弛的临界条件是:绳中拉力为零(3)存在静摩擦的连接系统,当系统外力大于最大静摩擦力时,物体间不一定有相对滑动,相对滑动与相对静止的临界条件是:静摩擦力达最大值临界现象是量变质变规律在物理学上的生动体现。
即在一定的条件下,当物质的运动从一种形式或性质转变为另一种形式或性质时,往往存在着一种状态向另一种状态过渡的转折点,这个转折点常称为临界点,这种现象也就称为临界现象.如:静力学中的临界平衡;机车运动中的临界速度;振动中的临界脱离;碰撞中的能量临界、速度临界及位移临界;电磁感应中动态问题的临界速度或加速度;光学中的临界角;光电效应中的极限频率;带电粒子在磁场中运动的边界临界;电路中电学量的临界转折等.解决临界问题,一般有两种方法,第一是以定理、定律为依据,首先求出所研究问题的一般规律和一般解的形式,然后再分析、讨论临界特殊规律和特殊解;第二是直接分析、讨论临界状态,找出临界条件,从而通过临界条件求出临界值。
【典例精讲】典例1:倾角为θ=37°的斜面与水平面保持静止,斜面上有一重为G的物体A,物体A 与斜面间的动摩擦因数μ=0.5。
现给A施加一水平力F,如图所示。
设最大静摩擦力与滑动摩擦力相等(sin37°=0.6,cos37°=0.8),如果物体A能在斜面上静止,水平推力F与G 的比值不可能是()A.3B.2C.1D.0.5典例2:如图所示,物体A的质量为2 kg,两轻绳AB和AC(L AB=2L AC)的一端连接在竖直墙上,另一端系在物体A上.现在物体A上施加一个与水平方向成60°角的拉力F,要使两绳都能伸直,试求拉力F大小的取值范围.(g取10 m/s2)典例3:一个质量为1kg的物体放在粗糙的水平地面上,今用最小的拉力拉它,使之做匀速运动,已知这个最小拉力为6N,g=10m/s2,则下列关于物体与地面间的动摩擦因数μ,最小拉力与水平方向的夹角θ,正确的是()A.μ=,θ=0B.μ=,tanθ=C.μ=,tanθ=D.μ=,tanθ=典例4:拖把是由拖杆和拖把头构成的擦地工具(如图).设拖把头的质量为m,拖杆质量可以忽略;拖把头与地板之间的动摩擦因数为常数,重力加速度为g,某同学用该拖把在水平地板上拖地时,沿拖杆方向推拖把,拖杆与竖直方向的夹角为.(1)若拖把头在地板上匀速移动,求推拖把的力的大小.(2)设能使该拖把在地板上从静止刚好开始运动的水平推力与此时地板对拖把的正压力的比值为.已知存在一临界角,若,则不管沿拖杆方向的推力多大,都不可能使拖把从静止开始运动.求这一临界角的正切.典例5:如图所示,质量为m的物体,放在一固定斜面上,当斜面倾角为时恰能沿斜面匀速下滑.对物体施加一大小为F的水平向右恒力,物体可沿斜面匀速向上滑行.设最大静摩擦力等于滑动摩擦力,当斜面倾角增大并超过某一临界角时,不论水平恒力F多大,都不能使物体沿斜面向上滑行,试求:(1)物体与斜面间的动摩擦因数;(2)这一临界角的大小.典例6 如图所示,两个质量均为m的小环套在一水平放置的粗糙长杆上,两根长度均为l的轻绳一端系在小环上,另一端系在质量为M的木块上,两个小环之间的距离也为l,小环保持静止.试求:(1)小环对杆的压力;(2)小环与杆之间的动摩擦因数至少为多大?【总结提升】所谓极值问题,一般而言,就是在一定条件下求最佳结果所需满足的极值条件.求解极值问题的方法从大的角度可分为物理方法和数学方法。
高中教育物理必修一《拓展课五 动态平衡及平衡中的临界、极值问题》教学课件

拓展2 平衡状态下的临界与极值问题 【归纳】 1.平衡中的极值问题 (1)问题界定:物体平衡的极值问题,一般指在力的变化过程中涉及 力的最大值和最小值的问题. (2)分析方法: ①解析法:根据物体平衡的条件列出方程,在解方程时,采用数学 知识求极值或者根据物体临界条件求极值. ②图解法:根据物体平衡的条件作出力的矢量图,画出平行四边形 或者矢量三角形进行动态分析,确定最大值或最小值.
