北师大版数学高二-1.4 数学归纳法(3)教案

合集下载

北师大版数学归纳法教案

北师大版数学归纳法教案

北师大版高二数学选修2-2第二章§4数学归纳法江西省南昌市第十中学罗红霞【教材分析】1.教材背景数学归纳法是证明与正整数有关命题的一种重要证明方法,它起源于正整数的归纳公理或最小数原理,而演变成各种形式.《数学归纳法》是北师大版数学选修2-2第二章继学习完归纳与类比,证明方法中的综合法与分析法、反证法的基础上,在学生已具备归纳的思想,进一步学习证明方法的过程中学习本节知识的。

2.数学归纳法的地位和作用人类对问题的研究,结论的发现,到结论的认同,思维的流程通常是观察—归纳—猜想—证明.猜想的结论对不对,证明尤为关键,数学归纳法在这起着非常重大的作用.在运用数学归纳法解题时,学生通常用到等式的恒等变形、不等式的放缩、数式形的构造与转化等,加强了对知识的掌握及能力的训练.而对数学归纳法原理的理解,蕴含着归纳与推理、特殊到一般、有限到无限、递推等数学思想和方法,对思维的发展起到完善和推动的作用。

【教学目标】1.知识目标(1)了解由有限多个特殊事例得出的一般结论不一定正确.(2)初步理解数学归纳法原理.(3)理解和掌握用数学归纳法证明数学命题的两个步骤.(4)初步会用数学归纳法证明一些简单的与正整数有关的恒等式.2.能力目标(1)通过对数学归纳法的学习、应用,培养学生观察、归纳、猜想、分析能力和严密的逻辑推理能力.(2)让学生经历发现问题、提出问题、分析问题、解决问题的过程,培养学生的创新能力.3.情感目标(1)通过对数学归纳法原理的探究,培养学生严谨的、实事求是的科学态度和不怕困难,勇于探索的精神.(2)让学生通过对数学归纳法原理的理解,感受数学内在美的振憾力,从而使学生喜欢数学.(3)学生通过置疑与探究,培养学生独立的人格与敢于创新精神.【教学重点】(1)初步理解数学归纳法的原理.(2)明确用数学归纳法证明命题的两个步骤.(3)初步会用数学归纳法证明简单的与正整数数学恒等式.【教学难点】(1)对数学归纳法原理的理解,即理解数学归纳法证题的严密性与有效性.(2)假设的利用,即如何利用假设证明当n=k+1时结论正确.【教学方法】类比启发探究式教学方法【教学手段】多媒体辅助课堂教学【教学过程】一、创设情境,提出问题情境一:明朝刘元卿编的《应谐录》中有一个笑话:财主的儿子学写字,当老师教他写字的时候,告诉他写一、二、三时,财主的儿子很高兴,告诉老师他会写字了….这则笑话中财主的儿子得出“四就是四横、五就是五横……”的结论,用的就是我们已学过的“归纳法”,不过,这个归纳推出的结论显然是错误的.在以前的学习过程中,我们有没有像财主儿子那样猜想过某些结论呢?情境二:学生共同回顾等差数列{}n a 通项公式推导过程:112131431,,2,3,,(1)n a a a a d a a d a a d a a n d==+=+=+=+- 这个结论我们知道是正确的.其实,我们推导等差数列的通项公式的方法与财主儿子猜想数字写法的方法都是归纳法,那么什么是归纳法?归纳法有什么特点?像这种由特殊事例得出一般结论的归纳推理方法,通常叫归纳法.根据推理过程中考察的对象是涉及事物的一部分还是全部,分为不完全归纳法和完全归纳法.教师问:完全归纳法得出的结论可靠吗?不完全归纳法得出的结论可靠吗?情境三:已知数列{}n a 满足1n a +=12n a -(n ∈N ),10a =,你能尝试得出{}n a 通项公式吗? 学生计算出212a =,323a =,434a =,…,由此猜想1(1,2,n n a n n-==…), 教师问:这个结论正确吗?小结:这些用有限多个特殊事例得出的结论,有的正确,有的不正确.因此不能作为论证的方法.如何证明这类有关正整数n 的命题呢?对于这类问题的证明方法可能不只一种,但今天我们要学的数学归纳法是证明这类问题的一种好方法.【设计意图】:首先设计情境一,分析情境,自然引出课题,谈笑间进入正题.再通过情境二梳理我们熟悉的一些问题,同时让学生感受到我们以前的学习中其实早已接触过归纳法.情境三通过学生探究尝试,很自然为本节课主题与重点引出打下伏笔.二、解决问题,得到新知1、类比数学问题, 激起思维浪花下面我们来领会数学归纳法的基本思想:实例:播放多米诺骨牌录像关键:(1) 第一张牌被推倒; (2) 假如某一张牌倒下, 则它的后一张牌必定倒下.于是, 我们可以下结论: 多米诺骨牌会全部倒下.搜索:再举生活事例:同学们自己放在车库的自行车,排列整齐的一列自行车全被推倒的场景. 类比多米诺骨牌过程, 证明等差数列通项公式d n a a n )1(1-+=(师生共同完成,教师强调步骤及注意点).(1) 当n =1时等式成立;(2) 假设当n =k 时等式成立, 即d k a a k )1(1-+=,则d a a k k +=+1=d k a ]1)1[(1-++, 即n =k +1时等式也成立.于是, 我们可以下结论: 等差数列的通项公式d n a a n )1(1-+=对任何n ∈*N 都成立.【设计意图】:布鲁纳的发现学习理论认为,“有指导的发现学习”强调知识发生发展过程.这里学生通过类比多米诺骨牌依顺序倒下的原理,建立数学模型,探究出证明有关正整数命题的方法,让学生发现数学归纳法的雏形,是一种再创造的发现性学习.2、探索新知,形成概念数学归纳法概念:对于某些与自然数n 有关的命题常常采用下面的方法来证明它的正确性:先证明当n 取第一个值n 0时命题成立;然后假设当n=k(k ∈N*,k ≥n 0)时命题成立,证明当n=k+1时命题也成立这种证明方法就叫做数学归纳法.用数学归纳法证明一个与正整数有关的命题的步骤:(1)证明:当n 取第一个值n 0结论正确;(2)假设当n =k (k ∈N *,且k ≥n 0)时结论正确,证明当n =k +1时结论也正确.由(1),(2)可知,命题对于从n 0开始的所有正整数n 都正确.三、例题示范,形成技能例1、用数学归纳法证明情境三的猜想结论成立.证明:(1)当n =1时,左边01==a ,右边0111=-=,等式成立. (2)假设当n =k (k ≥1)时,等式成立,即k k a k 1-=成立. 那么,当n =k +1时,11)1(1121211+-+=+=--=-=+k k k k kk a a k k . 这就是说,当n =k +1时等式成立.根据(1)和(2),可知猜想nn a n 1-=对任意正整数n 都成立. 例2、用数学归纳法证明:ααn n +≥+1)1((其中1α>-,n 是正整数).证明:(1)当n =1时,左边=1α+,右边=1α+.所以,当n =1时,命题成立.(2)假设当n =k (k ≥1)时,命题成立,即ααk k+≥+1)1(.那么,当n =k +1时,因为1α>-,所以10α+>.根据假设知,ααk k +≥+1)1(,所以 21)1(1)1)(1()1()1()1(αααααααk k k k k +++=++≥++=++由于02≥αk ,所以 ααα)1(1)1(12++≥+++k k k .从而 αα)1(1)1(1++≥++k k .这表明,当n =k +1时命题成立。

