数字集成电路_课件1..

合集下载

《数字集成电路》课件

《数字集成电路》课件

1 滤波
去除噪声、增强信号的关键技术。
2 变换
将信号在时域与频域之间转换的方法。
3 压缩
减少数据量,方便存储和传输。
数字信号处理中的滤波器设计
FIR滤波器
时域响应仅有有限个点,稳定性好。
IIR滤波器
时域响应呈指数衰减,延时较小。
模拟/数字混合信号集成电路
1
基础理论
混合信号电路设计所需的模拟电路与数字电路基础知识。
时序逻辑电路
触发器与锁存器
用于存储时钟信号冲突消除和数 据暂存。
计数器
移位寄存器
用于计算和记录触发事件的数量。
用于数据移位操作,实现数据的 串行传输。
数字信号处理技术
数字信号处理(DSP)是用数字计算机或数字信号处理器对原始信号进行处理、分析和存储的一 种技术。它在通信、音频处理和图像处理等领域具有广泛应用。
《数字集成电路》PPT课 件
数字集成电路PPT课件大纲: 1. 什么是数字集成电路 2. 数字集成电路的分类和结构
数字电路设计的流程
1
需求分析
确定数字电路的功能与性能要求,并定义输入输出及约束条件。
2
电路设计
利用逻辑门、触发器等基本组件进行数字电路设计。
3
电路仿真
使用仿真软件验证数字电路中的电气特性和功能。
2 低功耗设计
3 增强型通信
减少功耗,延长电池寿命。
提升通信性能和速度。
2
模拟数字转换
模拟和数字信号之间的转换方法和技术。
3
功耗与噪声
如何平衡功耗Βιβλιοθήκη 噪声性能。电路模拟与仿真SPICE仿真
使用电路仿真软件模拟电路 的工作状态。
参数提取与建模

《数字集成电路设计》PPT课件

《数字集成电路设计》PPT课件

② x和z值 在数字电路中,x代表不定值,z代表高阻值。 例如: 8’b1001xxxx 表示位宽8的二进制数第四位为不定值。
ⅱ. Parameter常数
在Verilog中,用parameter定义一个标识符代表一个常量,称为符 号常量。采用标识符代表一个常量可提高程序的可读性和可维护 性。其定义结构如下:
Verilog HDL程序模块包括模块名、输入输出端口说明、 内部信号说明、逻辑功能定义等几部分。
程序模板如下:
module <模块名>(<输入、输出模块列表>); /*端口描述*/ input <输入端口列表>; output <输出端口列表>;
/*内部信号说明*/ wire //nets型变量 reg //register变量 integer //常数
位运算是对两个操作数相应位进行运算操作数的位数是不变的而缩减运算时针对单个操作数先将操作数的第一位于第二位进行运算再将结果与第三位进行运算以此类推直到最后一位其结果是一个一位二进制数
数字集成电路设计
FPGA结构与设计流程
FPGA是英文Field Programmable Gate Array的缩写,即现场可编程门阵 列,是在PAL、GAL、EPLD等可编程器件的基础上进一步发展的产物。 它是作为专用集成电路(ASIC)领域中的一种半定制电路而出现的,即 解决了定制电路的不足,又克服了原有可编程器件门电路数有限的缺点。
wire[n:1] 变量名1,变量名2,……,变量名n;
ⅱ. register型变量
register型变量对应于具有状态保持作用的电路元件,如触发器,锁 存器等。它只有明确地赋值后才能对其他变量赋值,重新赋值前一 直保持原值。在设计中,此类变量必须放在块语句(always语句)中, 通过过程语句赋值。同一个register型变量只能在一个块语句中重复 赋值,而不能同时在多个块语句中重复赋值使用。register型变量包 括reg型和integer型。