答案:D
例 3 [2023·陕西安康高一上期末](多选)光滑半圆弧形轻杆固定在地 面上,轻绳一端跨过定滑轮,另一端连接一穿在轻杆上的小球,拉动 轻绳,使小球从A点缓慢运动到B点的过程中,下列说法正确的是 ()
A.轻杆对小球的支持力变小 B.轻杆对小球的支持力不变 C.轻绳对小球的拉力变小 D.轻绳对小球的拉力先变小再变大
例 2 如图所示,质量为m的球放在倾角为α的光滑斜面上,在斜面上 有一光滑且不计厚度的木板挡住球,使之处于静止状态.今使挡板与 斜面的夹角β缓慢增大,在此过程中,斜面对球的支持力FN1和挡板对 球的压力FN2的变化情况为( )
A.FN1、FN2都是先减小后增大 B.FN1一直减小,FN2先增大后减小 C.FN1先减小后增大,FN2一直减小 D.FN1一直减小,FN2先减小后增大
3.分析动态平衡问题的方法
方法
步骤
解析法
(1)列平衡方程求出未知量与已知量的关系表达式; (2)根据已知量的变化情况来确定未知量的变化情况
图解法
(1)根据已知量的变化情况,画出平行四边形边、角的变化; (2)确定未知量大小、方向的变化
相似三 角形法
(1)根据已知条件画出两个不同情况对应的力的三角形和空间 几何三角形,确定对应边,利用三角形相似知识列出比例式; (2)确定未知量大小的变化情况
高中物理-平衡中的临界极值问题-答案

微专题4平衡中的临界极值问题1.三力平衡下的极值问题,常用图解法,将力的问题转化为三角形问题求某一边的最小值.2.多力平衡时求极值一般用解析法,由三角函数、二次函数、不等式等求解.3.若物体受包括弹力、摩擦力在内的四个力平衡,可以把弹力、摩擦力两个力合成一个力,该力方向固定不变(与弹力夹角正切值为μ),从而将四力平衡变成三力平衡,再用图解法求解.1.如图所示,两质量均为M=10kg的物体甲、乙静置于水平地面上,两物体与地面间的动摩擦因数均为μ=0.5,两物体通过一根不可伸长的细绳绕过光滑的动滑轮连接,滑轮质量m=1kg,现用一竖直向上的力F拉滑轮,当滑轮拉起至细绳伸直,甲、乙两物体刚要开始滑动时,连接乙的细绳与水平方向的夹角为θ=53°,设最大静摩擦力等于滑动摩擦力,重力加速度g取10m/s2,sin53°=0.8,cos53°=0.6,下列说法正确的是()A.力F的大小为80NB.力F的大小为90NC.轻绳对甲物体的拉力大小为60ND.轻绳对甲物体的拉力大小为80N答案B解析对甲、乙两物体分别受力分析,由平衡可知μ(Mg-F T sin53°)=F T cos53°,解得绳子的拉力F T=50N,则对滑轮受力分析可知F=2F T sin53°+mg=90N,故选B.2.如图两个体重相同的人静止坐在秋千上,两秋千绳子能承受的最大张力是一样的.往两人身上同时慢慢加相同重量的物体,直到绳子断开,则下面的叙述正确的是()A.甲中绳子先断B.甲、乙中绳子同时断C.乙中绳子先断D.不确定答案C解析人的重力和两根绳子拉力的合力等值反向,合力一定,两分力夹角越大,分力越大,所以夹角越大,绳子拉力越大.则乙中绳子容易断,A 、B 、D 错误,C 正确.3.(多选)如图所示,一个重为5N 的大砝码用细线悬挂在O 点,在力F 作用下处于静止状态,现不断调整力F 的方向,但砝码始终静止在如图所示的位置处,则下列说法正确的是()A .调整力F 的方向的过程中,力F 最小值为2.5NB .力F 在竖直方向时,力F 最小C .