高二数学归纳法教案

高二数学归纳法教案

海伊教育学科教师辅导讲义学员编号:年级:高二课时数:学员姓名:辅导科目:数学学科教师:高老师课题高中数学数学归纳法讲义授课时间:2013 年8月8日备课时间:2013 年8月6日教学目标(1)了解数学推理的常用方法(归纳法)(2)了解数学归纳法的原理及使用范围。

(3)初步掌握数学归纳法证题的两个步骤和一个结论。

(4)会用数学归纳法证明一些简单的等式问题。

重点、难点重点:使学生理解数学归纳法的实质难点:掌握数学归纳法证题步骤,尤其是递推步骤中归纳假设和恒等变换的运用。

授课方法联想质疑——交流研讨——归纳总结——实践提高教学过程一、情景设置(知识导入)探索研究【知识点总结与归纳】(1)理解数学归纳法的原理(2)数学归纳法的两个步骤缺一不可,前者是基础,后者是递推依据,最终给出结论。

(3)数学归纳法主要应用于解决与正整数有关的数学问题。

一、基本知识概要:1.数学归纳法:对于某些与自然数n有关的命题常常采用下面的方法来证明它的正确性:先证明当n取第一个值n0时命题成立;然后假设当n=k(k N*,k≥n0)时命题成立,证明当n=k+1时命题也成立这种证明方法就叫做数学归纳法2. 数学归纳法的基本思想:即先验证使结论有意义的最小的正整数n0,如果当n=n0时,命题成立,再假设当n=k(k≥n0,k∈N*)时,命题成立.(这时命题是否成立不是确定的),根据这个假设,如能推出当n =k +1时,命题也成立,那么就可以递推出对所有不小于n 0的正整数n 0+1,n 0+2,…,命题都成立.3.用数学归纳法证明一个与正整数有关的命题的步骤: (1)证明:当n 取第一个值n 0结论正确;(2)假设当n =k (k ∈N *,且k ≥n 0)时结论正确,证明当n =k +1时结论也正确. 由(1),(2)可知,命题对于从n 0开始的所有正整数n 都正确递推基础不可少,归纳假设要用到,结论写明莫忘掉.1.用数学归纳法证题要注意下面几点:①证题的两个步骤缺一不可,要认真完成第一步的验证过程;②成败的关键取决于第二步对1+=k n 的证明:1)突破对“归纳假设”的运用;2)用好命题的条件;3)正确选择与命题有关的知识及变换技巧二、 课堂练习例1、证明:2462(1)n n n +++=+ ()n N +∈证明:(1)当1n =时,左边=2,右边=2,等式成立。

高中数学北师大版选修2-2教案-§4 数学归纳法_教学设计_教案

高中数学北师大版选修2-2教案-§4 数学归纳法_教学设计_教案

教学准备1. 教学目标1、使学生了解归纳法, 理解数学归纳的原理与实质。

2、掌握数学归纳法证题的两个步骤;会用“数学归纳法”证明简单的与自然数有关的命题。

3、培养学生观察, 分析, 论证的能力, 进一步发展学生的抽象思维能力和创新能力,让学生经历知识的构建过程, 体会类比的数学思想。

4、努力创设课堂愉悦情境,使学生处于积极思考、大胆质疑氛围,提高学生学习的兴趣和课堂效率。

5、通过对例题的探究,体会研究数学问题的一种方法(先猜想后证明), 激发学生的学习热情,使学生初步形成做数学的意识和科学精神。

2. 教学重点/难点二、教学重点:能用数学归纳法证明一些简单的数学命题。

教学难点:明确数学归纳法的两个步骤的必要性并正确使用。

3. 教学用具4. 标签教学过程四、教学过程(一)、复习:1、数学归纳法:对于某些与自然数n有关的命题常常采用下面的方法来证明它的正确性:先证明当n取第一个值n0时命题成立;然后假设当n=k(kÎN*,k≥n0)时命题成立,证明当n=k+1时命题也成立这种证明方法就叫做数学归纳法2、数学归纳法的基本思想:即先验证使结论有意义的最小的正整数n0,如果当n=n0时,命题成立,再假设当n=k(k≥n0,k∈N*)时,命题成立.(这时命题是否成立不是确定的),根据这个假设,如能推出当n=k+1时,命题也成立,那么就可以递推出对所有不小于n0的正整数n0+1,n0+2,…,命题都成立.3、用数学归纳法证明一个与正整数有关的命题的步骤:(1)证明:当n取第一个值n0结论正确;(2)假设当n=k(k∈N*,且k≥n0)时结论正确,证明当n=k+1时结论也正确. 由(1),(2)可知,命题对于从n0开始的所有正整数n都正确(二)、探究新课用数学归纳法证明几何问题的关键是“找项”,即几何元素从k个变成k+1个时,所证的几何量将增加多少,这需用到几何知识或借助于几何图形来分析,在实在分析不出来的情况下,将n=k+1和n=k分别代入所证的式子,然后作差,即可求出增加量,然后只需稍加说明即可,这也是用数学归纳法证明几何命题的一大技巧。

北师大版高中数学选修2-2课件1.4归纳法

北师大版高中数学选修2-2课件1.4归纳法

1 解: 由a ,a 可得 0 n 1 1 2 a n 1 2 1 1 a3 a 2 1 3 2 0 2 22
3 a4 2 4 23
……
1
4 a5 3 5 24
1
n
( , , )
(1)当 n1时,左
k 1 k时, ak (2)假设 n 成立。 k
n ( 1 ) 1 n ∴

