上转换发光材料表面修饰羧基的制备与表征

合集下载

上转换发光材料

上转换发光材料

>>更多... 相似文献(10条)1. 期刊论文上转换激光和上转换发光材料的研究进展- 人工晶体学报2001, 30(2)2. 学位论文上转换发光材料的合成、表征及发光性质的研究20083. 期刊论文戊二醛修饰上转换发光材料Na[Y0.57Yb0.39Er0.04]F4的制备与表征- 北京科技大学学报2009, 31(8)4. 期刊论文Na2SiF6对Er3+, Yb3+共掺杂上转换发光材料颗粒度的影响- 中国稀土学报2003,21(z1)5. 学位论文稀土掺杂氟化物上转换发光材料的制备及光谱特性研究20066. 期刊论文上转换发光材料表面修饰羧基的制备与表征- 功能材料2007, 38(1)7. 学位论文Bi<,2>O<,3>与NaYF<,4>体系的上转换研究20068. 学位论文氟氧玻璃上转换发光材料的制备与表征20059. 期刊论文SiO2包覆上转换发光材料Na(Y0.57Yb0.39Er0.04)F4的研究- 发光学报2006, 27(3)10. 学位论文高效蓝绿光上转换发光材料的荧光特性与机理研究2003相关博文(19条)1. 上转换提高硅太阳能电池效率2. 上转换稀土发光材料经典文献3. 加州笔记之四十七增强型电致发光材料4. 中科院院士--曹镛教授5. 中国电子书面临“套牢”风险?6. 中国电子书面临“套牢”风险?7. 太阳电池技术和产业化趋势分析8. 详解全新戴尔家用产品9. [转载]中国香港任咏华教授获世界杰出女科学家奖10. 最先维持至有效期届满的两件OLED中国实用新型专利引证文献(1条)1. 阳芳.郭红.杨坚石.嵇天浩.孙家跃NaYF4:Yb,Er/Tm上转换发光强度的影响因素[期刊论文] -材料导报2009(13)【参考文献】中国期刊全文数据库1 杨奉真,衣光舜,陈德朴,程京;纳米NaYF_4∶Yb,Ho上转换荧光粉的合成及其性质研究[J];高等学校化学学报;期2 裴晓将,侯延冰,徐征,赵谡玲,滕枫;水热法合成稀土氟化物材料YLiF_4:Er,Tm,Yb的上转换发光特性[J];光谱学析;2005年06期3 陈晓波,张光寅,宋增福;稀土化合物材料上转换发光与激光的研究与进展[J];光谱学与光谱分析;1995年4 范文慧,王永昌,龚平,过晓晖,张大慰,刘英,侯洵;一类电子俘获型红外可激发材料的制备和光学性质[J];光子学09期5 陈瑞改;王琼华;辛燕霞;;近红外光上转换发光显示器中干涉过滤膜的设计[J];光子学报;2006年06期6 裴晓将,滕枫,赵谡玲,徐征,侯延冰;水热合成稀土氟化物材料KZnF_3∶Er,Yb的上转换发光特性[J];中国稀土年S1期【共引文献】中国期刊全文数据库1 李庚申,孙家跃,杜海燕,王葳;不球磨无机粉体发光材料制备技术进展[J];化工时刊;2004年12期2 范文慧,叶孔敦,光昕,朱键,王永昌;电子俘获材料在光存储技术中的应用[J];半导体光电;2001年03期3 范文慧,侯洵,王永昌,刘英,过晓晖,杜力;电子俘获型红外上转换屏[J];发光学报;1998年04期4 贺芸芬,李志国,朱基千;掺稀土氟化物玻璃上转换发光材料发展概况[J];硅酸盐通报;2004年03期5 陈晓波,周实武,N.Sawanobori,李美仙,冯衍,毕诗章,张光寅,孙寅官,杨展如;Tm(0.1)Yb(10.9)氟氧化物玻璃陶瓷的换敏化发光[J];光谱学与光谱分析;1999年05期6 陈晓波,N.Sawanobori,宋增福;Tm(0.1)Yb(10.9)氟氧化物玻璃的直接上转换敏化发光[J];光谱学与光谱分析;2007 何琛娟,陈鸾,孟超,宋增福,王志光,孟广政;Er~(3+)在氟氧化物玻璃陶瓷中的光谱性质[J];光谱学与光谱分析;2008 秦冠仕,秦伟平,陈宝玖,鄂书林,葛中久,任新光,黄世华;氟氧化物玻璃陶瓷中高效低阈值的红色上转换发光谱学与光谱分析;2002年05期9 陈晓波,陈鸾,赵承易,N. Sawanobori,马辉,宋增福;氟氧化物氟化物五磷酸盐玻璃中Er~(3+)的直接上转换增敏发[J];光谱学与光谱分析;2003年01期10 肖思国,阳效良,刘政威;红光激发下掺Ho~(3+)氟化物薄膜的上转换发光[J];光谱学与光谱分析;2003年01 王玮;徐时清;鲍仁强;章珏;郑飞;赵士龙;;稀土共掺氧氯碲酸盐玻璃三基色上转换发光研究[A];中国硅酸盐学会分会第三届全国特种玻璃会议论文集[C];2007年2 