概率论与数理统计期末复习资料(学生)

合集下载

概率论与数理统计期末考试复习资料

概率论与数理统计期末考试复习资料
设F(x) 是随机变量 X 的分布函数,若存在非负函数 f (x) ,对任意 实数x ,有
F (x) x f (x)dx ,
则称 X 为连续型随机变量。f (x) 称为 X 的概率密度函数或密度函 数,简称概率密度。 密度函数具有下面 4 个性质: 1° f (x) 0 。
2° f (x)dx 1。
X
| x1, x2,, xk, 。
P( X xk) p1, p2,, pk,
显然分布律应满足下列条件:
(2)连 续型随 机变量 的分布 密度
(3)离 散与连 续型随 机变量 的关系 (4)分 布函数
(5)八 大分布
(1) pk 0 ,k 1,2,, (2) pk 1。 k 1
ba
f
(x)


b
1
a
,
0,
a≤x≤b
其他,
则称随机变量 X 在[a,b]上服从均匀分布,记为 X~U(a,b)。
分布函数为
0,
xa, ba
x<a, a≤x≤b
x
F (x) f (x)dx

1,
x>b。
当 a≤x1<x2≤b 时,X 落在区间(x1, x2 )内的概率为
P( A)
条件概
下,事件 B 发生的条件概率,记为P(B / A) P(AB) 。
P( A)

条件概率是概率的一种,所有概率的性质都适合于条件概率。
例如 P(Ω/B)=1P( B /A)=1-P(B/A)
(13) 乘法公式:P(AB) P(A)P(B / A)
乘法公 更一般地,对事件 A1,A2,…An,若 P(A1A2…An-1)>0,则有

大学概率论和数理统计复习资料全

大学概率论和数理统计复习资料全

第一章 随机事件及其概率知识点:概率的性质 事件运算 古典概率事件的独立性 条件概率 全概率与贝叶斯公式常用公式)()()()()()2(加法定理AB P B P A P B A P -+= ),,()()(2111有限可加性两两互斥设n ni i ni i A A A A P A P ∑===),(0)()()()()(互不相容时独立时与B A AB P B A B P A P AB P ==)()()()()5(AB P A P B A P B A P -==-)()()()()(时当A B B P A P B A P B A P ⊂-==-))0(,,()()/()()()6(211>Ω=∑=i n ni i i A P A A A A B P A P B P 且的一个划分为其中全概率公式 ),,()](1[1)(2111相互独立时n ni i n i i A A A A P A P ∏==--=)/()()/()()()4(B A P B P A B P A P AB P ==)(/)()/()3(A P AB P A B P =)()/()()/()()/()7(1逆概率公式∑==ni iii i i A B P A P A B P A P B A P )(/)()(/)()1(S L A L AP nr A P ==应用举例1、已知事件,A B 满足)()(B A P AB P =,且6.0)(=A P ,则=)(B P ( )。

2、已知事件,A B 相互独立,,)(k A P =6.0)(,2.0)(==B A P B P ,则=k ( )。

3、已知事件,A B 互不相容,,3.0)(=A P ==)(,5.0)(B A P B P 则( )。

4、若,3.0)(=A P ===)(,5.0)(,4.0)(B A B P B A P B P ( )。

5、,,A B C 是三个随机事件,C B ⊂,事件()A C B -与A 的关系是( )。

概率论与数理统计期末考试试卷复习资料

概率论与数理统计期末考试试卷复习资料

数理统计练习 一、填空题1、设A 、B 为随机事件,且P (A)=0.5,P (B)=0.6,P (B A)=0.8,则P () 0.7 。

2、某射手对目标独立射击四次,至少命中一次的概率为8180,则此射手的命中率3、设随机变量X 服从[0,2]上均匀分布,则=2)]([)(X E X D 1/3 。