力F 在竖直方向时,另一侧细线上的张力最小D .当力F 处于水平方向和斜向右上与水平方向夹角60°时,力F 大小相等答案ACD 解析对砝码受力分析如图所示根据平行四边形定则,可知当F 的方向与另一侧细线垂直时,力F 最小,最小值为F min =G sin 30°=2.5N ,故A 正确,B 错误;当力F 在竖直方向时,另一侧细线上的张力F T =0最小,故C 正确;当力F 处于水平方向时,力F 与细线拉力F T 的合力竖直向上,大小等于mg ,由几何关系得F =mg tan 30°=33mg .当力F 处于斜向右上与水平方向夹角为60°时,此时F 、细线拉力F T 与竖直方向的夹角相等,则两力大小相等,合力竖直向上,大小等于mg ,由几何关系得F =mg 2cos 30°=33mg ,故D 正确.4.如图所示,足够长的光滑平板AP 与BP 用铰链连接,平板AP 与水平面成53°角并固定不动,平板BP 可绕水平轴在竖直面内自由转动,质量为m 的均匀圆柱体O 放在两板间,sin 53°=0.8,cos 53°=0.6,重力加速度为g .在使BP 板由水平位置逆时针缓慢转动到竖直位置的过程中,下列说法正确的是()A .平板BP 受到的最小压力为0.8mgB.平板BP受到的最小压力为0C.平板AP受到的最小压力为0.6mgD.平板AP受到的最大压力为1.25mg答案A解析圆柱体受重力,平板AP的弹力F1和平板BP的弹力F2,将F1与F2合成为F,如图:圆柱体一直处于平衡状态,三个力中任意两个力的合力与第三个力等值、反向、共线,故F1与F2的合力F与重力等值、反向、共线;从图中可以看出,BP板由水平位置逆时针缓慢转动过程中,F1越来越大,F2先减小后增大;由几何关系可知,当F2的方向与AP的方向平行(即与F1的方向垂直)时,F2有最小值F2min=45mg,根据牛顿第三定律,平板BP受到的最小压力为45mg,故A正确,B错误;当平板BP沿水平方向时,平板AP对圆柱体的弹力F1=0,即平板AP受到的最小压力为0,故C错误.由图可知,当BP转到竖直方向时,AP对圆柱体的弹力F1最大F1max=mgcos53°=53mg,根据牛顿第三定律知,平板AP受到的最大压力为53mg,故D错误.5.(2022·湖南长郡中学高三月考)固定斜面上的物体A用跨过滑轮的细线与小砂桶相连,连接A的细线与斜面平行,不计细线与滑轮间的摩擦力,若要使物体A在斜面上保持静止,砂桶中砂的质量有一定的范围,已知其最大值和最小值分别为m1和m2(m2>0),重力加速度为g,由此可求出()A.物体A的质量B.斜面的倾角C.物体A与斜面间的动摩擦因数D.物体A与斜面间的最大静摩擦力答案D解析设物体A的质量为M,砂桶的质量为m0,物体与斜面间的最大静摩擦力为F fm,斜面倾角为θ,由平衡条件可得物体A将要上滑时,有m0g+m1g=Mg sinθ+F fm.物体A将要下滑时,有m 0g +m 2g =Mg sin θ-F fm ,可得F fm =m 1g -m 2g 2,即能求解物体A 与斜面间的最大静摩擦力,不能求出其他的物理量,则A 、B 、C 错误,D 正确.6.三角形具有稳定性,生活中随处可见利用三角形支架固定的物体.浴室里洗手盆下的支架、空调外挂机的支架、手机支架等如图甲所示.现有一个悬挂物体的支架,如图乙所示,倾斜支撑杆a 端用铰链固定在墙上,且Oa 杆不可伸长,拉杆bO 左端可上下移动和旋转并且可伸缩以便调节拉杆的长度,轻绳一端固定在O 点,另一端悬挂重物.