赵仁亮;赵悟翔;王琼华;李大海;王爱红;辛燕霞;;狭缝光栅自由立体显示器立体可视区域的研究[A];第二届立体及其应用(国际)研讨会论文集[C];2007年3 周望;叶燕;;隐形条形码及其识读器的实用性研究[A];2006年全国光电技术学术交流会会议文集(D 光电信息处题)[C];2006年1 黄立辉;新玻璃体系中Er~(3+)、Tm~(3+)和Yb~(3+)的近红外发光和上转换发光[D];中国科学院长春机械与物理研究所;2001年2 杨丙成;流动分析系统—半导体固体光源诱导荧光检测的研究[D];中国科学院研究生院(大连化学物理研究所3 肖思国;稀土掺杂超微材料的制备与上转换发光研究[D];湘潭大学;2006年1 张挥球;稀土纳米氟化物的制备与表征[D];长春理工大学;2007年2 阳效良;稀土掺杂能量上转换效率及机制的研究[D];湘潭大学;2001年3 徐东勇;ZnWO_4:Tm~(3+)单晶生长和上转换发光研究[D];北京工业大学;2001年4 杨利文;高效蓝绿光上转换发光材料的荧光特性与机理研究[D];湘潭大学;2003年5 梁海莲;双掺稀土离子的上转换氟氧玻璃的制备与表征[D];长春理工大学;2004年6 姜薇薇;稀土掺杂硫化物光存储材料的研究[D];长春理工大学;2004年7 王辉;非水性sol-gel法Er~(3+)+Y~(3+)共掺杂Al_2O_3的制备及其发光特性研究[D];大连理工大学8 康宏格;Sr_2CeO_4、Sr_2CeO_4:Ln(Ln=Eu,Sm,Er,Ho,Tm)和Sr_2CeO_4:Eu,Gd的微波法合成与研究[D];河北师范大学;2006年9 朱也莉;上转换发光纳米ZrO_2的制备及在红外防伪油墨中的应用[D];北京化工大学;2006年10 何广海;氟氧玻璃上转换发光材料的制备与表征[D];长春理工大学;2006年【二级参考文献】1 陈晓波,周实武,N.Sawanobori,李美仙,冯衍,毕诗章,张光寅,孙寅官,杨展如;Tm(0.1)Yb(10.9)氟氧化物玻璃陶瓷转换敏化发光[J];光谱学与光谱分析;1999年05期2 陈晓波,李美仙,闻鸥,张福初,宋增福;Er:ZBLAN玻璃的一光束上转换立体显示的初步研究[J];光谱学与光谱分03期3 刘晃清,秦冠仕,林海燕,吴长锋,秦伟平,张继森,赵丹;共掺杂的二氧化锆纳米材料中Yb~(3+)和Tm~(3+)上转换谱学与光谱分析;2004年01期4 路晓娟,朱从善;含铒碲酸盐玻璃的上转换荧光性质研究[J];光学学报;1992年07期5 冯鸣,阮双琛,杜晨林,杜戈果,吕可诚;掺Yb~(3+)双包层光纤激光器中频率上转换产生可见光的实验研究[J]报;2004年06期6 范文慧,赵卫,刘英,侯洵;电子俘获材料的红外上转换效率[J];光子学报;1999年02期7 陈晓波,张光寅,陈金铠;Sm~(3+)掺杂ZBLAN玻璃中一种上转换发光现象的分析[J];红外与毫米波学报;19938 张思远,任金生;Er_xY_(1-x)AlO_3晶体的荧光动力学研究[J];物理学报;1990年02期【相似文献】1 李圭姬;硫化锌发光材料中硫锌比的测定[J];发光学报;1980年03期2 蔡萃丽,李作林,高淑芬,黄玉芬;磷砷化镓发光材料的制备[J];稀有金属;1980年06期3 苏勉曾;龚曼玲;阮慎康;;氟氯化钡铕的合成、发光性能以及在X射线照像增感屏中的应用[J];化学通报;19804 李作林;;Ⅲ-Ⅴ族半导体发光材料的新进展[J];功能材料;1980年02期5 丁维清;林振金;杨锡震;;Zn离子注入GaP[J];功能材料;1980年05期6 潘玉诚;张联祥;王尚贤;王静;宋玉民;;关于以Ti、Pb或Ti激活的BaO—SiO_2型发光材料的研究[J];西北师范大然科学版);1980年01期7 吴炳乾;稀土金属的骄子——铕[J];南方冶金学院学报;1981年01期8 ;名词浅释[J];化学世界;1981年11期9 高小霞,张曼平;稀土元素的电分析化学研究——铕-二甲酚橙极谱催化波[J];中国科学B辑;1982年0510 施朝淑,张慰萍,郭常新,张继发,刘介寿;溴氧化(钅兰):铽(LaOBr:Tb)荧光粉的发光特性[J];稀土;1982年031 王藩侯;王欣;田安民;经福谦;;1,5-环辛二烯-3,7二炔(C_8H_4)结构和光谱性质[A];中国工程物理研究院科技年报[C];1999年2 王祥驮;;有机闪烁体的制造工艺[A];第7届全国核电子学与核探测技术学术年会论文集(二)[C];19943 