练习
等比数列中
n a ( 1 q ) 1 S n 1 q
这些与正整数 n 有关的命题,是否对于任何一 个正整数 n 都成立呢?怎样证明呢?
我们来学习一种特殊的证明方法----数学归纳法, 它主要用于研究与正整数 n 有关的数学问题。其基本 步骤为: (1)验证 n1 时,命题成立; (2)在假设时命题成立的前提下, n k ( k 1 ) 推出 n 时,命题成立。 k 1 根据(1)(2)可以断定命题对于一切正整数n 都成立。 那么,数学归纳法为什么能够保证命题对所有的 正整数都成立呢? 多米诺骨牌演示
使得多米诺游戏可以连续运行的条件: (1)第一张骨牌必须能倒下; (1)是游戏基础 (2)假若第 k 张能倒下,必能 压倒其后的第k+1 张牌。 (2)是游戏继续的条件 数学归纳法 第一步 第二步
体现了
两 步 缺 一 不 可
递推思想 递推的基础 递推的依据,是关键
例1 证明:首项为 a 1 ,公差为 d 的等差数列 { a n }
当n 时, a k 1 k1
a 0 右,等式成立; 1
1 1 2ak 2 k 1 k k (k 1) 1 k 1 k 1
n 1 所以通项公式 an 对于任意正整数 n 都成立。 n

