纳米储氢电极材料

纳米储氢电极材料
纳米储氢电极材料

纳米储氢电极材料主要有碳纳米管、镁镍合金和镁钛合金

Mg2 Ni纳米晶储氢材料

性能:它具有储氢容量高,吸放氢平台好,质量轻,资源丰富等优点,但要能达到实用化的目的就必须解决其在室温下吸放氢动力学性能差,表面容易形成氧化膜等缺点。

目前,在镁基储氢合金的开发研究中,现已有Mg2Ni ,Mg2Cu ,Mg2La系储氢合金,还有

一系列的多元MgNi系储氢合金。

制备方法采用机械合金化方法,即使用高能球磨机进行球磨制备

1. 采用机械合金化方法制备了Mg Ni 合金粉末,其晶

粒度在10nm左右。

2. 在较高的速度下球磨可以使生成Mg Ni 合金的时间提

前,完全合金化的过程缩短,还有利于减轻焊合提高球磨效率。

3. 过程控制剂的加入以及循环变速运转可以缓和焊合

现象的发生。

4. 初步的研究结果表明:Mg Ni 纳米晶粉末在室温下即

可吸氢,贮氢性能较之传统方法制备的材料有显著改善。

传统方法制备的Mg Ni 在温度低于250°C时不产生吸

2

氢现象,在经历一个前期活化过程之后,吸放氢实验在250

8

°C~350°C,氢气压力1.5~2.0MPa下完成。

将机械合金化制备的Mg Ni 纳米晶粉末在金属高压系

2

统进行贮氢性能研究。称取一定量样品放入反应室中,真空加热除气后,冷却到室温,放入一定量的氢气(氢气纯度大于99 %),观察粉末在室温下的吸氢情况。

储氢碳纳米管

碳纳米管CNTs,Carbon Nanotubes 是一种主要由碳六

边形弯曲处为碳五边形和碳七边形组成的单层或多层

纳米管状材料。管的内径在几个纳米到几十个纳米之间,

长度可达微米量级。仅有一层石墨片层结构的单层管被

称为单壁碳纳米管SWNTs, Single - Walled carbon nan

tubes ,有多层石墨片alled carbon nan tubes 。单壁碳纳米管

是碳纳米管的一层结构的多层管被称为多壁碳纳米

管MWNTs,Multi - W种极限状态,管径较小,直径一般为1~

6nm,最小的直径大约为014nm,其结构中的缺陷不易存

在,具有较高的均匀性和一致性。多壁碳纳米管的直径一

般为几纳米到几十纳米,长度为几十纳米到微米,层数从

2~50不等,层间距约为0134nm。

(文献参考:Mg_2Ni纳米晶储氢材料的机械合金化制备工艺研究)

物理吸附

理论计算表明,碳纳米管单壁能够通过类似于纳米

毛细作用将HF 分子稳定在管腔中。分子尺度的微孔能

吸附大量气体,因为这种材料的孔壁具有吸附势,能够增大气体密度经改性的碳纳米管的吸附能力更强

电化学吸附

1

在电化学储氢过程中,水在碳纳米管表面电解,产生

的氢气进入碳纳米管内部。X1Qin 等人利用循环伏安法

研究了氢在碳纳米管上的电化学储存机理。充电过程中,

吸附为控速步骤;放电过程中,氧化为控速步骤。和Ni 粉

一起压制成的碳纳米管电极反应活性高,具有较大的峰电

流。而峰电压和金属Ni 的峰电压相同,则说明活性点为

Ni。储氢机理推测为:

- -

Ni + H O+e →NiHad+OH (控速步)