潘仲韬;代主得;布素平;唐金丽;;BH1278型低能低本底β测量仪[A];第7届全国核电子学与核探测技术学术年(三)[C];1994年4 王祥驮;屈玉慧;;长波快时间塑料闪烁体[A];第9届全国核电子学与核探测技术学术年会论文集[C];19985 周镭;;极高压条件下的新材料研究[A];材料科学与工程技术——中国科协第三届青年学术年会论文集[C];16 朱俊杰;廖学红;周缪杲;陈洪渊;;微波合成CdS和ZnS半导体纳米粒子[A];第一届全国纳米技术与应用学术会[C];2000年7 顾彪;徐茵;秦福文;王三胜;隋郁;;立方GaN结晶薄膜生长中的ECR等离子体[A];2000年材料科学与工程新进——2000年中国材料研讨会论文集[C];2000年8 王巍;薛敏钊;龚斌;黄德音;;含腈基的三苯胺基二苯乙烯化合物合成及其电致发光性能研究[A];卤化银影像材料研讨会论文集[C];2000年9 刘应亮;孟建新;丁红;;一种新型蓝绿色光致储能发光材料的研制[A];中国稀土学会第四届学术年会论文集[C]10 严纯华;廖春生;孙聆东;张亚文;黄云辉;王哲明;徐光宪;;稀土纳米复合氧化物及其薄膜的制备和功能性质研究[土学会第四届学术年会论文集[C];2000年1 北方交通大学光电子技术研究所徐叙瑢;发光显示种类繁多[N];中国电子报;2000年2 记者王红;水性丙烯酸蓄能发光涂料诞生[N];中国化工报;2000年3 苏常;长余辉蓄光型发光颜料[N];中国建材报;2000年4 合肥钱志远;有机EL显示板简介[N];电子报;2000年5 柯闻;环保型涂料市场看好[N];经济日报;2000年6 记者仇方迎;我国研制出环境友好型发光涂料[N];科技日报;2000年7 ;GKB6荧光面板材料面世[N];中华建筑报;2000年8 记者陈广俊于凤兰张俪平;长春紧锣密鼓建设“中国光谷”[N];经济参考报;2001年9 本报记者张健吴雪帆;发光的产业[N];经济参考报;2001年10 通讯员阎明;提高战略意识应对“入世”挑战[N];中国知识产权报;2001年1 孔祥贵;PWG玻璃陶瓷中的局域效应研究[D];中国科学院长春光学精密机械与物理研究所;2000年2 王蜀霞;有机半导体LPPP发光性质及相关问题研究[D];重庆大学;2002年3 徐慎刚;主链含荧光染料可溶性聚酰亚胺的合成、表征和发光性能[D];浙江大学;2003年4 徐少辉;硅基纳米发光材料[D];复旦大学;2003年5 魏孝强;杯芳烃类电致发光材料的设计合成及发光性质研究[D];四川大学;2003年6 秦冠仕;稀土掺杂的紫色和紫外上转换激光材料及热镊空泡研究[D];中国科学院研究生院(长春光学精密机械与所);2004年7 张海全;系列七元内环联苯单体及聚合物的合成,电子结构与光电性质的研究[D];吉林大学;2004年8 王冬梅;含稀土配合物聚合物透明材料的设计合成与发光性质研究[D];吉林大学;2004年9 刘孝娟;光电材料(包括二阶非线性光学材料、双光子吸收材料及发光材料)的分子设计研究[D];吉林大学10 于春玲;水辅助自组装制备功能性聚合物蜂窝状多孔结构薄膜及其性质[D];吉林大学;2004年1 刘诗逸;超细荧光粉的制备及其性能研究[D];电子科技大学;2001年2 尹振明;一些含氮多芳氨基卟啉化合物的合成、表征及光谱性能[D];湖南大学;2001年3 杜锦秀;SrAl_2O_4:Eu~2+,Dy~3+光致发光釉的研究[D];长春光学精密机械学院;2001年4 来巍;发光配合物的研制及新型发光材料的探索[D];辽宁师范大学;2002年5 韩立友;新型发光材料芳香胺类聚合物的酶催化合成及性能研究[D];郑州大学;2002年6 王元敏;光功能Cu(Ⅰ)配合物的合成、光化学和光物理性质研究[D];云南师范大学;2002年7 曹立;近场扫描光学显微镜对纳米结构材料的表征[D];曲阜师范大学;2002年8 卢利平;溶胶-凝胶法制备SrAl_2O_4: Eu~(2+), Dy~(3+)纳米发光材料[D];长春理工大学;2002年9 郑传伟;化学共沉淀法制备BaAl_(12)O_(19):Mn[D];哈尔滨工程大学;2003年10 朱雪珍;弱荧光测试技术[D];浙江大学;2003年/s?wd=%C9%CF%D7%AA%BB%BB%B7%A2%B9%E2%B2%C4%C1% CF/Article/CJFDTotal-HGXC200902003.htm。