高中数学北师大版选修2-2学案:1.4 数学归纳法 Word版含解析

高中数学北师大版选修2-2学案:1.4 数学归纳法 Word版含解析

§4数学归纳法1.了解数学归纳法的思想实质,掌握数学归纳法的两个步骤.(重点)2.体会归纳法原理,并能应用数学归纳法证明简单的命题.(重点、难点)[基础·初探]教材整理数学归纳法阅读教材P16~P18,完成下列问题.1.数学归纳法的基本步骤数学归纳法是用来证明某些与正整数n有关的数学命题的一种方法.它的基本步骤是:(1)验证:当n取第一个值n0(如n0=1或2等)时,命题成立;(2)在假设当n=k(n∈N+,k≥n0)时命题成立的前提下,推出当n=k+1时,命题成立.根据(1)(2)可以断定命题对一切从n0开始的正整数n都成立.2.应用数学归纳法注意的问题(1)用数学归纳法证明的对象是与正整数n有关的命题.(2)在用数学归纳法证明中,两个基本步骤缺一不可.(3)步骤(2)的证明必须以“假设当n=k(k≥n0,k∈N+)时命题成立”为条件.判断(正确的打“√”,错误的打“×”)(1)与正整数n有关的数学命题的证明只能用数学归纳法.()(2)数学归纳法的第一步n0的初始值一定为1.()(3)数学归纳法的两个步骤缺一不可.()【答案】(1)×(2)×(3)√[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1:解惑:疑问2:解惑:疑问3:解惑:[小组合作型](n+3)=(n+3)(n+4)2(n∈N+)时,第一步验证n=1时,左边应取的项是()A.1B.1+2C.1+2+3D.1+2+3+4(2)用数学归纳法证明(n+1)·(n+2)·…·(n+n)=2n×1×3×…×(2n-1)(n∈N+),“从k到k+1”左端增乘的代数式为__________.【导学号:94210022】【自主解答】(1)当n=1时,左边应为1+2+3+4,故选D.(2)令f(n)=(n+1)(n+2)…(n+n),则f(k)=(k+1)·(k+2)…(k+k),f(k+1)=(k+2)(k+3)…(k+k)(2k+1)(2k+2),所以f(k+1)f(k)=(2k+1)(2k+2)k+1=2(2k+1).【答案】(1)D(2)2(2k+1)数学归纳法证题的三个关键点1.验证是基础找准起点,奠基要稳,有些问题中验证的初始值不一定是1.2.递推是关键数学归纳法的实质在于递推,所以从“k”到“k+1”的过程中,要正确分析式子项数的变化.关键是弄清等式两边的构成规律,弄清由n=k到n=k+1时,等式的两边会增加多少项、增加怎样的项.3.利用假设是核心在第二步证明n=k+1成立时,一定要利用归纳假设,即必须把归纳假设“n =k时命题成立”作为条件来导出“n=k+1”,在书写f(k+1)时,一定要把包含f(k)的式子写出来,尤其是f(k)中的最后一项,这是数学归纳法的核心,不用归纳假设的证明就不是数学归纳法.[再练一题]1.下面四个判断中,正确的是()A.式子1+k+k2+…+k n(n∈N+)中,当n=1时,式子的值为1B.式子1+k+k2+…+k n-1(n∈N+)中,当n=1时,式子的值为1+kC.式子1+12+13+…+12n+1(n∈N+)中,当n=1时,式子的值为1+12+13D.设f(n)=1n+1+1n+2+…+13n+1(n∈N+),则f(k+1)=f(k)+13k+2+13k+3+13k+4【解析】A中,n=1时,式子=1+k;B中,n=1时,式子=1;C中,n=1时,式子=1+12+13;D中,f(k+1)=f(k)+13k+2+13k+3+13k+4-1k+1.故正确的是C. 【答案】 C(1)用数学归纳法证明不等式1n +1+1n +2+…+1n +n >1324(n ≥2,n ∈N +)的过程中,由n =k 推导n =k +1时,不等式的左边增加的式子是__________. (2)证明:不等式1+12+13+…+1n<2n (n ∈N +). 【精彩点拨】 (1)写出当n =k 时左边的式子,和当n =k +1时左边的式子,比较即可.(2)在由n =k 到n =k +1推导过程中利用放缩法,在利用放缩时,注意放缩的度.【自主解答】 (1)当n =k +1时左边的代数式是1k +2+1k +3+…+12k +1+12k +2,增加了两项12k +1与12k +2,但是少了一项1k +1,故不等式的左边增加的式子是12k +1+12k +2-1k +1=1(2k +1)(2k +2).【答案】1(2k +1)(2k +2)(2)证明:①当n =1时,左边=1,右边=2,左边<右边,不等式成立. ②假设当n =k (k ≥1且k ∈N +)时,不等式成立, 即1+12+13+…+1k<2k . 则当n =k +1时, 1+12+13+…+1k +1k +1<2k +1k +1=2k k +1+1k +1<(k )2+(k +1)2+1k +1=2(k +1)k +1=2k +1.∴当n =k +1时,不等式成立.由①②可知,原不等式对任意n ∈N +都成立. [再练一题]2.试用数学归纳法证明上例(1)中的不等式.【证明】 ①当n =2时,12+1+12+2=712>1324. ②假设当n =k (k ≥2且k ∈N +)时不等式成立, 即1k +1+1k +2+…+12k >1324, 那么当n =k +1时, 1k +2+1k +3+…+12(k +1) =1k +2+1k +3+…+12k +12k +1+12k +2+1k +1-1k +1=⎝ ⎛⎭⎪⎫1k +1+1k +2+1k +3+…+12k +12k +1+12k +2-1k +1 >1324+12k +1+12k +2-1k +1=1324+12k +1-12k +2=1324+12(2k +1)(k +1)>1324.这就是说,当n =k +1时,不等式也成立.由①②可知,原不等式对任意大于1的正整数都成立.已知数列{a n }的前n 项和为S n ,其中a n =S n n (2n -1)且a 1=13.(1)求a 2,a 3;(2)猜想数列{a n }的通项公式,并证明.【精彩点拨】 (1)令n =2,3可分别求a 2,a 3.(2)根据a 1,a 2,a 3的值,找出规律,猜想a n ,再用数学归纳法证明. 【自主解答】 (1)a 2=S 22(2×2-1)=a 1+a 26,a 1=13,则a 2=115,类似地求得a 3=135. (2)由a 1=11×3,a 2=13×5,a 3=15×7,…,猜得: a n =1(2n -1)(2n +1).证明:①当n =1时,由(1)可知等式成立;②假设当n=k时猜想成立,即a k=1(2k-1)(2k+1),那么,当n=k+1时,由题设a n=S nn(2n-1),得a k=S kk(2k-1),a k+1=S k+1(k+1)(2k+1),所以S k=k(2k-1)a k=k(2k-1)1(2k-1)(2k+1)=k2k+1,S k+1=(k+1)(2k+1)a k+1,a k+1=S k+1-S k=(k+1)(2k+1)a k+1-k2k+1.因此,k(2k+3)a k+1=k2k+1,所以a k+1=1(2k+1)(2k+3)=1[2(k+1)-1][2(k+1)+1].这就证明了当n=k+1时命题成立.由①②可知命题对任何n∈N+都成立.1.“归纳—猜想—证明”的一般环节2.“归纳—猜想—证明”的主要题型(1)已知数列的递推公式,求通项或前n项和.