4、设随机变量X 服从参数为λ的泊松()分布,且已知)]2)(1[(--X X E =1, 则=λ1。

5、一次试验的成功率为p ,进行100次独立重复试验,当=p 1/2时 , 成功次数的方差的值最大,最大值为 25 。

6、(X ,Y )服从二维正态分布),,,,(222121ρσσμμN ,则X 的边缘分布为 ),(211σμN7、已知随机向量(X ,Y )的联合密度函数⎪⎩⎪⎨⎧≤≤≤≤=其他,010,20,23),(2y x xy y x f ,则E (X )=8、随机变量X 的数学期望μ=EX ,方差2σ=DX ,k 、b 为常数,则有)(b kX E += k μ+)(b kX D +=22k σ。

9、若随机变量X ~N (-2,4),Y ~N (3,9),且X 与Y 相互独立。

设Z =2-Y +5,则Z ~ N(-2, 25) 。

10、θθθ是常数21ˆ ,ˆ的两个 无偏 估计量,若)ˆ()ˆ(21θθD D <,则称1ˆθ比2ˆθ有效。

1、设A 、B 为随机事件,且P (A )=0.4, P (B )=0.3, P (A ∪B )=0.6,则P (B A )0.3。

2、设X B (2),Y B (3),且P {X ≥ 1}=95,则P {Y ≥ 1}=2719。

3、设随机变量X 服从参数为2的泊松分布,且Y =3X -2, 则E (Y )=4 。

4、设随机变量X 服从[0,2]上的均匀分布,21,则D (Y )= 4/3 。

5、设随机变量X 的概率密度是:⎩⎨⎧<<=其他103)(2x x x f ,且{}784.0=≥αX P ,则α=0.6 。

概率论与数理统计复习资料要点总结--学生

概率论与数理统计复习资料要点总结--学生

《概率论与数理统计》复习资料一、复习提纲注:以下是考试的参考内容,不作为实际考试范围,仅作为复习参考之用。

考试内容以教学大纲和实施计划为准;注明“了解”的内容一般不考。

1、 会事件关系的运算,了解概率的古典定义2、 能较熟练地求解古典概率;了解概率的公理化定义3、 掌握概率的基本性质和应用这些性质进行概率计算;理解条件概率的概念;掌握加法公式与乘法公式4、 能准确地选择和运用全概率公式与贝叶斯公式解题;掌握事件独立性的概念及性质。

5、 理解随机变量的概念,掌握离散性随机变量分布率的性质及求法,掌握(0—1)分布、二项分布、泊松分布的分布律。

6、 理解分布函数的概念及性质,理解并掌握连续型随机变量的概率密度及性质。

7、 掌握指数分布(参数λ)、均匀分布、正态分布8、 会求特殊的一维随机变量函数分布的分布律或概率密度。

9、 会求分布中的待定参数。

会求区间的概率.10、 会求边缘分布律、边缘密度函数,会判别随机变量的独立性。

11、 掌握二维连续型随机变量未知参数的计算,落在区域概率的计算。

12、 理解二维随机变量的概念,理解二维随机变量的联合分布函数及其性质,掌握二维离散型随机变量的联合分布律及其性质,掌握二维连续型随机变量的联合概率密度及其性质,并会用它们计算有关事件的概率。