上转换发光材料基质的选择

上转换发光材料基质的选择
Z 矾g G u o 母n g
Ab s t r a c t: Up c o n v e r s i o n l u mi n e s c e n t ma t e r i a l s h a v e h i g h r e q u i r e me n t s o n t h e s e l e c t i o n o f h o s t ma t e r i a l s . T h e e mi s s i o n i n t e n s i t y o f t h e s a me a c t i v a t o r i O I l S i n d i fe r e n t ma t r i x ma t e r i a l s i S v e r y d i fe r e n t . Lu mi n e s c e n t ma t e r i a l s . T h e f o u r ma t r i x ma t e r i a l s a r e l i s t e d a s f o l l o ws:t h e l f u o id f e ma t r i x,t h e o x i d e ma t r i x ,t h e h a l i d e ma t r i x a n d he t s u l id f e ma t r i x ma t e r i a 1 . Ke y wo r d s: Up c o n v e r s i o n l u mi n e s c e n c e;M a t r i x; F l u o r i d e
上转换发光材料基质的选择
臧 国凤
( 广 州工程技术职 业 学院石W . z - 程 系,广 东广州 5 1 0 9 0 0 )

第8讲_上转换发光材料

第8讲_上转换发光材料

第8讲_上转换发光材料上转换发光材料(Upconversion Luminescent Materials)上转换发光材料是一种在低能量激发下可以产生高能量发光的材料。

其发光机制与传统的下转换发光材料,如荧光粉和半导体量子点等有所不同。

下转换发光材料在受到外界激发后,会先吸收光子并将其转换为较低能量的光子发出。

而上转换发光材料则能够在较低能量的激发光下,将吸收的能量进行级联转换,最终发射出高能量光。

上转换发光材料主要有两种类型:硅基和非硅基的上转换材料。

硅基上转换材料已经取得了长足的进展,并在光伏领域中受到广泛关注。

硅基上转换材料主要的特点是其上转换效率高,可以将低能量的光激发转换为高能量的发射。

这种材料对于提高太阳能电池的转换效率有很大的潜力。

非硅基的上转换材料则具有更多的选择性,并且在通过适配光源和非线性光学过程实现上转换发光方面具有更大的优势。

上转换发光材料的发光机制可以通过光功率图谱和物质能级示意图进行解释。

光功率图谱可以揭示材料在不同波长下的发光强度,从而分析材料的上转换效率。

物质能级示意图则可以通过表示材料的能量级别来解释能量的转换过程。

上转换发光材料的能级示意图中通常会包含两个部分:上转换激发态和上转换发射态。

在受到激发光的作用下,材料的电子会从基态跃迁到激发态,并且会经过一个或多个中间态的跃迁,最终发射出高能量的光子。

另外,上转换发光材料还有一些其他的应用领域。

其中最显著的是生物医学领域。

由于上转换发光材料具有可调控的发光特性,可以在多种情况下应用于生物成像和药物传递等领域。

例如,上转换发光材料可以通过发光技术提供可见光对于红外光的扩展,从而实现更深度的生物组织成像。

此外,上转换发光材料还可以用于生产发出可见光的LED灯和激光等。

总之,上转换发光材料是一种具有广泛应用前景的新型材料。

其通过将低能量的光激发转换为高能量的发射,具有很高的上转换效率和可调控的发光特性。

上转换发光材料在太阳能电池、生物医学和光电器件等领域的应用前景广阔,将在未来的科研和产业中发挥重要作用。

上转换发光材料报告

上转换发光材料报告

关于上转换发光材料的报告上转换发光,即:反-斯托克斯发光(Anti-Stokes),由斯托克斯定律而来。

斯托克斯定律认为材料只能受到高能量的光激发,发出低能量的光,换句话说,就是波长短的、频率高的材料激发出波长长的、频率低的光。

比如紫外线激发发出可见光,或者蓝光激发出黄色光,或者可见光激发出红外线。

但是后来人们发现,其实有些材料可以实现与上述定律正好相反的发光效果,于是我们称其为反斯托克斯发光,又称上转换发光。

其原理有激发态吸收(ESA)、能量传递上转换(ETU)和光子雪崩(PA)三种。

上转换纳米颗粒通常由无机基质及镶嵌在其中的稀土掺杂离子组成。

尽管理论上大多数稀土离子都可以上转换发光,而事实上低泵浦功率(10W/cm2)激发下,只有和作为激活离子时才有可见光被观察到,原因是这些离子具有较均匀分立的能级可以促进光子吸收和能量转移等上转换所涉及的过程。