(2)由一些恒等式、不等式改编的一些探究性问题,求使命题成立的参数值是否存在.(3)给出一些简单的命题(n=1,2,3,…),猜想并证明对任意正整数n都成立的一般性命题.[再练一题]3.数列{a n }满足S n =2n -a n (S n 为数列{a n }的前n 项和),先计算数列的前4项,再猜想a n ,并证明.【解】 由a 1=2-a 1,得a 1=1; 由a 1+a 2=2×2-a 2,得a 2=32; 由a 1+a 2+a 3=2×3-a 3,得a 3=74; 由a 1+a 2+a 3+a 4=2×4-a 4,得a 4=158. 猜想a n =2n -12n -1.下面证明猜想正确:(1)当n =1时,由上面的计算可知猜想成立.(2)假设当n =k 时猜想成立,则有a k =2k -12k -1,当n =k +1时,S k +a k +1=2(k+1)-a k +1,∴a k +1=12[2(k +1)-S k ]=k +1-12⎝ ⎛⎭⎪⎫2k -2k -12k -1=2k +1-12(k +1)-1,所以,当n =k +1时,等式也成立.由(1)和(2)可知,a n =2n -12n -1对任意正整数n 都成立.[探究共研型]【提示】 不一定,如证明n 边形的内角和为(n -2)·180°时,第一个值为n 0=3.探究2 数学归纳法两个步骤之间有怎样的联系?【提示】 第一步是验证命题递推的基础,第二步是论证命题递推的依据,这两个步骤缺一不可,只完成步骤(1)而缺少步骤(2)就作出判断,可能得出不正确的结论.因为单靠步骤(1),无法递推下去,即n取n0以后的数列命题是否正确,我们无法判定,同样只有步骤(2)而缺少步骤(1)时,也可能得出不正确的结论,缺少步骤(1)这个基础,假设就失去了成立的前提,步骤(2)也就没有意义了.用数学归纳法证明:n3+(n+1)3+(n+2)3能被9整除(n∈N).+【精彩点拨】在第二步时注意根据归纳假设进行拼凑.【自主解答】(1)当n=1时,13+23+33=36能被9整除,所以结论成立;(2)假设当n=k(k∈N+,k≥1)时结论成立,即k3+(k+1)3+(k+2)3能被9整除.则当n=k+1时,(k+1)3+(k+2)3+(k+3)3=[k3+(k+1)3+(k+2)3]+[(k+3)3-k3]=[k3+(k+1)3+(k+2)3]+9k2+27k+27=[k3+(k+1)3+(k+2)3]+9(k2+3k+3).因为k3+(k+1)3+(k+2)3能被9整除,9(k2+3k+3)也能被9整除,所以(k+1)3+(k+2)3+(k+3)3也能被9整除,即n=k+1时结论也成立.由(1)(2)知命题对一切n∈N成立.+与正整数有关的整除性问题常用数学归纳法证明,证明的关键在于第二步中,根据归纳假设,将n=k+1时的式子进行增减项、倍数调整等变形,使之能与归纳假设联系起来.[再练一题]4.用数学归纳法证明“n3+5n能被6整除”的过程中,当n=k+1时,对式子(k+1)3+5(k+1)应变形为__________.【导学号:94210023】【解析】由n=k成立推证n=k+1成立时必须用上归纳假设,∴(k+1)3+5(k+1)=(k3+5k)+3k(k+1)+6.【答案】(k3+5k)+3k(k+1)+6[构建·体系]数学归纳法—⎪⎪⎪⎪⎪—定义—应用—⎪⎪⎪⎪—证明等式—证明不等式—证明整除性问题1.用数学归纳法证明“凸n 边形的内角和等于(n -2)π”时,归纳奠基中n 0的取值应为( )A.1B.2C.3D.4【解析】 边数最少的凸n 边形为三角形,故n 0=3. 【答案】 C2.用数学归纳法证明1+a +a 2+…+a n +1=1-an +21-a(n ∈N +,a ≠1),在验证n=1成立时,左边所得的项为( )A.1B.1+a +a 2C.1+aD.1+a +a 2+a 3【解析】 当n =1时,n +1=2,故左边所得的项为1+a +a 2. 【答案】 B3.用数学归纳法证明关于n 的恒等式时,当n =k 时,表达式为1×4+2×7+…+k (3k +1)=k (k +1)2,则当n =k +1时,表达式为________.【导学号:94210024】【解析】 当n =k +1时,应将表达式1×4+2×7+…+k (3k +1)=k (k +1)2中的k 更换为k +1.【答案】 1×4+2×7+…+k (3k +1)+(k +1)(3k +4)=(k +1)(k +2)2 4.以下是用数学归纳法证明“n ∈N +时,2n >n 2”的过程,证明:(1)当n =1时,21>12,不等式显然成立.(2)假设当n =k (k ∈N +)时不等式成立,即2k >k 2.那么,当n =k +1时,2k +1=2×2k =2k +2k >k 2+k 2≥k 2+2k +1=(k +1)2. 即当n =k +1时不等式也成立.根据(1)和(2),可知对任何n ∈N +不等式都成立.其中错误的步骤为________(填序号).【解析】 在2k +1=2×2k =2k +2k >k 2+k 2≥k 2+2k +1中用了k 2≥2k +1,这是一个不确定的结论.如k =2时,k 2<2k +1.【答案】 (2)5.用数学归纳法证明:对于任意正整数n ,(n 2-1)+2(n 2-22)+…+n (n 2-n 2)=n 2(n -1)(n +1)4.【证明】 (1)当n =1时,左边=12-1=0,右边=12×(1-1)×(1+1)4=0,所以等式成立.(2)假设当n =k (k ∈N +)时等式成立,即(k 2-1)+2(k 2-22)+…+k (k 2-k 2)=k 2(k -1)(k +1)4.那么当n =k +1时,有[(k +1)2-1]+2[(k +1)2-22]+…+k ·[(k +1)2-k 2]+(k +1)[(k +1)2-(k +1)2]=(k 2-1)+2(k 2-22)+…+k (k 2-k 2)+(2k +1)(1+2+…+k ) =k 2(k -1)(k +1)4+(2k +1)k (k +1)2=14k (k +1)[k (k -1)+2(2k +1)] =14k (k +1)(k 2+3k +2)=(k +1)2[(k +1)-1][(k +1)+1]4.所以当n =k +1时等式成立. 由(1)(2)知,对任意n ∈N +等式成立.我还有这些不足:(1)(2) 我的课下提升方案:(1)(2)学业分层测评(六)(建议用时:45分钟)[学业达标]一、选择题1.(2016·广州高二检测)用数学归纳法证明3n ≥n 3(n ≥3,n ∈N +),第一步验证( )A.n =1B.n =2C.n =3D.n =4【解析】 由题知,n 的最小值为3,所以第一步验证n =3是否成立.【答案】 C2.已知f (n )=1n +1n +1+1n +2+…+1n 2,则( ) A.f (n )共有n 项,当n =2时,f (2)=12+13B.f (n )共有n +1项,当n =2时,f (2)=12+13+14C.f (n )共有n 2-n 项,当n =2时,f (2)=12+13D.f (n )共有n 2-n +1项,当n =2时,f (2)=12+13+14【解析】 结合f (n )中各项的特征可知,分子均为1,分母为n ,n +1,…,n 2的连续自然数共有n 2-n +1个,且f (2)=12+13+14.【答案】 D3.