13、 会求二维离散型随机变量函数的分布率.14、 掌握数学期望和方差的定义及性质,会熟练地求随机变量及其函数的数学期望和方差。

会熟练地默写出几种重要随机变量的数学期望及方差。

15、 较熟练地求协方差与相关系数.16、 会用独立正态随机变量线性组合性质解题。

17、 理解总体、样本、简单随机样本、统计量及抽样分布概念,样本均值与样本方差及样本矩概念,掌握χ2分布(及性质)、t 分布、F 分布及其分位点概念。

18、 理解正态总体样本均值与样本方差的抽样分布定理;会用矩估计方法来估计未知参数。

19、 掌握极大似然估计法,无偏性与有效性的判断方法。

大学概率论与数理统计复习资料

大学概率论与数理统计复习资料

知识点:概率的性质事件运算古典概率常用公式(2)P(A BP P(A) P(B)- P(AB)(加法定理)nnP(U A) Y p(A)i d innP(U A)=l-n [1-P(A)]i di d(3) P(B/A)二 P(AB)/P(A) (4)P(AB)二 P(A)P(B/A)二P(B)P(A/B) P(AB)二 P(A)P(B) (A 与B 独立时)P(AB)二0(A,B 互不相容时)(5) P (A- Bp P(ABp P(A)- P(AB)P(A- B)二 P(AB)二 P(A) - P(B)(当B A 时)n(6) P (B)八 P(A i )P(B/A i )(全概率公式)i=1(其中A ,,A 2 A n 为"的一个划分,且P(A i 0)) (7) P (A /B) = nP(A)P(B/A)(逆概率公式)迟 P(A i )P(B/A)事件的独立性条件概率全概率与贝叶斯公式(1)P(Ap r/nP(AP L(A)/L(S)(设A,4…A 两两互斥,有限可加性)(A ,4, A 相互独立时)i =1应用举例1、已知事件A, B 满足P(AB) = P(AB),且P(A) = 0.6 ,贝卩P(B)=()。

2、已知事件A,B 相互独立,P(A) =k, P(B) =0.2, P(0 B)=0.6,贝k - ()。

3、已知事件A,B 互不相容,P(A) =0.3, P(B) = 0.5,则 P(A B)=()。

4、若P(A) =0.3, P(B)=0.4 ,P(AB) = 0.5, P(BA B)=( )。

5、A, B,C是三个随机事件,C B,事件AUC - B与A的关系是6、5张数字卡片上分别写着1, 2, 3, 4, 5,从中任取3张,某日他抛一枚硬币决定乘地铁还是乘汽车。

(1 )试求他在5:40〜5:50到家的概率;(2)结果他是5:47到家的。

试求他是乘地铁回家的概率。

概率论与数理统计期末考试复习资料汇编

概率论与数理统计期末考试复习资料汇编


P( A1A2 … An) P( A1)P( A2 | A1)P( A3 | A1A2) ……P( An | A1A2 … An 1) 。
①两个事件的独立性
(14) 设事件 A 、B 满足P(AB) P(A)P(B) ,则称事件 A 、B 是相互独立 独立性 的。
若事件 A 、B 相互独立,且P(A) 0 ,则有
学习-----好资料
第 1 章 随机事件及其概率
(1)排 列组合 公式
Pmn

m! (m n)!
C
n m

m! n!(m n)!
从 m 个人中挑出 n 个人进行排列的可能数。 从 m 个人中挑出 n 个人进行组合的可能数。
加法原理(两种方法均能完成此事):m+n
(2)加 法和乘 法原理
某件事由两种方法来完成,第一种方法可由 m 种方法完成,第二种方 法可由 n 种方法来完成,则这件事可由 m+n 种方法来完成。 乘法原理(两个步骤分别不能完成这件事):m×n 某件事由两个步骤来完成,第一个步骤可由 m 种方法完成,第二个步
(6)事 件的关 系与运 算
B:A=B。 A、B 中至少有一个发生的事件:A B,或者 A+B。
属于 A 而不属于 B 的部分所构成的事件,称为 A 与 B 的差,记为 A-B, 也可表示为 A-AB 或者 AB ,它表示 A 发生而 B 不发生的事件。 A、B 同时发生:A B,或者 AB。A B=Ø,则表示 A 与 B 不可能同时发
德摩根率:
Ai