已知初始时bO 杆水平,aO 杆与竖直方向成60°角,悬挂物质量为m ,重力加速度为g .(1)初始状态下,aO 、bO 杆的作用力大小分别为多少?(2)保持O 点不动,调节拉杆的长度同时左端向上移动到某点c 后固定,可使拉杆上的作用力最小,此时cO 与竖直墙面的夹角为多少?此时aO 、cO 的作用力大小分别为多少?答案(1)2mg 3mg (2)30°12mg 32mg 解析(1)对O 点受力分析如图a 所示,可得F a cos 60°=mg ,F a sin 60°=F b ,联立可得F a =2mg ,F b =3mg(2)重力大小方向不变,aO 方向不变,分析可知,当cO 与aO 垂直时,cO 上的拉力最小,如图b 所示,由几何关系可得此时cO 与竖直墙面的夹角为30°,受力分析如图所示,可得可得F a ′=12mg ,F c =32mg .7.筷子是中国人常用的饮食工具,也是中华饮食文化的标志之一.筷子在先秦时称为“梜”,汉代时称“箸”,明代开始称“筷”.如图所示,用筷子夹质量为m 的小球,筷子均在竖直平面内,且筷子和竖直方向的夹角均为θ,已知小球与筷子之间的动摩擦因数为μ(μ<tan θ),最大静摩擦力等于滑动摩擦力,重力加速度为g .为使小球静止,求每根筷子对小球的压力F N 的取值范围.答案mg 2(sin θ+μcos θ)≤F N ≤mg 2(sin θ-μcos θ)解析筷子对小球的压力最小时,小球恰好不下滑,小球所受最大静摩擦力沿筷子向上,如图甲所示.有2F N sin θ+2F f cos θ=mg ,F f =μF N ,联立解得F N =mg 2(sin θ+μcos θ),筷子对小球的压力最大时,小球恰好不上滑,小球所受最大静摩擦力沿筷子向下,如图乙所示.有2F N ′sin θ=mg +2F f ′cos θ,F f ′=μF N ′,联立解得F N ′=mg 2(sin θ-μcos θ),综上可得,筷子对小球的压力的取值范围为mg 2(sin θ+μcos θ)≤F N ≤mg 2(sin θ-μcos θ).8.如图,倾角为α=37°的粗糙斜劈固定在水平面上,质量为5kg 的物体a 放在斜面上且与斜面间的动摩擦因数μ=0.5.一根平行于斜面的不可伸长的轻质细线一端固定在物体a 上,另一端绕过两个光滑小滑轮固定在c 处,滑轮2下吊有一物体b 且β=74°,物体a 受到斜劈的最大静摩擦力等于滑动摩擦力,g 取10m/s 2,sin 37°=0.6,cos 37°=0.8.求:保证系统静止时,b 的质量范围.答案1.6kg ≤m b ≤8kg 解析a 刚要下滑时b 的质量最小,a 受到沿斜面向上的静摩擦力作用,m a g sin α=μm a g cos α+F T.研究b的受力情况2F T cos β2=m b1g,联立解得m b1=1.6kg,a刚好上滑时,a受到沿斜面向下的静摩擦力作用,m a g sinα+μm a g cosα=F T′,研究b的受力情况2F T′cos β2=m b2g,联立解得m b2=8kg.综上可知,保证系统静止时,b的质量范围为1.6kg≤m b≤8kg.。
专题05 圆周运动的两种模型和临界问题【知识梳理】高一物理下学期期中专项复习(新教材人教版)