用数学归纳法证明1+2+3+…+n 2=n 4+n 22,则当n =k +1(n ∈N +)时,等式左边应在n =k 的基础上加上( )【导学号:94210025】A.k 2+1B.(k +1)2C.(k +1)4+(k +1)22D.(k 2+1)+(k 2+2)+(k 2+3)+…+(k +1)2【解析】 当n =k 时,等式左边=1+2+…+k 2,当n =k +1时,等式左边=1+2+…+k 2+(k 2+1)+…+(k +1)2,故选D.【答案】 D4.设f (x )是定义在正整数集上的函数,且f (x )满足:“当f (k )≥k 2成立时,总可推出f (k +1)≥(k +1)2成立”,那么,下列命题总成立的是( )A.若f (3)≥9成立,则当k ≥1时,均有f (k )≥k 2成立B.若f (5)≥25成立,则当k ≥4时,均有f (k )≥k 2成立C.若f (7)<49成立,则当k ≥8时,均有f (k )<k 2成立D.若f (4)=25成立,则当k ≥4时,均为f (k )≥k 2成立【解析】 对于A ,若f (3)≥9成立,由题意只可得出当k ≥3时,均有f (k )≥k 2成立,故A 错;对于B ,若f (5)≥25成立,则当k ≥5时均有f (k )≥k 2成立,故B 错;对于C ,应改为“若f (7)≥49成立,则当k ≥7时,均有f (k )≥k 2成立.”【答案】 D5.已知命题1+2+22+…+2n -1=2n -1及其证明:(1)当n =1时,左边=1,右边=21-1=1,所以等式成立.(2)假设n =k (k ≥1,k ∈N +)时等式成立,即1+2+22+…+2k -1=2k -1成立,则当n =k +1时,1+2+22+…+2k -1+2k =1-2k +11-2=2k +1-1,所以n =k +1时等式也成立.由(1)(2)知,对任意的正整数n 等式都成立.判断以上评述( )A.命题、推理都正确B.命题正确、推理不正确C.命题不正确、推理正确D.命题、推理都不正确【解析】推理不正确,错在证明n=k+1时,没有用到假设n=k的结论,命题由等比数列求和公式知正确,故选B.【答案】 B二、填空题6.若f(n)=12+22+32+…+(2n)2,则f(k+1)与f(k)的递推关系式是________.【解析】∵f(k)=12+22+32+…+(2k)2,f(k+1)=12+22+32+…+(2k)2+(2k+1)2+(2k+2)2,∴f(k+1)-f(k)=(2k+1)2+(2k+2)2,即f(k+1)=f(k)+(2k+1)2+(2k+2)2.【答案】f(k+1)=f(k)+(2k+1)2+(2k+2)27.用数学归纳法证明:122+132+…+1(n+1)2>12-1n+2.假设n=k时,不等式成立,则当n=k+1时,应推证的目标不等式是____________________.【解析】当n=k+1时,目标不等式为:122+132+…+1(k+1)2+1(k+2)2>12-1k+3.【答案】122+132+…+1(k+1)2+1(k+2)2>12-1k+38.用数学归纳法证明12+22+…+(n-1)2+n2+(n-1)2+…+22+12=n(2n2+1)3时,由n=k的假设到证明n=k+1时,等式左边应添加的式子是__________.【解析】当n=k时,左边=12+22+...+(k-1)2+k2+(k-1)2+ (22)12.当n=k+1时,左边=12+22+…+k2+(k+1)2+k2+(k-1)2+…+22+12,所以左边添加的式子为(k+1)2+k2.【答案】(k+1)2+k2三、解答题9.用数学归纳法证明:1+3+…+(2n-1)=n2(n∈N+).【证明】(1)当n=1时,左边=1,右边=1,等式成立.(2)假设当n=k(k≥1)时,等式成立,即1+3+…+(2k-1)=k2,那么,当n =k +1时,1+3+…+(2k -1)+[2(k +1)-1]=k 2+[2(k +1)-1]=k 2+2k +1=(k +1)2.这就是说,当n =k +1时等式成立.根据(1)和(2)可知等式对任意正整数n 都成立.10.用数学归纳法证明:1+12+13+…+12n -1<n (n ∈N +,n >1). 【证明】 (1)当n =2时,左边=1+12+13,右边=2,左边<右边,不等式成立.(2)假设当n =k 时,不等式成立,即1+12+13+…+12k -1<k ,则当n =k +1时,有1+12+13+…+12k -1+12k +12k +1+…+12k +1-1<k +12k +12k +1+…+12k +1-1<k +1×2k2k =k +1,所以当n =k +1时不等式成立. 由(1)和(2)知,对于任意大于1的正整数n ,不等式均成立.[能力提升]1.用数学归纳法证明“当n 为正奇数时,x n +y n 能被x +y 整除”,第二步归纳假设应写成( )A.假设n =2k +1(k ∈N +)时正确,再推n =2k +3时正确B.假设n =2k -1(k ∈N +)时正确,再推n =2k +1时正确C.假设n =k (k ∈N +)时正确,再推n =k +1时正确D.假设n =k (k ∈N +)时正确,再推n =k +2时正确【解析】 ∵n 为正奇数,∴在证明时,归纳假设应写成:假设n =2k -1(k ∈N +)时正确,再推出n =2k +1时正确.故选B.【答案】 B2.对于不等式n 2+n ≤n +1(n ∈N +),某学生的证明过程如下:(1)当n =1时,12+1≤1+1,不等式成立;(2)假设当n =k (k ∈N +)时,不等式成立,即k 2+k ≤k +1,则当n =k +1时,(k +1)2+(k +1)=k 2+3k +2<(k 2+3k +2)+(k +2)=(k +2)2=(k+1)+1,所以当n=k+1时,不等式成立.上述证法()【导学号:94210026】A.过程全都正确B.n=1验证不正确C.归纳假设不正确D.从n=k到n=k+1的推理不正确【解析】n=1的验证及归纳假设都正确,但从n=k到n=k+1的推理中没有使用归纳假设,而是通过不等式的放缩法直接证明,这不符合数学归纳法的证题要求.故选D.【答案】 D3.用数学归纳法证明34n+2+52n+1能被14整除的过程中,当n=k+1时,34(k +1)+2+52(k+1)+1应变形为__________.【解析】当n=k+1时,34(k+1)+2+52(k+1)+1=81·34k+2+25·52k+1=25(34k+2+52k+1)+56·34k+2.【答案】25(34k+2+52k+1)+56·34k+24.设函数y=f(x)对任意实数x,y都有f(x+y)=f(x)+f(y)+2xy.(1)求f(0)的值;(2)若f(1)=1,求f(2),f(3),f(4)的值;(3)在(2)的条件下,猜想f(n)(n∈N+)的表达式,并用数学归纳法加以证明.【解】(1)令x=y=0,得f(0+0)=f(0)+f(0)+2×0×0⇒f(0)=0.(2)f(1)=1,f(2)=f(1+1)=1+1+2=4,f(3)=f(2+1)=4+1+2×2×1=9,f(4)=f(3+1)=9+1+2×3×1=16.(3)猜想f(n)=n2,下面用数学归纳法证明.当n=1时,f(1)=1满足条件.)时成立,即f(k)=k2,则当n=k+1时,f(k+1)=f(k)+f(1)假设当n=k(k∈N++2k=k2+1+2k=(k+1)2,从而可得当n=k+1时满足条件,所以对任意的正整数n,都有f(n)=n2.。