为了增强上转换效率,通常作为敏化剂与激活剂一同掺杂,因其近红外光谱显示其有较宽的吸收域。

作为一条经验法则,为了尽量避免激发能量因交叉弛豫而造成的损失,在敏化剂-激活剂体系中,激活剂的掺杂浓度应不超过2%。

上转换过程的发生主要依赖于掺杂的稀土离子的阶梯状能级。

然而基质的晶体结构和光学性质在提高上转换效率方面也起到重要作用,因而基质的选择至关重要。

用以激发激活离子的能量可能会被基质振动吸收。

基质晶体结构的不同也会导致激活离子周围的晶体场的变化,从而引起纳米颗粒光学性质的变化。

优质的基质应具备以下几种性质:在于特定波长范围内有较好的透光性,有较低的声子能和较高的光致损伤阈值。

此外,为实现高浓度掺杂基质与掺杂离子应有较好的晶格匹配性。

综上考虑,稀土金属、碱土金属和部分过渡金属离子的无机化合物可以作为较理想的稀土离子掺杂基质。

尽管目前UC颗粒已有许多合成方法,为了得到高效的UC发光产品,许多研究仍致力于探寻合成高晶化度的UC颗粒。

具有较好晶体结构的纳米颗粒,其掺杂离子周围有较强的晶体场,且因晶体缺陷而导致的能量损失较少。

上转换荧光材料

上转换荧光材料

材料化学专业上转换荧光材料题目:班级:姓名:指导教师:年月日摘要近年来,上转换荧光纳米材料以其荧光效率高、稳定性好、分辨率高等优良性能,受到科研人员的广泛关注。

其在防伪识别、太阳能电池、生物荧光标记、上转换激光器等领域有着广泛的应用前景。

尤其是在生物上转换荧光标记领域,与传统的有机染料和量子点荧光标记材料相比具有很多优良性能,例如检测灵敏度高、背景干扰小、机体损伤小等。

通过上转换发光的原理,讨论了影响上转换发光材料发光效率的诸多因素,并通过查找文献资料,讨论了各独立影响因素的作用机理,总结了在当前发展状况下,为达到最佳发光效率应如何选择基质材料、环境温度、激活离子和敏化离子等。

现今,随着纳米技术、计算机技术等的发展,上转换发光纳米晶的研究成为了热点,在生物领域和非生物领域的研究都起着重要作用。

合成出高质量、高荧光性能的NaYF4∶Yb3+上转换纳米颗粒是使之能够在生物医学等领域广泛应用的前提条件。

本文针对NaYF4:Yb3+上转换荧光纳米颗粒的合成方法、表面修饰以及生物应用等方面的研究进展进行综述。

目录摘要 (I)第1章绪论 (1)1.1 上转换荧光材料介绍 (1)1.2 上转换荧光材料的类别 (1)1.3 上转换材料的发展历史 (2)第2章上转换的发光机制和方法 (4)2.1 上转换的发光机制 (4)2.1.1 激发态吸收 (4)2.1.2 能量传递上转换 (5)2.1.3 光子雪崩 (6)2.2 稀土上转换荧光纳米材料的制备方法 (7)第3章NaYF4:Yb3+/Er3+上转换荧光纳米晶 (9)3.1 NaYF4基质材料 (9)3.2 NaYF4:Yb3+/Er3+荧光纳米晶的上转换荧光结构与功能 (10)3.3 NaYF4:Yb3+/Er3+荧光纳米晶的制备 (11)3.4 NaYF4∶Yb3+ / Er3+上转换荧光纳米颗粒的表面修饰 (12)3.4.1 疏水性β-NaYF4:Yb,Er上转换纳米粒子(UCNPs)的表面改性 (12)3.5 NaYF4∶Yb3+ / Er3+上转换荧光纳米材料的运用 (14)总结 (15)参考文献 (16)第1章绪论1.1上转换荧光材料介绍上转换发光是在长波长光的激发下,可持续发射波长比激发光波长短的光,是指将2个或2个以上的低能光子转换成一个高能光子的现象,一般特指将红外光转换成可见光,其发光机理是基于双光子或多光子过程大多数发光材料是利用稀土离子吸收高能量的短波辐射,发出低能量长波辐射的Stoke效应。

上转换发光纳米粒子表面修饰及应用研究进展

上转换发光纳米粒子表面修饰及应用研究进展

上转换发光纳米粒子表面修饰及应用研究进展梁紫璐;毕水莲;罗永文;王宗源【摘要】Because of upconversion fluorescent nanoparticles technology which is the fast, accurate and effi-cient detection of the harmful factors in the food, it has become a hot spot of food inspection detection technolo-gy. The surface modification and preparation methods of the upconverting nanoparticles have become the key to the application of the technology in food inspection. This paper reviewed synthesis method and the surface modi-fication of the upconverting nanoparticles, and the application of the surface modification of the upconverting nanoparticles in food inspection.%由于上转换发光纳米技术能够快速、准确、高效的检测食品中的危害因素,因此成为了食品安全检测技术研究的热点.上转换发光纳米粒子的合成与表面修饰是上转换发光纳米技术在食品安全检测中运用的关键.因此介绍上转换发光纳米粒子的合成方法和表面修饰,以及在食品安全检测中上转换发光纳米材料表面修饰的应用情况.【期刊名称】《食品研究与开发》【年(卷),期】2017(038)019【总页数】5页(P216-220)【关键词】上转换发光纳米技术;上转换发光纳米粒子;表面修饰;食品安全检测【作者】梁紫璐;毕水莲;罗永文;王宗源【作者单位】广东药科大学食品科学学院,广东中山528458;广东药科大学公共卫生学院,广东广州510006;广东药科大学食品科学学院,广东中山528458;华南农业大学兽医学院,广东广州510642;广东药科大学食品科学学院,广东中山528458【正文语种】中文Abstract:Because of upconversion fluorescent nanoparticles technology which is the fast,accurate and efficient detection of the harmful factors in the food,it has become a hot spot of food inspection detection technology.The surface modification and preparation methods of the upconverting nanoparticles have become the key to the application of the technology in food inspection.This paper reviewed synthesis method and the surface modification of the upconverting nanoparticles,and the application of the surface modification of the upconverting nanoparticlesin food inspection.Key words:upconversion fluorescent nanoparticles technology;upconverting nanoparticles; surface modification;food inspection上转换发光纳米材料(Upconverting Nanoparticles,UCNPs)是将长波长激发光转换成短波长发射光的新型荧光探针材料,具有独特的发光性质和良好的化学稳定性。