Ai
AB AB,AB AB
i1
i 1
设 为样本空间,A 为事件,对每一个事件 A 都有一个实数 P(A),

概率论与数理统计期末必备复习资料

概率论与数理统计期末必备复习资料
浙江师范大学 10
全概率公式
划分:设S为试验E的样本空间,B1, B2,L , Bn 为E的一 组事件,若
① Bi Bj ,i j,i, j 1, 2,L , n ② B1 U B2 UL U Bn S 则称 B1, B2,L , Bn 为样本空间S的一个划分.
例 E:掷骰子观察点数
S {1,2,3,4,5,6}
条件概率小结
缩减样本空间
条件概率 乘法公式
定义式
全概率公式
贝叶斯公式
浙江师范大学 14
独立性
独立事件:两事件A、B,A发生对B发生没有影响, B发生也对A没有影响,则称两事件相互独立.即 P(A|B)=P(A)且P(B|A)=P(B),则 P(AB)=P(A)P(B|A)=P(A)P(B)
例 抛甲,乙两枚硬币,A={甲出现正面H},B={乙 出现正面H},问A,B同时发生的概率.
注:全概率公式给出我们一个用来计算在众多原 因 B1, B2,L , Bn 的作用下事件A发生概率的方法. (由因得果)
浙江师范大学 12
贝叶斯公式(由果溯因)
设E的样本空间为S,A为E的事件. B1, B2 ,L , Bn 为S的一个划分,且 P(A)>0,P(Bi ) 0.(i 1, 2,L , n) ,
即在f (x)的连续点
x1 x2
f (x) F '(x) lim F(x x) F(x) lim P{x X x x}
k
均有:P Ai1 Ai2 L Aik P Aij j 1
则称A1, A2,L , An相互独立
浙江师范大学 16
定义 随机试验的结果可以用一个实值变量表示, 这个变量的取值是随机的,但又服从一定的统计规 律性,这种变量称为随机变量,通常用X,Y,Z表 示。

非常全面的《概率论与数理统计》复习材料

非常全面的《概率论与数理统计》复习材料

《概率论与数理统计》复习大纲第一章随机事件与概率事件与集合论的对应关系表古典概型古典概型的前提是Ω={ω1, ω2,ω3,…, ωn,}, n为有限正整数,且每个样本点ωi出现的可能性相等。

例1设3个球任意投到四个杯中去,问杯中球的个数最多为1个的事件A1,最多为2个的事件A2的概率。

[解]:每个球有4种放入法,3个球共有43种放入法,所以|Ω|=43=64。

(1)当杯中球的个数最多为1个时,相当于四个杯中取3个杯子,每个杯子恰有一个球,所以|A1|= C433!=24;则P(A1)=24/64 =3/8. (2) 当杯中球的个数最多为2个时,相当于四个杯中有1个杯子恰有2个球(C41C32),另有一个杯子恰有1个球(C31C11),所以|A2|= C41C32C31C11=36;则P(A2)=36/64 =9/16例2从1,2,…,9,这九个数中任取三个数,求:(1)三数之和为10的概率p1;(2)三数之积为21的倍数的概率p2。

[解]:p1=4C93=121, p2=C31C51+C32C93=314P(A)=A包含样本总个数样本点总数=|A||Ω|几何概型前提是如果在某一区域Ω任取一点,而所取的点落在Ω中任意两个度量相等的子区域的可能性是一样的。

若A⊂Ω,则P(A)=A的度量Ω的度量例1把长度为a的棒任意折成三段,求它们可以构成一个三角形的概率。

[解]:设折得的三段长度分别为x,y和a-x-y,那么,样本空间,S={(x,y)|0≤x≤a,0≤y≤a,0≤a-x-y≤a}。

而随机事件A:”三段构成三角形”相应的区域G应满足两边之和大于第三边的原则,得到联立方程组,⎩⎪⎨⎪⎧a-x-y<x+yx<a-x-y+yy<a-x-y+x解得0<x<a2, 0<y<a2,a2<x+y<a 。