专题05考点1:竖直平面内圆周运动的两种模型1.模型建立(1)轻绳模型小球沿竖直光滑轨道内侧做圆周运动,小球在细绳作用下在竖直平面内做圆周运动,都是轻绳模型,如图所示。
(2)轻杆模型小球在竖直放置的光滑细管内做圆周运动,小球被一轻杆拉着在竖直平面内做圆周运动,都是轻杆模型,如图所示。
2.模型分析比较项目轻绳模型轻杆模型常见类型过最高点的临界条件小球恰能做圆周运动时,由mg=mv2临r得v临=gr小球恰能做圆周运动时,v临=0讨论分析(1)过最高点时,v≥gr,F+mg=mv2r,绳、轨道对球产生弹力F(2)若计算得到v<gr,不能过最高点,在到达最高点前小球已经脱离了圆轨道(1)当v=0时,F N=mg,F N为支持力,方向沿半径背离圆心(2)当0<v<gr时,mg-F N=mv2r,F N背离圆心,随v的增大而减小(3)当v=gr时,F N=0(4)当v>gr时,F N+mg=mv2r,F N指向圆心并随v的增大而增大考点2:圆周运动的临界问题1.关于匀速圆周运动的临界问题,无非是临界速度与临界力的问题,具体来说,主要是与绳的拉力、弹簧的拉力、接触面的弹力和摩擦力等相关。
在这类问题中,要特别注意分析物体做圆周运动的向心力来源,考虑达到临界条件时物体所处的状态,即临界速度、临界角速度,然后分析该状态下物体的受力特点,结合圆周运动知识,列方程求解。
常见情况有以下几种:(1)与绳的弹力有关的圆周运动临界问题。
(2)因静摩擦力存在最值而产生的圆周运动临界问题。
(3)受弹簧等约束的匀速圆周运动临界问题。
(4)与斜面有关的圆周运动临界问题。
2.三类常见的临界条件(1)接触与脱离的临界条件:弹力F N=0。
(2)相对滑动的临界条件:两物体相接触且处于相对静止时,常存在着静摩擦力,则相对滑动的临界条件是静摩擦力达到最大值。
(3)绳子断裂与松弛的临界条件:绳子所能承受的张力是有限度的,绳子断与不断的临界条件是绳中张力等于它所能承受的最大张力,绳子松弛的临界条件是F T=0。
5.相互作用点点清专题之平衡中的临界与极值问题

4.相互作用点点清专题之平衡中的临界与极值问题一知能掌握1.平衡中的临界问题某种物理现象变化为另一种物理现象或物体从某种特性变化为另一种特性时,发生质的飞跃的转折状态为临界状态,临界状态也可理解为“恰好出现”或“恰好不出现”某种现象的状态,平衡物体的临界状态是指物体所处的平衡状态将要变化的状态,涉及临界状态的问题叫临界问题,解决这类问题一定要注意“恰好出现”或“恰好不出现”的条件。
2.平衡物体中的极值问题极值是指研究的平衡问题中某物理量变化时出现的最大值或最小值。
中学物理的极值问题可分为简单极值问题和条件极值问题,区分的依据就是是否受附加条件限制。
若受附加条件限制,则为条件极值。
3.平衡中的临界极值问题四种方法临界问题往往是和极值问题联系在一起的.解决此类问题重在形成清晰的物理图景,分析清楚物理过程,从而找出临界条件或达到极值的条件.要特别注意可能出现的多种情况.解决临界极值问题的四种方法(1)假设推理法。
假设推理法是解决临界问题的有效方法,即先假设达到临界条件,然后再结合平衡条件及有关知识列方程求解。
(2)解析法:根据物体的平衡条件列出平衡方程,在解方程时采用数学方法求极值.通常用到的数学知识有二次函数求极值、均分定理求极值、讨论分式极值、三角函数极值,以及几何法求极值等。