上转换发光材料表面修饰羧基的制备与表征

上转换发光材料表面修饰羧基的制备与表征
UCP。
2 3 羧 基的 定量 检测 方 法 .
[ o 0。 ro] 4 以下 简 称 UC ) 一 般 具 有 亚 Y . Yb- E o F ( 5 3 . P是 微尺 寸 ( . ~0 4 m) 掺杂 镧 系 元 素 的无 机 非金 属 材 0 2 . , 料; 它能 够吸 收低能 量 的 ( 波长 ) 外光 , 射 高能 量 长 红 发 的( 波 长 ) 见 光 [ 短 可 1 即是 一 种 可 对 能 量 进 行 上 转 ¨。
般 测定 羧基 含 量 的方 法 有 酸 碱滴 定法 [ 电位 1 、 法 和 电导 法 等[ 。 由于 材 料 表 面修 饰 羧 基 的 量 很 1 ‘

少, 采用 电导 滴 定 法 测定 材 料 表面 羧 基 含 量 。电导 滴
定法 是 先 把 盐 基 变 成 酸 的 形 式 , 中 性 盐 存 在 下 用 在 Na 标 准溶 液 进 行 电 导滴 定 。以 电导 为 纵 坐标 , OH 滴 定 消耗 的 Na 毫 升数 为横 坐 标 作 图 , 图上 的转折 OH 从 点可计 算 出羧基 的含 量 [ 1 。
的L 。固相 表 面 涉 及 到 固 态 硅 片 及 亚 微 米 乳 液 微 2 ] 珠[ 玻片[ 、 胶 、 、 凝 消化 纤 维 素 、 龙 滤 膜 和 尼 。 上 转 换 发 光 材 料 [] 。上 转 换 无 机 发 光 材 料 Na 1等 o
的圆底 烧瓶 中 ; 加入 10 H- 1 . B缓 冲溶 液溶 0 ml - 1 0P p 解 后 的琥 珀 酸 酐 , 声 3 n 磁 力 搅 拌 , 温 下 反 应 超 mi ; 室 8, h 离心 分离 , p 用 H=4 7P . B缓 冲溶 液作 清洗 液 。离 心分 离 , 10 在 2 ℃的 温度 下烘 干 , 即得 到表 面羧基 化 的

上转换发光材料的制备、性能及应用研究

上转换发光材料的制备、性能及应用研究

上转换发光材料的制备、性能及应用研究上转换发光材料是一种具有广阔应用前景的新兴材料。

本文将介绍上转换发光材料的制备方法、性能特点以及其在不同领域中的应用研究进展。

上转换发光材料是一种能够将低能量的激发光转换为高能量的发光现象的材料。

它与传统的下转换发光材料不同,后者是将高能量的激发光转换为低能量的发光。

上转换发光材料在生物医学成像、显示技术、能源转换等众多领域具有广泛的应用前景。

上转换发光材料的制备主要包括物理法和化学法两种方法。

物理法主要利用高能粒子注入或离子注入的方式在晶格中引入能级,从而实现上转换发光。

化学法则是通过掺杂或配位原子的方式,改变晶格结构或能带结构,实现上转换发光效果。

这两种制备方法各有特点,可以根据具体需求选择合适的方法。

上转换发光材料的性能特点主要体现在以下几个方面。

首先,上转换发光材料具有较高的上转换效率,能够将低能量的激发光转换为高能量的发光,从而提高能量利用效率。

其次,上转换发光材料具有较宽的光谱范围,可以实现多色发光,满足不同应用的需求。

另外,上转换发光材料具有较长的激发寿命,对于进行长时间激发发光的应用具有较大优势。

最后,上转换发光材料还具有较高的光学稳定性和化学稳定性,能够在不同环境下稳定发光,具有较长的使用寿命。

在生物医学成像领域,上转换发光材料被广泛应用于生物标记和活体成像。

由于其较长的激发寿命和较宽的光谱范围,上转换发光材料可以通过激发发光的方式实现对生物样本的高对比度成像。

同时,上转换发光材料具有较高的光学稳定性和化学稳定性,能够在生物体内稳定发光,对生物体无毒副作用。

在显示技术领域,上转换发光材料能够实现全彩色显示。

由于其较宽的光谱范围,上转换发光材料可以发射多种颜色的发光,从而实现更丰富的显示效果。

另外,由于其较高的光学稳定性和化学稳定性,上转换发光材料能够在长时间使用中保持较好的显示效果。

在能源转换领域,上转换发光材料被应用于太阳能电池和发光二极管中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上转换发光材料表面修饰羧基的制备与表征3崔黎黎1,范慧俐1,孟 璐1,徐晓伟2,刘 佳1(1.北京科技大学应用科学学院化学系,北京100083;2.北京科技大学材料科学学院无机非金属材料系,北京100083)摘 要: 利用表面接枝改性法,丁二酸酐作修饰剂,对上转换无机发光材料进行了表面羧基修饰。

傅立叶红外吸收光谱证明了羧基的存在,电导率法定量地检测了羧基的含量,热分析表明修饰羧基后材料的热失重过程,扫描电镜显示了修饰后上转换无机发光材料颗粒有的直径有所增加。