即G={(x,y)| 0<x<a2, 0<y<a2,a2<x+y<a }由图中计算面积之比,可得到相应的几何概率P(A)=1/4。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率论与数理统计期末复习资料一 填空1.设A ,B 为两个随机事件,若A 发生必然导致B 发生,且P (A )=0.6,则P (AB ) =______. 2.设随机事件A 与B 相互独立,且P (A )=0.7,P (A -B )=0.3,则P (B ) = ______.3.己知10件产品中有2件次品,从该产品中任意取3件,则恰好取到一件次品的概率等于______.4.已知某地区的人群吸烟的概率是0.2,不吸烟的概率是0.8,若吸烟使人患某种疾病的概率为0.008,不吸烟使人患该种疾病的概率是0.001,则该人群患这种疾病的概率等于______.5.设连续型随机变量X 的概率密度为⎩⎨⎧≤≤=,,0;10,1)(其他x x f 则当10≤≤x 时,X 的分布函数F (x )= ______.6.设随机变量X ~N (1,32),则P{-2≤ X ≤4}=______.(附:)1(Φ=0.8413) 7.设二维随机变量(X ,Y )的分布律为则P {X <1,Y 2≤}=______.8.设随机变量X 的期望E (X )=2,方差D (X )=4,随机变量Y 的期望E (Y )=4,方差D (Y )=9,又E (XY )=10,则X ,Y 的相关系数ρ= ______.9.设随机变量X 服从二项分布)31,3(B ,则E (X 2)= ______.10.中心极限定理证明了在很一般条件下,无论随机变量Xi 服从什么分布,当n →∞时,∑=ni iX1的极限分布是_________________11.设总体X ~N (1,4),x 1,x 2,…,x 10为来自该总体的样本,∑==101101i ixx ,则)(x D = ______.·12.设总体X ~N (0,1),x 1,x 2,…,x 5为来自该总体的样本,则∑=512i ix服从自由度为______的2χ分布.15.对假设检验问题H 0:μ=μ0,H 1:μ≠μ0,若给定显著水平0.05,则该检验犯第一类错误的概率为______. 16.设A ,B 为两个随机事件,且A 与B 相互独立,P (A )=0.3,P (B )=0.4,则P (A B )=__________.17.盒中有4个棋子,其中2个白子,2个黑子,今有1人随机地从盒中取出2个棋子,则这2个棋子颜色相同的概率为_________.18.设随机变量X 的概率密度⎪⎩⎪⎨⎧≤≤=,,0;10,A )(2其他x x x f 则常数A=_________.,22.设二维随机变量(X ,Y )的概率密度为⎪⎩⎪⎨⎧≤≤-≤≤-=,,0;11,11,41),(其他y x y x f 则P{0≤X ≤1,0≤Y ≤1}=___________.23.设二维随机变量(X ,Y )的分布律为Y X 1231 261 121 81 81 41 41 则P{Y=2}=___________.24.设随机变量X ~ B ⎪⎭⎫⎝⎛31,18,则D (X )=_________.25.设随机变量X 的概率密度为⎩⎨⎧≤≤=,,0;10,2)(其他x x x f 则E (X )=________.27.中心极限定理证明了在很一般条件下,无论随机变量Xi 服从什么分布,当n →∞时,∑=ni iX1的极限分布是_________________28.设总体X 的概率密度为⎪⎩⎪⎨⎧<=.,0;1||,23)(2其他x x x f x 1 , x 2 , … , x n 为来自总体X 的一个样本,x 为样本均值,则E (x )=____________.29.设x 1 , x 2 , … , x 25来自总体X 的一个样本,X ~ N (25,μ),则μ的置信度为0.90的置信区间长度为____________.(附:u 0.05=1.645)30.设总体X 服从参数为λ(λ>0)的泊松分布,x 1 , x 2 , … , x n 为X 的一个样本,其样本均值2=x ,则λ的矩估计值λˆ=__________. 31. 100件产品中有10件次品,不放回地从中接连取两次,每次取一个产品,则第二次取到次品的概率为________ 32. 设A ,B 为随机事件,且()0.8P A =,()0.4P B =,(|A)0.25P B =,则(A|B)P =_______ 34. 设连续型随机变量X 的分布 函数为()F x = 31xe-- x>0 , 则{1}P X ≤=________0 x 035. 