常用数字集成电路 图解PPT课件

常用数字集成电路 图解PPT课件

测信号Ua通过与门,然后通过对输出脉冲Uo计数即可测知Ua的频率。
26
应用
U CC
下图电路是由多 谐振荡器构成的光电 报警器,应用多谐振 荡器功能,你能分析 出该电路的工作原理 吗?
R1
R3
8
4
R2
6
2
C1
3
C2
7
1
5
0.01F
27
11.2 数模与模数转换器
数模转换器
数模与转换原理 集成数码转换器
1 3 U CC
RD
三极管V工作
uo
状态
0
0
饱和导通
1
0
饱和导通
1
保持原状态 保持原状态
1
1
截止
9
提示!
当TH>2/3,
TR 1Ucc 3
时,比较器C1输出为低电平,R
d
=0;比较器C2
输出为高电平,S D =1,基本RS触发器置0,Uo=0 Q =0,Q =1,三极管
V饱和导通。
思考?
参考上面分析,你能分析出功能表中其它几项吗?
电路进入暂稳态,此时U 0 1 。
23
3)自动返回稳定状态 当电容电压被充电至 UC 2/3UCC 时,比较器C1输出变为低电平,R D =0。
由于Ui已恢复高电平状态,比较器C2输出为高电平,S d =1,触发器置0,
Uo=0 Q=0,电路返回到稳定状态,三极管饱和负脉冲出现,又重复上述过程。
V饱和导通,电容C迅速放电至Uc=0,比较器C1输出为高电平, Rd=1,触
发器保持原状态 QU0 0不变,是稳态,Uc=0,Uo=0。
22
2) 暂稳态
当输入信号加入负脉冲,Ui 0 ,比较器C2输出低电平,S D =0,此时Rd 仍为1,触发器置1,QU0 1 , Q =0,三极管V截止,电容C又被充电,

《集成电路》课件

《集成电路》课件
《集成电路》ppt课 件
xx年xx月xx日
• 集成电路概述 • 集成电路的制造工艺 • 集成电路的种类与特点 • 集成电路的发展趋势与挑战 • 集成电路的实际应用案例
目录
01
集成电路概述
集成电路的定义
集成电路是将多个电子元件集成在一块衬底上,完成一定的电路或系统功能的微型电子部件。
它采用一定的工艺,把一个电路中所需的晶体管、电阻、电容和电感等元件及布线互连一起,制作在 一小块或几小块半导体晶片或介质基片上,然后封装在一个管壳内,成为具有所需电路功能的微型结 构。
超大规模集成电路(VLSI)
包含10万-100万个逻辑门或元件。
按结构分类的集成电路
单片集成电路
所有元件都在一个芯片上 。
多片集成电路
由多个芯片集成在一个封 装内。
模块化集成电路
由多个独立芯片通过线路 板连接而成。
按应用领域分类的集成电路
01
通信集成电路
用于通信设备中的信号处理和传输 。
消费电子集成电路
射频识别(RFID)技术的集成电路应用
总结词
射频识别技术是利用无线电波进行通信的一种非接触式识别技术,其集成电路应用主要涉及标签芯片和读写器芯 片。
详细描述
RFID标签芯片通常包含存储器、无线通信电路和天线等部分,用于存储和传输信息。而RFID读写器芯片则负责 与标签芯片进行通信,实现信息的读取和写入。RFID技术广泛应用于物流、供应链管理、身份识别等领域。
用于家电、数码产品等消费电子产 品中。
03
02
计算机集成电路
用于计算机硬件中的逻辑运算和数 据处理。
汽车电子集成电路
用于汽车控制系统和安全系统中。
04

《数字集成电路设计》课件

《数字集成电路设计》课件
加法器和减法器
深入研究加法器和减法器的原理,了解如何进行数字的加法和减法运算。
贝叶斯定理在电路设计中的应 用
介绍贝叶斯定理在电路设计中的应用场景,讲解如何利用先验知识和观测结 果进行后验概率的计算。
层级与模块化设计
层级设计
了解层级设计的原理和方法,掌握如何将复杂的电 路分解为多个模块进行设计和测试。
仿真实例
通过案例分析和实际仿真实例,加深对 电路仿真工具和流程的理解和应用。
计算机辅助设计方法与工具介 绍
介绍计算机辅助设计的基本原理和方法,以及常用的电路设计工具,包括EDA 软件和硬件描述语言。
引言
数字集成电路设计是现代信息技术的关键领域,本课程将深入探讨数字电路 设计的理论和实践,为学生打下坚实的基础。
逻辑门与布尔代数
了解常用逻辑门的工作原理,掌握布尔代数的基本概念和运算规则,为后续的电路设计奠定基础。
时序逻辑电路设计基础
1
触发器和计数器
2
深入研究各种触发器和计数器的原理和
应用,掌握时序逻辑电路的设计技巧。
《数字集成电路设计》PPT课件
数字集成电路设计PPT课件大纲: 1. 引言 2. 逻辑门与布尔代数 3. 时序逻辑电路设计基础 4. 组合逻辑电路设计 5. 贝叶斯定理在电路设计中的应用 6. 层级与模块化设计 7. 电路仿真工具与流程 8. 计算机辅助设计方法与工具介绍 9. 电路优化与验证 10. 技术与制造工艺介绍 11. 功耗优化与电源管理 12. 嵌入式系统设计基础 13. CPU架构设计基础 14. SOC(系统片上集成电路)设计基础 15. 集成电路测试方法与介绍
模块化设计
学习模块化设计的思想和技术,掌握如何将多个模 块进行组合,实现复杂功能的集成电路设计。