沉降试验表明修饰羧基后的上转换发光材料在水溶液中的分散稳定性得到了提高。

关键词: 上转换;发光材料;表面修饰;羧基中图分类号: O782文献标识码:A 文章编号:100129731(2007)01200042031 引 言理论上,开发生物芯片是基于生物探针分子在固相支持物上进行高密度微阵列排布,待分析样品则通过分子识别与探针分子作用并产生可供检测的高灵敏信号[1]。

固相支持物上探针的微阵列通常是通过探针与固相表面的活性官能团之间进行化学偶联反应实现的[2]。

固相表面涉及到固态硅片及亚微米乳液微珠[3]、玻片[4~6]、凝胶[7]、消化纤维素[8]、尼龙滤膜[9]和上转换发光材料[10]等。

上转换无机发光材料Na [Y0.57Yb0.39Er0.04]F4(以下简称UCP)是一般具有亚微尺寸(0.2~0.4μm),掺杂镧系元素的无机非金属材料;它能够吸收低能量的(长波长)红外光,发射高能量的(短波长)可见光[11]。

即是一种可对能量进行上转的无机合成物。

此种材料有不易产生光漂白、不受生物流体及环境的影响、可以衍生杂化在生物分子上的特性,可以用它作为荧光探针中的荧光标记材料[11]。

但是,UCP的表面没有可以利用的基团,使生物活性分子无法直接共价固定于其表面。

本文对上转换发光材料Na[Y0.57Yb0.39Er0.04]F4进行表面修饰羧基的制备与表征,使得发光材料表面携带羧基,可用于结合病毒中所含的氨基(—N H2),从而把病毒和正常细胞区分开来,可以用来进行细胞分离与标记[12]。

2 实 验2.1 试剂及仪器琥珀酸酐(丁二酸酐)分析纯(上海凌峰化学试剂有限公司);PB缓冲溶液(自制);氨基化上转换发光材料(自制)。

昆山KQ5200型超声波清洗器;JB23型定时恒温磁力搅拌器;N EXU S670F T2IR红外分析仪;ZR Y22P综合热分析仪作热分析;扫描电镜2SU2 PRA55(德国蔡斯公司(ZEISS))。

2.2 实验步骤称取一定量上转换发光材料加入有80ml异丙醇的锥形瓶中,超声达到完全分散;磁力搅拌下依次加入约7ml的蒸馏水、9ml的25%的氨水;在一定温度下,磁力搅拌10min,加入少量正硅酸乙酯。

30min后,再加入1ml的32氨丙基三乙氧基硅烷,加入一定量的催化剂,反应进行60min;产物离心分离,得到氨基化上转换发光材料;将氨基化的上转换发光材料于100ml 的圆底烧瓶中;加入100ml p H=11.0PB缓冲溶液溶解后的琥珀酸酐,超声3min;磁力搅拌,室温下反应8h;离心分离,用p H=4.7PB缓冲溶液作清洗液。

离心分离,在120℃的温度下烘干,即得到表面羧基化的UCP。

2.3 羧基的定量检测方法一般测定羧基含量的方法有酸碱滴定法[13]、电位法和电导法等[14,15]。

由于材料表面修饰羧基的量很少,采用电导滴定法测定材料表面羧基含量。

电导滴定法是先把盐基变成酸的形式,在中性盐存在下用NaO H标准溶液进行电导滴定。

以电导为纵坐标,滴定消耗的NaO H毫升数为横坐标作图,从图上的转折点可计算出羧基的含量[16]。

3 结果与讨论3.1 红外光谱分析修饰后的材料的结构式如图1所示。

在谱图(图2(b))中可以看出各个特征吸收。

3387cm-1处的强而宽的吸收峰,是O H的伸缩振动;2939和2882cm-1的吸收峰,是—CH-2的对称以及反对称伸缩振动吸收峰;1146和1044cm-1处的吸收峰是—CH-2的面内摇摆振动吸收带。

1657cm-1是酰胺中υC=O的特征吸收峰,常称为“酰胺Ⅰ带”;羧基中羰基的伸缩振动在1700cm-1处;1368cm-1处的吸收峰是C—O振动产生4功 能 材 料2007年第1期(38)卷3基金项目:国家自然科学基金资助项目(50372006,20273007)收到初稿日期:2006207218收到修改稿日期:2006209226 通讯作者:范慧俐作者简介:崔黎黎 (1981-),女(满族),辽宁人,在读硕士,师承范慧俐教授,主要从事上转换发光材料及其表面修饰的研究。

的;1572和1408cm -1分别是羧酸盐中CO -2的不对称和对称伸缩振动的频率。

同修饰前的材料红外谱图相比,可以说明羧基成功修饰在材料表面。

图1 上转换发光材料表面修饰羧基过程Fig 1The p rocess of surface modified carboxyl group s of up 2conversionluminescence图2 材料表面修饰羧基前后的FI 2IR 谱图Fig 2FI 2IR spect rogram of un 2coated and coated ma 2terial 3.2 羧基修饰量测定称取羧基化修饰后的上转换发光材料的质量为0.01g ,加在盛有200ml 0.005mol/L 的NaCl 溶液的烧杯中,在磁力搅拌下用0.01mol/L 的NaO H 溶液进行滴定,滴定速度以1ml/min 为宜。

滴定开始时电导下降值略大,继续加入NaO H 溶液,羧基渐渐被中和,滴定过程中电导率很小,当达到等电点,NaO H 溶液过量时,电导迅速增加,用坐标法作图,折点即为等当点,如图3所示。