2

NiHad+MWNT (多壁碳纳米管)→MWNTHad+Ni

应用

储氢碳纳米管复合材料的应用可分为两大类。第一,

把储氢碳纳米管复合材料作为氢的存储体,提供氢源,或

是把储氢碳纳米管复合材料作为电极使用。第二,把储氢

碳纳米管复合材料作为高级燃料,专供航空或火箭导弹的

推进剂使用。氢的最大特点是单位质量的燃烧能量很大,

而且还有可能将热能转化为电能。另外,氢燃烧后变成

水,因而不产生有毒气体,并且二氧化碳的释放量微乎其

微。在不久的将来,储氢碳纳米管复合材料在国防及民用

工业将得到广泛应用。

展望

虽然储氢碳纳米管复合材料有许多优异独特的性能,

但目前要将其推向市场还存在一些问题。一是价格太高

生产碳纳米管的成本过于昂贵,1g 纯单壁碳纳米管价格

( )

约1000美元2003 年。二是目前尚不能大规模生产,只

能在实验室合成。因此,储氢碳纳米管复合材料研究与开

发的重要任务是改进生产工艺,实现批量生产,降低生产

成本,只有这样才能使储氢碳纳米管复合材料得到真正应

用。

(文献参考: 储氢碳纳米管复合材料性能及其应用)

镁钛合金

据该所分析,这种合金的储氢能力为自身重量的 5 %,比现在达到实用化

水平的镧系合金提高了两倍以上,其重量也比镧系合金轻约30 %。

但此方面相关文献还比较少,但其制备方法可以参考镁镍合金的机械制备法。锆基锆基纳米复合储氢材料

纳米储氢电极材料

纳米储氢电极材料主要有碳纳米管、镁镍合金和镁钛合金 Mg2 Ni纳米晶储氢材料 性能:它具有储氢容量高,吸放氢平台好,质量轻,资源丰富等优点,但要能达到实用化的目的就必须解决其在室温下吸放氢动力学性能差,表面容易形成氧化膜等缺点。 目前,在镁基储氢合金的开发研究中,现已有Mg2Ni ,Mg2Cu ,Mg2La系储氢合金,还有 一系列的多元MgNi系储氢合金。 制备方法采用机械合金化方法,即使用高能球磨机进行球磨制备 1. 采用机械合金化方法制备了Mg Ni 合金粉末,其晶 粒度在10nm左右。 2. 在较高的速度下球磨可以使生成Mg Ni 合金的时间提 前,完全合金化的过程缩短,还有利于减轻焊合提高球磨效率。 3. 过程控制剂的加入以及循环变速运转可以缓和焊合 现象的发生。 4. 初步的研究结果表明:Mg Ni 纳米晶粉末在室温下即 可吸氢,贮氢性能较之传统方法制备的材料有显著改善。 传统方法制备的Mg Ni 在温度低于250°C时不产生吸 2 氢现象,在经历一个前期活化过程之后,吸放氢实验在250 8 °C~350°C,氢气压力1.5~2.0MPa下完成。 将机械合金化制备的Mg Ni 纳米晶粉末在金属高压系 2 统进行贮氢性能研究。称取一定量样品放入反应室中,真空加热除气后,冷却到室温,放入一定量的氢气(氢气纯度大于99 %),观察粉末在室温下的吸氢情况。 储氢碳纳米管 碳纳米管CNTs,Carbon Nanotubes 是一种主要由碳六 边形弯曲处为碳五边形和碳七边形组成的单层或多层 纳米管状材料。管的内径在几个纳米到几十个纳米之间, 长度可达微米量级。仅有一层石墨片层结构的单层管被 称为单壁碳纳米管SWNTs, Single - Walled carbon nan tubes ,有多层石墨片alled carbon nan tubes 。单壁碳纳米管 是碳纳米管的一层结构的多层管被称为多壁碳纳米 管MWNTs,Multi - W种极限状态,管径较小,直径一般为1~ 6nm,最小的直径大约为014nm,其结构中的缺陷不易存 在,具有较高的均匀性和一致性。多壁碳纳米管的直径一 般为几纳米到几十纳米,长度为几十纳米到微米,层数从 2~50不等,层间距约为0134nm。 (文献参考:Mg_2Ni纳米晶储氢材料的机械合金化制备工艺研究) 物理吸附