清华大学《数字集成电路设计》周润德 第1章(课件)绪论

清华大学《数字集成电路设计》周润德 第1章(课件)绪论
电话: 62774249 电子邮件:shandy98@
2004-9-15
清华大学微电子所《数字大规模集成电路》 周润德
第1章第3页
评分规则(Grading Policy)
(1)作业: 20%
第 4 周起,每周一次,一周完成,上课时交,迟交无效
(2)期中考试:20%
100
P6 Pentium ® proc
10
8086 286
486
386
8085
1
8080
8008
4004
0.1 1971
1974
1978 1985 年
1992
最先进微处理器的功耗持续增长
2000
资料来源: Intel
2004-9-15
清华大学微电子所《数字大规模集成电路》 周润德
第 1 章 第 21 页
2004-9-15
清华大学微电子所《数字大规模集成电路》 周润德
第 1 章 第 17 页
微处理器单个芯片尺寸的增长趋势
100
单个芯片尺寸 (mm)
P6
10
486 Pentium ® proc 386
8080
286 8086
8085
8008
4004
资料来源: Intel
1 1970
1980
1990 年
每1.96年翻一倍!
Pentium® III
Pentium® II
Pentium® Pro
Pentium® i486
i386
80286
10
1 1975
8086
1980
1985 1990
1995
2000
资料来源: Intel

《集成电路设计》课件

《集成电路设计》课件
蒙特卡洛模拟法
通过随机抽样和概率统计的方法,模 拟系统或产品的失效过程,评估其可 靠性。
可靠性分析流程
确定分析目标
明确可靠性分析的目 的和要求,确定分析 的对象和范围。
进行需求分析
分析系统或产品的使 用环境和条件,确定 影响可靠性的因素和 条件。
进行失效分析
分析系统或产品中可 能出现的失效模式和 原因,确定失效对系 统性能和功能的影响 。
DRC/LVS验证
DRC/LVS验证概述
DRC/LVS验证是物理验证中的两个重要步骤,用于检查设计的物 理实现是否符合设计规则和电路图的要求。
DRC验证
DRC验证是对设计的物理实现进行规则检查的过程,以确保设计的 几何尺寸、线条宽度、间距等参数符合设计规则的要求。
LVS验证
LVS验证是检查设计的物理实现与电路图一致性的过程,以确保设 计的逻辑功能在物理实现中得到正确实现。
版图设计流程
确定设计规格
明确设计目标、性能指标和制造工艺要求 。
导出掩模版
将最终的版图导出为掩模版,用于集成电 路制造。
电路设计和模拟
进行电路设计和仿真,以验证电路功能和 性能。
物理验证和修改
进行DRC、LVS等物理验证,根据结果进 行版图修改和完善。
版图绘制
将电路设计转换为版图,使用专业软件进 行绘制。
集成电路设计工具
电路仿真工具
用于电路设计和仿真的软件, 如Cadence、Synopsys等。
版图编辑工具
用于绘制版图的软件,如Laker 、Virtuoso等。
物理验证工具
用于验证版图设计的正确性和 可靠性的软件,如DRC、LVS等 。
可靠性分析工具
用于进行可靠性分析和测试的 软件,如EERecalculator、 Calibre等。

数字集成电路可测性设计(DFT)讲义第1讲

数字集成电路可测性设计(DFT)讲义第1讲

Good chip appears to be faulty (fails test)
EE141 VLSI Test Principles and Architectures
11
Introduction
Electronic System Manufacturing
A
system consists of
Moore’s Law: scale of ICs doubles every 18 months
Growing size and complexity poses many and new testing challenges
VLSI M LSI
1960s 1970s 1980s 1990s 2000s
EE141 VLSI Test Principles and Architectures
5
Introduction
Importance of Testing

Moore’s Law results from decreasing feature size (dimensions)
from 10s of µm to 10s of nm for transistors and interconnecting wires
8
Introduction
Testing During VLSI Development

Design verification targets design errors
Corrections made prior to fabrication
Design Specification Design Fabrication Packaging Quality Assurance Design Verification Wafer Test Package Test Final Testing
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


1972/74年:NMOS微处理器


功耗:NMOS让位于CMOS
1.2 集成电路产业的简要历史

CMOS

1970年:工艺进步导致好的性价比 集成规模增大功耗瓶颈 Bi-CMOS


其它工艺

高速存储器和门阵列 面积/功耗/速度优,成本高 速度优

SOI


GaAs/SiGER OF COMPONENTS PER INTEGRATED FUNCTION


功能增加灵活 规模/速度随工艺按比例下降而优化 对工艺/电压/温度不敏感
1.1 绪论

电路设计应考虑:


可靠性 速度 功耗 面积 成本
1.1 绪论

数字系统设计

规格说明书(spec)

包含整个系统所需要的特性,定义输入、输出、环境条件、 操作速度等 用Verilog或VHDL实现 通过综合工具实现 通过版图设计工具实现,通常以GDS-Ⅱ格式表示
功耗将成为主要问题
100000
10000
Power (Watts) 1000 100
18KW 5KW 1.5KW 500W Pentium® proc
286 486 8086 386 10 8085 8080 8008 1 4004
0.1
1971 1974 1978 1985 1992 2000 2004 2008 Year
第一章 深亚微米数字集成电路设计


1.1 1.2 1.3 1.4 1.5 1.6
绪论 集成电路产业的简要历史 数字逻辑门设计的回顾 数字集成电路设计 数字电路的计算机辅助设计 面临的挑战
1.1 绪论

集成电路的应用



高性能计算 仪表和工业控制 通信 消费电子

数字电路与模拟电路相比的优势
每代领先的微处理器工作频率每2年翻一番
摩尔定律——功耗
100 P6 Pentium ® proc 10 8086 286 1 8085 8080 486 386 Power (Watts)
8008 4004
0.1 1971 1974 1978 Year 1985 1992 2000
每代领先的微处理器功耗持续增长
16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975


摩尔定律(Moore’s Law)
Electronics,
2000
2010
要符合摩尔定律,芯片尺寸每年需增长14%
摩尔定律——工作频率
10000
每2年增加1倍
Frequency (Mhz) 1000 100 486 10 1 0.1 1970 8085 8086 286 386 P6 Pentium ® proc
8080 8008 4004 1980 1990 Year 2000 2010
486
0.001 1970
每代领先的微处理器的晶体管数目每2年增加一倍
摩尔定律——芯片尺寸
100 Die size (mm)
10 8080 8008 4004 1 1970 1980 8086 8085 286
386
P6 Pentium ® proc 486
每年约增加7% 每10年约增加2倍
1990 Year
1.2 集成电路产业的简要历史

MOS

1925年:IGFET绝缘栅场效应晶体管(Lilienfeld)

缺乏对材料的了解和栅稳定性问题的认识

1963年:CMOS逻辑门(Wanlass)

工艺复杂性

1970年:PMOS计算器 1970年:NMOS存储器

高密度:4Kbit
高速:Intel 4004/8080
1.2 集成电路产业的简要历史
第一个晶 体管 1947,贝 尔实验 室
1.2 集成电路产业的简要历史
第一块集成电路 ECL(射极耦合逻 辑) 3输入逻辑门 Motorola,1966年 1960年代是双极型 电路时代
1.2 集成电路产业的简要历史

双极型



1947年:晶体管(Bardeen/Bell Lab) 1949年:双极型晶体管(Schockley) 1956年:数字逻辑门(Harris) 1962 年 : TTL ( 晶 体 管 - 晶 体 管 逻 辑 ) 系 列 (Beeson/Fairchild) 1974年:ECL(射极耦合逻辑)高速系列(Masaki) 1972年:I2L(集成注入逻辑)低功耗高密度系列(Hart) 功耗问题:让位于MOS(metal-oxide-semiconductor)
能量的传递和耗散将变得不可能
功率密度
10000 Power Density (W/cm2)

寄存器传输级(RTL)设计


门级设计


版图设计


制造

包括流片、封装、测试等
1.2 集成电路产业的简要历史
第一台机械计算机 1832年,Babbage的 差动引擎 (Difference Engine Ⅰ)工作部件
问题:设计复杂,成 本高
1.2 集成电路产业的简要历史
第一台电气计 算机(1946) ENIAC(电子 数字积分计算 机) 18000个真空 管 问题:可靠性, 功耗,成本
十亿颗晶体管!
1,000
100 10
8086 i386 80286
i486
Source: Intel
1 1975 1980 1985 1990 1995 2000 2005 2010
Projected
摩尔定律——微处理器
1000 Transistors (MT)
100
10 1 0.1 0.01 8085 8086 8080 8008 4004 1980 1990 Year 2000 2010 386 286 P6 Pentium® proc
April 19, 1965. Gordon Moore


单片集成晶体 管数目每18或 24个月增长一 倍 半导体工艺的 效力每18个月 增长一倍
复杂度的演变——存储器
晶体管数目
K 1,000,000 100,000 10,000
Pentium® III Pentium® II Pentium® Pro Pentium®
相关文档
最新文档