(3)图解法:此种方法通常适用于物体只在三个力作用下的平衡问题.首先根据平衡条件作出力的矢量三角形,如只受三个力,则这三个力构成封闭矢量三角形,然后根据矢量三角形进行动态分析,确定其最大值或最小值.此法简便、直观。
例如:在三角形中一条边a的大小和方向都确定,另一条边b只能确定其方向(即a、b间的夹角θ确定),欲求第三边c的最小值,则必有c垂直于b时最小,且c=asinθ,如下图所示。
(4)极限法:极限法是一种处理极值问题的有效方法,它是指通过恰当选取某个变化的物理量将问题推向极端(如“极大”“极小”等),从而把比较隐蔽的临界现象暴露出来,快速求解.4.解决临界极值问题的基本步骤是:(1)选对象:明确研究对象;(2)析受力:对对象进行受力分析,画出物体的受力示意图;(3)列方程:结合临界条件、极限条件、平衡方程、几何条件列方程;(4)求结果:根据数学方法计算结果并讨论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题05 平衡中的临界问题【专题概述】1.临界状态:物体由某种物理状态变化为另一种物理状态时,中间发生质的飞跃的转折状态,通常称之为临界状态。
2.临界问题:涉及临界状态的问题叫做临界问题。
3. 解决临界问题的基本思路(1)认真审题,仔细分析研究对象所经历的变化的物理过程,找出临界状态。
(2)寻找变化过程中相应物理量的变化规律,找出临界条件。
(3)以临界条件为突破口,列临界方程,求解问题4.三类临界问题的临界条件(1)相互接触的两个物体将要脱离的临界条件是:相互作用的弹力为零。
(2)绳子松弛的临界条件是:绳中拉力为零(3)存在静摩擦的连接系统,当系统外力大于最大静摩擦力时,物体间不一定有相对滑动,相对滑动与相对静止的临界条件是:静摩擦力达最大值临界现象是量变质变规律在物理学上的生动体现。
即在一定的条件下,当物质的运动从一种形式或性质转变为另一种形式或性质时,往往存在着一种状态向另一种状态过渡的转折点,这个转折点常称为临界点,这种现象也就称为临界现象.如:静力学中的临界平衡;机车运动中的临界速度;振动中的临界脱离;碰撞中的能量临界、速度临界及位移临界;电磁感应中动态问题的临界速度或加速度;光学中的临界角;光电效应中的极限频率;带电粒子在磁场中运动的边界临界;电路中电学量的临界转折等.解决临界问题,一般有两种方法,第一是以定理、定律为依据,首先求出所研究问题的一般规律和一般解的形式,然后再分析、讨论临界特殊规律和特殊解;第二是直接分析、讨论临界状态,找出临界条件,从而通过临界条件求出临界值。
【典例精讲】典例1:倾角为θ=37°的斜面与水平面保持静止,斜面上有一重为G的物体A,物体A 与斜面间的动摩擦因数μ=0.5。
现给A施加一水平力F,如图所示。
设最大静摩擦力与滑动摩擦力相等(sin37°=0.6,cos37°=0.8),如果物体A能在斜面上静止,水平推力F与G 的比值不可能是()A.3B.2C.1D.0.5思路点拨:若物体刚好不下滑,此时静摩擦力沿斜面向上,达到最大值,根据平衡条件和摩擦力公式求出F与G的比值最小值;同理,物体刚好不上滑时求出F与G的比值最大值,得到F与G的比值范围。