等当点处消耗NaO H 体积为0.76ml ,所以材料表面成功修饰羧基的量为:0.01×0.76×10-30.01=0.76×10-3mol/g3.3 SEM 分析图4和5分别是修饰羧基前后的材料的SEM 图。

从图中计算可以知道修饰前的材料的颗粒平均直径约50nm 左右,而修饰后材料的颗粒的平均直径约110nm 左右,明显增大,表明对上转换发光材料成功地进行了表面修饰。

图3 表面修饰羧基的材料电导率测试图Fig 3The co nductivity test pattern of coated materialby carboxyl groups图4 未修饰材料的SEM 图Fig 4SEM image of un 2coatedmaterial图5 修饰后材料的SEM 图Fig 5SEM image of coated material3.4 热分析图6为修饰羧基前后的T GA 图。

从图6(a )、(b )中可以看出,未修饰和修饰后的材料在100℃以前都有失重现象,这是由于失去表面吸附水的结果。

而修饰后的材料在334℃以后,突然有一失重过程,可能是因为Si —C 键,C —C 键的断裂而失去C H 2造成的(键能:C —C 为347.3kJ /mol ;Si —C 为334.7kJ /mol ;5崔黎黎等:上转换发光材料表面修饰羧基的制备与表征Si —O 为422.5kJ /mol )。

图6 修饰羧基前后材料的T GA 图Fig 6The T GA of un 2coated and coated material 3.5 沉降试验在两个25ml 比色管中分别加入25ml 的蒸馏水,0.050g 的羧基修饰后上转换发光材料和未修饰的上转换发光材料,各超声分散30min ,静置观察,现象如表1。

表1 上转换发光材料修饰前后材料的沉降试验Table 1The settlement test of un 2coated and coatedmaterial沉降时间0(min )5(min )40(min )120(min )1020(min )未修饰未沉降开始沉降大部分沉降沉降完全—修饰后未沉降未沉降未沉降未沉降未沉降 40min 后未修饰的上转换无机发光材料大部分已经沉淀,120min 后完全沉淀;而修饰后的材料形成稳定的胶体状态,可以保持24h 以上。

这是因为:相比于羧基修饰后的上转换发光材料,未修饰的材料粒度较小,但密度比较大,所以容易沉降;而修饰羧基后的材料虽然颗粒直径有所增大,但由于羧基的极性大,易于和水相容,使得材料可以均匀分散在水溶液中,以胶体状态稳定存在。

3.6 发光强度测试从图7和8可以明显看出在980nm 激光器的激发下,修饰前后材料均发出540.2nm 的可见光,说明表面修饰后对于材料的发光并没有影响。

但是,我们可以看出,修饰后的材料的发光强度比修饰前材料的发光强度有所降低,但是并不影响其作为生物芯片荧光探针的使用。

图7 修饰前材料的发射光谱图Fig 7Emission spectrogram of un 2coated material图8 修饰后材料的发射光谱图Fig 8Emission spect rogram of coated material4 结 论利用表面接枝改性法制备了有羧基修饰的上转换无机发光材料。

经同样的方法检测,修饰前后的材料都发出绿色可见光。

试验表明,修饰后的材料在水溶液中的分散稳定性增强,为上转换无机发光材料在荧光探针上的使用奠定了基础。

参考文献:[1] Hughs M P ,Morgan H.[J ].Anal Chem ,1999,71:344123445.[2] 黄承志,李原芳,等.[J ].中国科学(B 辑),2000,30(4):3052310.[3] Hughes M P ,Morgan H.[J ].Anal Chem ,1999,71:344123445.[4] Schena M ,Shalon D ,Davis R W ,et al.[J ].Science ,1995,270:4672470.[5] Guo Z ,Guifoyle R A ,Thiel A J ,et al.[J ].Nucleic AcidsRes ,1994,22:545625465.[6] Schena M ,Shalon D ,Heller R ,et al.[J ].USA :Proc NatlAcad Sci ,1996,93:10614210619.[7] Livshits M A ,Mizabekow A D.[J ].Biophys J ,1996,71:279522801.[8] Hall M ,Kazakova I ,Yao Y M.[J ].Anal Biochem ,1999,272:1652170.[9] Xu X H ,Bard A J.[J ].J Am Chem Soc ,1995,117:262722631.[10] 鲍俊萍,徐晓伟,范慧俐,等,[J ].材料导报.2003,17:1912193.[11] Niedbaba R S ,Feindt H ,Kardos K ,et al.[J ].AnalyticalBiochemistry ,2001,(293):22230.[12] Xie Xin ,Zhang Xu ,Yu Bingbin ,et al.[J ].J Mag MagMat ,2004,(277):1642168.[13] 金世美.有机分析教程[M ].北京:高等教育出版社,1992.1372138.[14] 薛 斌,王 彦.[J ].辽宁化工,1997,26(3):1752176.[15] 吕志华,赵 峡,王远红,等.[J ].中国海洋药物,2001(2):16218.[16] 徐永红,尹成日,等.[J ].延边大学学报(自然科学报),1995,21(3):22224.(下转第10页)以采取适当的溶液作为工作介质,经过合金化后显著提高ZM5合金的耐蚀性。

相关文档
最新文档