设随机变量~()X P λ,且1{0}P X e -==,则{}(1,2,)P X k k ==…=_________ 36. 设随机变量X 的分布律为P 2C 0.4 C记2Y X =,则{4}P Y ≥=_________38. 设二维随机变量(,)X Y 服从区域G :02x ≤≤,02y ≤≤上的均匀分布,则{1,1}P X Y ≤≤=________ 39. 设二维随机变量(,)X Y 的概率密度为(,)f x y = (2)2x y e -+ x>0,y>0 , 则(,)X Y0 其他的分布函数为________则()E XY =________41. 设随机变量X 的数学期望()E X 与方差()D X 都存在,且有()10E X =,2()109E X =,试由切比雪夫不等式估计{|10|6}P X -≥≤_________42. 设随机变量~(0,1)X N ,2~()Y x n ,且X ,Y 相互独立,则~Z =________ 43. 由来自正态总体~(,0.09)N N μ、容量为15的简单随机样本,得样本均值为2.88,则μ的置信度0.95的置信区间是__________0.0250.05( 1.96, 1.645)μμ==44. 设α,β分别是假设检验中犯第一、二类错误的概率,0H ,1H 分别为原假设和备择假设,则00{H |H }P 拒绝不真=_________45. 已知一元线性回归方程为)º04y x β=+,且3x =,6y =,则º0β=________二 选择1.设A ,B 为两个互不相容事件,则下列各式错误..的是( ) A .P (AB )=0B .P (A ∪B )=P (A )+P (B )C .P (AB )=P (A )P (B )D .P (B-A )=P (B )2.设事件A ,B 相互独立,且P (A )=31,P (B )>0,则P (A|B )=( )A .151 B .51 C .154 D .31 3.设随机变量X 在[-1,2]上服从均匀分布,则随机变量X 的概率密度f (x )为( )A .⎪⎩⎪⎨⎧≤≤-=.,0;21,31)(其他x x f B .⎩⎨⎧≤≤-=.,0;21,3)(其他x x fC .⎩⎨⎧≤≤-=.,0;21,1)(其他x x fD . ⎪⎩⎪⎨⎧≤≤--=.,0;21,31)(其他x x f4.设随机变量X ~ B ⎪⎭⎫⎝⎛31,3,则P{X ≥1}=( )A .271 B .278 C .2719 D .2726 5.设二维随机变量(X ,Y )的分布律为则P{XY=2}=( ) A .51 B .103 C .21 D .53 6.设二维随机变量(X ,Y )的概率密度为⎩⎨⎧≤≤≤≤=,,0;10,10,4),(其他y x xy y x f则当0≤y ≤1时,(X ,Y )关于Y 的边缘概率密度为f Y ( y )= ( ) A .x 21B .2xC .y21D .2y7.设二维随机变量(X ,Y )的分布律为则E (XY )=( ) A .91- B .0C .91 D .31 9.设x 1, x 2, …, x 100为来自总体X ~ N (0,42)的一个样本,以x 表示样本均值,则x ~( ) A .N (0,16) B .N (0,0.16) C .N (0,0.04) D .N (0,1.6)10.要检验变量y 和x 之间的线性关系是否显著,即考察由一组观测数据(x i ,y i ),i =1,2,…,n ,得到的回归方程x y 10ˆˆˆββ+=是否有实际意义,需要检验假设( ) A .0∶,00100≠=ββH H ∶ B .0∶,0∶1110≠=ββH H C .0ˆ∶,0ˆ∶0100≠=ββH H D .0ˆ∶,0ˆ∶1110≠=ββH H 11.设A 与B 是任意两个互不相容事件,则下列结论中正确的是( ) A .P (A )=1-P (B ) B .P (A -B )=P (B ) C .P (AB )=P (A )P (B )D .P (A -B )=P (A )12.设A ,B 为两个随机事件,且0)(,>⊂B P A B ,则P (A |B )=( ) A .1 B .P (A ) C .P (B )D .P (AB )13.下列函数中可作为随机变量分布函数的是( ) A .⎩⎨⎧≤≤=.,0;10,1)(1其他x x F 1B .⎪⎩⎪⎨⎧≥<≤<-=.1,1;10,;0,1)(2x x x x x FC .⎪⎩⎪⎨⎧≥<≤<=.1,1;10,;0,0)(3x x x x x FD .⎪⎩⎪⎨⎧≥<≤<=.1,2;10,;00,0)(4x x x x F15.设二维随机变量(X ,Y)的分布律为且X 与Y 相互独立,则下列结论正确的是( ) A .a =0.2,b =0.6 B .a =-0.1,b =0.9 C .a =0.4,b =0.4D .a =0.6,b =0.216.