【答案】A;典例2:如图所示,物体A的质量为2 kg,两轻绳AB和AC(L AB=2L AC)的一端连接在竖直墙上,另一端系在物体A上.现在物体A上施加一个与水平方向成60°角的拉力F,要使两绳都能伸直,试求拉力F大小的取值范围.(g取10 m/s2)【答案】33 N ≤F ≤33 N典例3:一个质量为1kg 的物体放在粗糙的水平地面上,今用最小的拉力拉它,使之做匀速运动,已知这个最小拉力为6N ,g=10m/s 2,则下列关于物体与地面间的动摩擦因数μ,最小拉力与水平方向的夹角θ,正确的是()A.μ=,θ=0B.μ=,tan θ=C.μ=,tan θ=D.μ=,tan θ=【答案】B 。
【解析】拉力斜向上比较省力,设夹角为θ;此时,对物体受力分析,受拉力、重力、支持力和摩擦力,根据平衡条件,有:典例4:拖把是由拖杆和拖把头构成的擦地工具(如图).设拖把头的质量为m,拖杆质量可以忽略;拖把头与地板之间的动摩擦因数为常数,重力加速度为g,某同学用该拖把在水平地板上拖地时,沿拖杆方向推拖把,拖杆与竖直方向的夹角为.(1)若拖把头在地板上匀速移动,求推拖把的力的大小.(2)设能使该拖把在地板上从静止刚好开始运动的水平推力与此时地板对拖把的正压力的比值为.已知存在一临界角,若,则不管沿拖杆方向的推力多大,都不可能使拖把从静止开始运动.求这一临界角的正切.【答案】(1)(2)【解析】(1)拖把头受到重力、支持力、推力和摩擦力处于平衡,设该同学沿拖杆方向用大小为F的力(2)若不管沿拖杆方向用多大的力不能使拖把从静止开始运动,应有这时(1)式仍满足.联立(1)(5)式得 (6)现考察使上式成立的角的取值范围.注意到上式右边总是大于零,且当F无限大时极限为零,有使上式成立的角满足,这里是题中所定义的临界角,即当时,不管沿拖杆方向用多大的力都推不动拖把.临界角的正切为典例5:如图所示,质量为m的物体,放在一固定斜面上,当斜面倾角为时恰能沿斜面匀速下滑.对物体施加一大小为F的水平向右恒力,物体可沿斜面匀速向上滑行.设最大静摩擦力等于滑动摩擦力,当斜面倾角增大并超过某一临界角时,不论水平恒力F多大,都不能使物体沿斜面向上滑行,试求:(1)物体与斜面间的动摩擦因数;(2)这一临界角的大小.【答案】(1)(2)角典例6 如图所示,两个质量均为m的小环套在一水平放置的粗糙长杆上,两根长度均为l的轻绳一端系在小环上,另一端系在质量为M的木块上,两个小环之间的距离也为l,小环保持静止.试求:(1)小环对杆的压力;(2)小环与杆之间的动摩擦因数至少为多大?【答案】(1) (2).【解析】因为作用在M的两根轻绳长度均为l,且两个小环之间的距离也为l,两个小环的质量均为m,故两个小环对杆的压力大小相等,设每个小环对杆的压力大小为,【总结提升】所谓极值问题,一般而言,就是在一定条件下求最佳结果所需满足的极值条件.求解极值问题的方法从大的角度可分为物理方法和数学方法。
物理方法包括(1)利用临界条件求极值;(2)利用问题的边界条件求极值;(3)利用矢量图求极值。
数学方法包括(1)用三角函数关系求极值;(2)用二次方程的判别式求极值;(3)用不等式的性质求极值。
一般而言,用物理方法求极值直观、形象,对构建模型及动态分析等方面的能力要求较高,而用数学方法求极值思路严谨,对数学能力要求较高.若将二者予以融合,则将相得亦彰,对增强解题能力大有裨益。
在中学物理问题中,有一类问题具有这样的特点,如果从题中给出的条件出发,需经过较复杂的计算才能得到结果的一般形式,并且条件似乎不足,使得结果难以确定,但若我们采用极限思维的方法,将其变化过程引向极端的情况,就能把比较隐蔽的条件或临界现象暴露出来,从而有助于结论的迅速取得。