1.4 数学归纳法 课件(北师大版选修2-2)

1.4 数学归纳法 课件(北师大版选修2-2)

1
1+1 2
= .
1
左边=右边,等式成立.
导.学. 固. 思
②假设当 n=k(k≥1)时等式成立,即 1- + - +„+
2 3 4 1 2������ ������ +1 ������ +2
1 1 1
1 2������ -1
-
=
1
+
1
+„+ ,
2������ 1 1
1
则当 n=k+1 时, (1- + - +„+
【解析】(1)当 n=2 时,
1 2+1 2+2 12 24
1
1
+
1
= > ,不等式成立.
7
13
导.学. 固. 思
(2)假设当 n=k 时原不等式成立, 即
1 ������ +1 ������ +2 1 1
+
1
+„+ > ,则当 n=k+1 时, +„+ +
2������ 24 1 1 2������ 2������ +1 2������ +2 ������ +1 ������ +1 24 2������ +1 2������ +2 1 13
1 ������ +1 ������ +2
+
1
+„+ > (n≥2,n∈N+).
3������ 6
1 1 1 1 5 3 4 5 6 6
1
5

北师大版选修2-2高考数学1.4《数学归纳法》ppt课件

北师大版选修2-2高考数学1.4《数学归纳法》ppt课件

n∈N+).
证明:(1)当 n=2 时,左边=2+f(1)=3,右边=2f(2)=3,等式成立. (2)假设 n=k 时,等式成立,即 k+f(1)+…+f(k-1)=kf(k). 那么当 n=k+1 时, k+1+f(1)+…+f(k-1)+f(k)
=1+f(k)+kf(k)=(k+1)f(k)+1
D 当堂检测 ANGTANG JIANCE
点评
理解等式的特点:在等式左边,当 n 取一个值时,对应两项,即2���1���-1 − 21������; 在等式右边,当 n 取一个值时,对应一项.无论 n 取何值,应保证等式左边有 2n 项,而等式右边有 n 项,然后再按数学归纳法的步骤要求给出证明.
(������ + 1) + 1,
所以当 n=k+1 时,不等式成立.
故由(1)(2)知,对一切 n>2(n∈N+),不等式成立.
探究一
探究二
探究三
探究四
(2)假设当 n=k 时等式成立,即
1-12
+
1 3

14+…+2���1���-1

1 2������
=������+1 1 + ������+1 2+…+21������.
那么,当 n=k+1 时,
左边=1-12
+
1 3

14+…+2���1���-1

1 2������
根据①②可以断定命题对一切从 n0 开始的正整数 n 都成立. (2)数学归纳法能保证命题对所有的正整数都成立.因为根据①,验证了 当 n=1 时命题成立;根据②可知,当 n=1+1=2 时命题成立.由于当 n=2 时命 题成立,再根据②可知,当 n+1=3 时命题也成立,这样递推下去,就可以知道

1.4数学归纳法 教案(高中数学选修2-2 北师大版)

1.4数学归纳法 教案(高中数学选修2-2 北师大版)