设二维随机变量(X ,Y )的概率密度为f (x ,y )=⎪⎩⎪⎨⎧<<<<,,0;20,20,41其他y x则P{0<X <1,0<Y <1}=( )A .41B .21 C .43 D .117.设随机变量X 服从参数为21的指数分布,则E (X )=( ) A .41 B .21 C .2 D .418.设随机变量X 与Y 相互独立,且X ~N (0,9),Y ~N (0,1),令Z =X -2Y ,则D (Z )=( ) A .5 B .7 C .11D .1319.设(X ,Y )为二维随机变量,且D (X )>0,D (Y )>0,则下列等式成立的是( ) A .)()()(Y E X E XY E ⋅= B .)()(Cov Y D X D (X,Y)XY ⋅⋅=ρ C .)()()(Y D X D Y X D +=+D .),(Cov 2)2,2(Cov Y X Y X =20.设总体X 服从正态分布N(2,σμ),其中2σ未知.x 1,x 2,…,x n 为来自该总体的样本,x 为样本均值,s 为样本标准差,欲检验假设H 0:μ=μ0,H 1:μ≠μ0,则检验统计量为( ) A .σμ0-x n B .sx nμ- C .)(10μ--x n D .)(0μ-x n21.设A 、B 为随机事件,且A B ⊂,则AB =( )A .AB. BC. A B ⋃D. AB22. 对于任意两事件A ,B ,()P A B -=( )A . ()()P A PB -B. ()()()P A P B P AB -+C. ()()P A P AB -D. ()()()P A P A P AB --23. 设随机变量X 的分布律为1{}()2n P X n a ==,(1,2,)n =…则a=( ) A .1B.12C. 2D. 324. 设随机变量2~(1,2)X N ,(1)Φ=0.8413,则{13}P X ≤≤=( ) A .0.1385B. 0.2413C. 0.2934D. 0.341325. 设二维随机变量()X Y 、的联合分布律为 XY 0120 14 14 112 1 112 16 0 2112112则{0}P X ==( ) A .14B.13C.512D.71226. 设二位随机变量()X Y 、的概率密度为()f x y =、 x y + 0x 1,0y 1 , 0 其他 则{}P X Y <=( ) A .13B.23C.12D.1427.设随机变量~(0,1)X N ,~(0,1)Y N ,令Z X Y =+,则有( ) A .()0E Z =B. ()2E Z =C. ()0D Z =D. ()2D Z =28. 设总体~(0,1)X N ,1,2,(1)X X Xn n >…来自X 的一个样本,X ,S 分别是样本均值与样本方差,则有( )A .~(0,1)X N B. ~(0,1)nX N C.221~()ni i X x n =∑ D.~(1)Xt n S- 29.设1X ,2X 来自任意总体X 的一个容量为2的样本,则在下列()E X 的无偏估计量中,最有效的估计量是( )A .211233X X + B. 131244X X + C. 231255X X + D. 111222X X + 30. 对非正态总体X ,当样本容量50n ≥时,对总体均值进行假设检验就可采用( )A .u 检验 B. t 检验 C. 2x 检验 D. F 检验三、综合应用 1、设变量y 与x 的观测数据在某条直线的附近已知∑∑∑∑==========1012101101101.8250,88700,350101,25,101i i i i i i i i i x y x y y x x试用最小二乘法建立y 对x 的线性回归方程.2.设一批产品中有85%的合格品,且在合格品中一等品的占有率为65%. 求:(1)从该批产品中任取1件,其为一等品的概率;(2)在取出的1件产品不是一等品的条件下,其为不合格品的概率.3.某气象站天气预报的准确率为0.9,且各次预报之间相互独立.试求: (1)6次预报全部准确的概率p 1; (2)6次预报中至少有1次准确的概率p 2.已知E (X )=0.2,试求:4.设离散型随机变量X 的分布律为 ,且(1)p 1和p 2; (2)D (6X-3).5.设某厂生产的零件长度X ~N (2,σμ)(单位:mm),现从生产出的一批零件中随机抽取了10件,经测量并算得零件长度的平均值x =2000,标准差s =150,如果2σ未知,在显著水平05.0=α下,是否可以认为该厂生产的零件的平均长度是2015mm? (t 0.025(15)=2.131)。

相关文档
最新文档