对于不确定的临界状况、可以采用假设的方法来处理运用假设法解题的基本步骤是:1.明确研究对象;2.画受力图;3.假设可发生的临界现象;4.列出满足所发生的临界现象的平衡方程求解.【专练提升】1、如图所示,木块A放在水平桌面上,木块左端用轻绳与轻质弹簧相连,弹簧的左端固定,用一轻绳跨过光滑定滑轮,一端连接木块右端,另一端连接一砝码盘(装有砝码),轻绳和弹簧都与水平桌面平行,当砝码和砝码盘的总质量为0.5 kg时,整个装置静止,弹簧处于伸长状态,弹力大小为3 N,若轻轻取走盘中的部分砝码,使砝码和砝码盘的总质量减小到0.1 kg,取g=10 m/s2,此时装置将会出现的情况是( )A.弹簧伸长的长度减小 B.桌面对木块的摩擦力大小不变C.木块向右移动 D.木块所受合力将变大【答案】B2、(多选)如图,一光滑的轻滑轮用细绳OO′悬挂于O点;另一细绳跨过滑轮,其一端悬挂物块a,另一端系一位于水平粗糙桌面上的物块b.外力F向右上方拉b,整个系统处于静止状态.若F方向不变,大小在一定范围内变化,物块b仍始终保持静止,则( )A.绳OO′的张力也在一定范围内变化B.物块b所受到的支持力也在一定范围内变化C.连接a和b的绳的张力也在一定范围内变化D.物块b与桌面间的摩擦力也在一定范围内变化【答案】BD3、质量为m=0.8 kg的砝码悬挂在轻绳PA和PB的结点上并处于静止状态,PA与竖直方向的夹角37°,PB沿水平方向,质量为M=10 kg的木块与PB相连,静止于倾角为37°的斜面上,如图所示.(取g=10 m/s2,sin 37°=0.6)求:(1)轻绳PB拉力的大小;(2)木块所受斜面的摩擦力和弹力大小.【答案】(1)6 N (2)64.8 N 76.4 N【解析】(1)对点P受力分析如图所示根据共点力作用下物体的平衡条件得:F B-F A sin 37°=0F A cos 37°-mg=0联立解得:F B== N=6 N故轻绳PB拉力的大小为6 N(2)对木块受力分析如图所示4. 如下图所示,一个半球形的碗放在桌面上,碗口水平,O点为其球心,碗的内表面及碗口是光滑的一根细线跨在碗口上,线的两端分别系有质量为m1和m2的小球,当它们处于平衡状态时,质量为m1的小球与O点的连线与水平线的夹角为α=60°,两小球的质量比为( )A. B. C. D.【答案】A【解析】由F N与F T水平方向合力为零可知,F N=F T;竖直方向有2F T cos 30°=m1g,又F T=m2g,从而2m2g×=m1g,解得=5.某同学设计了一个验证平行四边形定则的实验,装置如下图所示.系着小物体m1、m2的细线绕过光滑小滑轮与系着小物体m3的细线连接在O点,当系统达到平衡时绕过滑轮的两细线与竖直方向夹角分别为37°和53°,则三个小物体的质量之比m1∶m2∶m3为(sin 37°=0.6,sin 53°=0.8)( )A. 3∶4∶5 B. 4∶3∶5C. 4∶5∶3 D. 3∶5∶4【答案】B6.有三个质量相等、半径为r的圆柱体,同置于一块光滑圆弧曲面上,为了使下面两圆柱体不致分开,则圆弧曲面的半径R最大是多少?【答案】(2+1)r【解析】设下面圆柱对上面圆柱的支持力为F,圆弧曲面对下面圆柱的支持力为F N,对上面圆柱受力分析,有2F cos 30°=mg①对整体受力分析有2F N cos θ=3mg②下面两圆柱恰好不分开时,对下面右侧圆柱受力分析,如图所示,。