§4 数学归纳法(教师用书独具)●三维目标1.知识与技能(1)通过具体实例的探究,使学生知道数学归纳法可以完成一些与正整数n有关的命题的证明;(2)通过具体实例的证明,让学生体会归纳法原理,并能应用数学归纳法证明简单的命题.2.过程与方法从具体实例出发,让学生认识到与正整数n有关的命题是蕴含了无数个命题,然后借助多米诺骨牌游戏等引伸出通过有限个步骤的推理,证明n取无限多个正整数的情形,进而理解归纳法原理.3.情感、态度与价值观通过数学归纳法的学习和运用,体会数学中“无限”与“有限”的相互转化及辨证统一.●重点难点重点:了解数学归纳法的思想实质,掌握它的步骤,运用它证明一些与正整数n(n取无限多个值)有关的数学命题.难点:数学归纳法的思想实质,以及归纳递推的证明.学生对归纳法并不陌生,但对完全归纳法如何来实施是一个新的增长点,教学时应详细分析“多米诺骨牌”全部倒下的两个条件:①第一块骨牌倒下;②任意相邻的两块骨牌,前一块倒下一定导致后一块倒下.并通过思考,引导学生分析条件②的作用:给出一个递推关系,从而突破难点,然后通过具体实例的求解强化重点.(教师用书独具)●教学建议可通过具体实例(如求数列通项)引出归纳法(不完全归纳法和完全归纳法),并分析归纳法的特点,进而提出问题,“如何进行完全归纳”,即解决无限个命题的证明,然后通过多米诺骨牌游戏引出数学归纳法原理,再通过例题及练习深化提高.●教学流程创设问题情境,提出问题:要使排成一排的自行车倒下,需要几个条件.⇒通过引导学生对问题导思的分析,引出数学归纳法的证明步骤.⇒通过例1及互动探究,使学生掌握利用数学归纳法证明恒等式.⇒通过例2及互动探究,使学生掌握利用数学归纳法证明不等式.⇒通过例3及变式训练,使学生掌握数学归纳法在数列问题中的应用.⇒归纳小结,整体认识本节知识.⇒完成当堂双基达标,巩固本节课所学知识,并进行反馈矫正.在学校,我们经常会看到这样的一种现象:排成一排的自行车,如果一个同学将第一辆自行车不小心弄倒了,那么整排自行车就会倒下.1.试想要使整排自行车倒下,需要具备哪几个条件?【提示】(1)第一辆自行车倒下;(2)任意相邻的两辆自行车,前一辆倒下一定导致后一辆倒下.2.利用这种思想方法能解决哪类数学问题?【提示】一些与正整数n有关的问题.数学归纳法是用来证明与正整数n有关的数学命题的一种方法,它的基本步骤是:(1)验证:n=1时,命题成立;(2)在假设当n=k(k≥1)时命题成立的前提下,推出当n=k+1时,命题成立.根据(1)(2)可以断定命题对一切正整数n都成立.拓展:一般地,数学归纳法可按下列步骤进行:(1)(归纳奠基)证明当n取第一个值n0(n0∈N*)时命题成立;(2)(归纳递推)假设n=k(k≥n0)时命题成立,证明当n=k+1时命题也成立;只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立.+【思路探究】第(1)步验证n=1时等式成立,第(2)步在假设n=k等式成立的基础上,等式左边加上n=k+1时新增的项,整理出等式右边的项.【自主解答】(1)当n=1时,左边=1,右边=1,等式成立.(2)假设当n=k(k≥1)时,等式成立,即1+3+…+(2k-1)=k2,那么,当n=k+1时,1+3+…+(2k-1)+[2(k+1)-1]=k2+[2(k+1)-1]=k2+2k+1=(k+1)2.这就是说,当n=k+1时等式成立.根据(1)和(2),可知等式对任意正整数n都成立.1.本题在推证“n=k+1”等式成立时,必须把归纳假设“n=k”时1+3+…+(2k-1)=k2作为必备条件使用上,否则就不是数学归纳法了.2.用数学归纳法证明与自然数有关的等式命题,关键在于“先看项”,弄清等式两边的构成规律,等式的两边各有多少项,项的多少与n的取值是否有关,由n=k到n=k+1时,等式两边会增加多少项.将本例等式左边的“n个奇数的和”改为“n个偶数的和”即变为2+4+…+2n=n2+n(n∈N+).【证明】(1)当n=1时,左边=2,右边=1+1=2,等式成立.(2)假设当n =k (k ≥1)时等式成立,即2+4+…+2k =k 2+k 成立, 那么当n =k +1时, 2+4+…+2k +2(k +1) =k 2+k +2(k +1) =(k +1)2+k +1,这就说,当n =k +1时等式成立.根据(1)和求证:1n +1+1n +2+…+13n >56,(n ≥2,n ∈N *).【思路探究】 在由n =k 到n =k +1的推证过程中,可用分析法或“放缩”的技巧来证明.【自主解答】 (1)当n =2时,左边=13+14+15+16=5760,故左边>右边,不等式成立.(2)假设当n =k (k ≥2,k ∈N *)时命题成立,即 1k +1+1k +2+…+13k >56,则当n =k +1时,1(k +1)+1+1(k +1)+2+…+13k +13k +1+13k +2+13(k +1)=1k +1+1k +2+…+13k +(13k +1+13k +2+13k +3-1k +1) >56+(13k +1+13k +2+13k +3-1k +1),* 法一 (分析法)下面证*式≥56,即13k +1+13k +2+13k +3-1k +1>0, 只需证(3k +2)(3k +3)+(3k +1)(3k +3)+(3k +1)(3k +2)-3(3k +1)(3k +2)>0, 只需证(9k 2+15k +6)+(9k 2+12k +3)+(9k 2+9k +2)-(27k 2+27k +6)>0, 只需证9k +5>0,显然成立.所以当n =k +1时,不等式也成立.法二 (放缩法)*式>(3×13k +3-1k +1)+56=56,所以当n =k +1时,不等式也成立.由(1)(2)可知,原不等式对一切n ≥2,n ∈N *均成立.1.本题中证明*式>56,用到了两种方法,其中分析法思维量较小,但运算量较大,而放缩法虽然运算量小,但需要通过观察、比较挖掘出已有代数式和目标间的差异,适当放缩,故思维量较大.2.对与正整数有关的不等式的证明,如果其它方法较困难,可考虑用数学归纳法证明,使用数学归纳法的难点在第二个步骤上,这时除了一定要运用归纳假设外,还经常用到比较法、放缩法、配凑法、分析法等.若n 为大于1的自然数,求证:1n +1+1n +2+…+12n >1324.【证明】 (1)n =2时,12+1+12+2=712>1324.(2)假设当n =k 时成立,即1k +1+1k +2+…+12k >1324.则当n =k +1时,1k +2+1k +3+…+12k +12k +1+12k +2+1k +1-1k +1>1324+12k +1+12k +2-1k +1=1324+1-1=13+1>13.由(1)(2)可知,原不等式成立.n n +1n n (1)当a 1=2时,求a 2,a 3,a 4,并由此猜想出a n 的一个通项公式; (2)当a 1≥3时,证明对所有的n ≥1,有a n ≥n +2.【思路探究】 令n =1,2,3,求a 2,a 3,a 4→由a 2,a 3,a 4的式子结构猜想a n→数学归纳法证明【自主解答】 (1)由a 1=2,得a 2=a 21-a 1+1=3, 由a 2=3,得a 3=a 22-2a 2+1=4, 由a 3=4,得a 4=a 23-3a 3+1=5,由此猜想a n 的一个通项公式:a n =n +1(n ≥1). (2)证明:①当n =1时,a 1≥3=1+2,不等式成立.②假设当n =k (k ≥1)时不等式成立,即a k ≥k +2, 那么,a k +1=a k (a k -k )+1≥(k +2)(k +2-k )+1≥k +3. 即n =k +1时,a k +1≥(k +1)+2.由①②可知,对n ≥1,都有a n ≥n +2.1.本题用数学归纳法证明数列问题的思路为:归纳—猜想—证明.2.数列是定义在N +上的特殊函数,这与数学归纳法运用的范围是一致的,并且数列的递推公式与归纳原理实质上是一致的,数列中不少问题常用数学归纳法解决.已知数列{a n }的前n 项和为S n ,且a 1=1,S n =n 2a n (n ∈N +). (1)试求出S 1,S 2,S 3,S 4,并猜想S n 的表达式; (2)证明你的猜想,并求出a n 的表达式.【解】 (1)∵a n =S n -S n -1(n ≥2),S n =n 2a n , ∴S n =n 2(S n -S n -1).∴S n =n 2n 2-1S n -1(n ≥2),∵a 1=1,∴S 1=a 1=1,S 2=43,S 3=32=64,S 4=85,猜想S n =2nn +1.(2)证明:①当n =1时,S 1=1成立.②假设n =k (k ≥1,k ∈N +)时,等式成立,即S k =2kk +1,当n =k +1时,S k +1=(k +1)2·a k +1=a k +1+S k =a k +1+2kk +1,∴a k +1=2(k +2)(k +1),∴S k +1=(k +1)2·a k +1=2(k +1)k +2=2(k +1)(k +1)+1,∴n =k +1时等式也成立,得证.∴根据①②可知,对于任意n ∈N +,等式均成立.又∵a k +1=2(k +2)(k +1),∴a n =2n (n +1).放缩法在不等式证明中的应用(12分)已知S n =1+12+13+…+1n(n >1,n ∈N *).求证:S 2n >1+n2(n ≥2,n ∈N *).【思路点拨】 先弄清S 2n 的含义,然后用数学归纳法证明,在由n =k 推证n =k +1时,要注意已有代数式和目标的区别,适当放缩.【规范解答】 (1)当n =2时,S 2n =1+12+13+14=2512>1+22,即n =2时命题成立.3分(2)假设n =k (k ≥2,k ∈N *)时命题成立,4分即S 2k =1+12+13+…+12k >1+k2,5分则当n =k +1时,S 2k +1=1+12+13+…+12k +12k +1+…+12k 1>1+k 2+12k +1+12k +2+…+12k 1 8分>1+k 2+2k 2k +2k =1+k 2+12=1+k +12,10分故当n =k +1时,命题也成立.11分由(1)(2)知,对于一切n ≥2的正整数不等式都成立.12分1.此题容易犯两个错误,一是由n =k 到n =k +1项数变化弄错,认为12k 的后一项为121,实际上应为12+1,二是12+1+12+2+…+12+1共有多少项,实际上2k +1到2k +1是自然数递增,项数为2k +1-(2k +1)+1=2k.2.由n =k 推证n =k +1的过程中,用上归纳假设后,要有目标意识,如本题得到1+k 2+12k +1+12k +2+…+12k 1后,注意到目标为1+k +12,故只需证12k +1+12k +2+…+12k 1≥12即可,故考虑将12k +m 缩小为12k +2k,从而得出目标.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§1.4 数学归纳法(3)教案
【教学目标】了解数学归纳法的原理及使用范围, 初步掌握数学归纳法证题的两个步骤和一个结论,会用数学归纳法证明一些简单的等式问题;通过对归纳法的复习,体会不完全归纳法的弊端,通过实例理解理论与实际的辨证关系;在学习中感受探索发现问题、提出问题的,解决问题的乐趣.
【教学重点】数学归纳法证题步骤,尤其是递推步骤中归纳假设 【教学难点】数学归纳法的原理
一、课前预习:(阅读教材69页,完成知识点填空)
1.数学归纳法的证题步骤
一般地,证明一个与正整数n 有关的命题,可按下列步骤进行:
(1)(归纳奠基)证明当n 取 时命题成立;
(2)(归纳递推)假设当k n =( )时命题成立,推出当
时命题也成立.
只要完成这两个步骤,就可以断定命题对从0n 开始的所有正整数n 都成立. 上述证明方法叫做数学归纳法.
2.用框图表示数学归纳法的步骤
思考:
(1)在数学归纳法的第一步归纳奠基中,第一个值0n 是否一定为1?
(2)所有与正整数有关的命题都可以用数学归纳法证明吗?
(3)用数学归纳法证明问题时,归纳假设是否一定要用上?
二、课上学习:
例1:用数学归纳法证明:2
3333]
2)1([...321+=++++n n n
例2:设n ∈N*,n>1,用数学归纳法证明1+
12+13+ (1)
>n.
例3:用数学归纳法证明(3n +1)·
n
7-1(n ∈N*)能被9整除.
例4:自学教材71页例2,探究72页练习B 第2题. 三、课后练习: 1.若)*(121...31211)(N n n n f ∈+++++
=,则1=n 时,)(n f 是( )
A .1 B.13 C .1+12+13
D .非以上答案 2.一个关于自然数n 的命题,如果验证1=n 时命题成立,并在假设1,≥=k k n 时命题成立的基础上,证明了2+=k n 时命题成立,那么综合上述说法,可以证明对于( )
A .一切自然数命题成立 B .一切正奇数命题成立 C .一切正偶数命题成立 D .以上都不对 3.利用数学归纳法证明不等式14131 (2)
111>++++++n n n n 时,由k 递推到1+k 左边应添加的因式A.)1(21+k B. )1(21121+++k k C. )1(21121+-
+k k
D. 121
+k 4.用数学归纳法证明
2121)1(1...3121222+->++++n n (*N n ∈),假设当k n =时不等式成立,则当
1+=k n 时,应推证的目标不等式是________.
5.用数学归纳法证明:a a a
a a n n --=++++++11...1212 (1*,≠∈a N n ),在验证1=n 成
立时,左边所得的项为( ) A .1 B .21a a ++ C .a +1
D .321a a a +++
6.设Sk =1k +1+1k +2+1k +3
+…+12k ,则Sk +1为( ) A .Sk +12k +2 B .Sk +12k +1+12k +2 C .Sk +12k +1-12k +2 D .Sk +12k +2-12k +1。

相关文档
最新文档