银纳米修饰电极的制备及电化学行为

银纳米修饰电极的制备及电化学行为 作者:姚爱丽, 吕桂琴, 胡长文, YAO Ai-Li, LU Gui-Qin, HU Chang-Wen 作者单位:北京理工大学理学院化学系,北京,100081 刊名: 无机化学学报 英文刊名:CHINESE JOURNAL OF INORGANIC CHEMISTRY 年,卷(期):2006,22(6) 被引用次数:12次 参考文献(16条) 1.董绍俊;车广礼;谢远武化学修饰电极 2003 2.Nada M D;David M B查看详情 2001 3.Sandmamn G;Dietz H查看详情 2000 4.高迎春;李茂国;王广凤银纳米修饰电极的制备及其对灿烂甲酚蓝的催化研究[期刊论文]-Chin J Anal Lab 2004(12) 5.Sarkar J;Pal P;Talapatra G B Adsorption of 2-aminobenzothiazole on colloidal silver particles: An experimental and theoretical surface-enhanced Raman scattering study[外文期刊] 2005(26) 6.Vukovic V V;Nedeljkovic J查看详情 1993(04) 7.Gole A;Sainkar S R查看详情 2000(05) 8.Kumar A;Mandale A B;Sastry Sequential electrostatic assembly of amine-derivatized gold and carboxylic acid-derivatized silver colloidal particles on glass substrates[外文期刊] 2000(17) 9.Cheng L;Dong S J查看详情 2000 10.周延秀;朱果逸;汪尔康查看详情 1994(03) 11.Liu Z L;Wang X D;Wu H Y查看详情[外文期刊] 2005 12.Tang Z Y;Liu S Q;Dong S J查看详情 2001 13.曹楚南;张鉴清电化学阻抗谱导论 2002 14.阮北;鲁彬;童汝亭自组装巯基环肽单层膜修饰金电极电化学行为的研究[期刊论文]-J Hebei Normal University Natural Science Edition 2003(05) 15.孙向英;翁文婷荧光性自组装双层膜的制备及其性能研究[期刊论文]-Chemical Journal of Chinese Universities 2005(06) 16.Lu M;Li X H;Yu B Z查看详情[外文期刊] 2002 本文读者也读过(2条) 1.夏立新.宫科.汪舰.康笑博.佟胜睿.刘广业.XIA Li-Xin.GONG Ke.WANG Jian.KANG Xiao-Bo.TONG Sheng-Rui. LIU Guang-Ye用简便方法组装二维模板银纳米阵列[期刊论文]-化学学报2007,65(21) 2.吕桂琴.姚爱丽.郑传明.L(U) Gui-qin.YAO Ai-li.ZHENG Chuan-ming MPA包覆的银纳米粒子修饰电极制备和电化学表征[期刊论文]-北京理工大学学报2006,26(10) 引证文献(12条) 1.王耀先.贺国旭.张秋霞.王香.胡中爱铝基氪化铝模板制备Ag纳米线及其电化学性质[期刊论文]-化工新型材料2013(1) 2.周闻云.陈艳玲.韩清.贾玉萍抗坏血酸在纳米银DNA修饰电极上的电化学行为研究[期刊论文]-分析科学学报

储氢材料的储氢原理与研究现状

储氢材料的储氢原理与研究现状 氢能,即氢气中所含有的能量。具有环境友好、资源丰富、热值高、燃烧性能好、潜在经济效益高等特点[2]。目前,能源危机和环境危机日益严重。许多国家都在加紧部署、实施氢能战略,如美国针对运输机械的“Freedom CAR”计划和针对规模制氢的“Future Gen”计划,日本的“New Sunshine”计划及“We-NET”系统,欧洲的“Framework”计划中关于氢能科技的投人也呈现指数上升趋势[3]。但是,氢能的使用至今未能商业化,主要的制约因素就是存储问题难以解决。因此,氢能的利用和研究成为是当今科学研究的热点之一。而寻找性能优越、安全性高、价格低廉、环保的储氢材料则成为氢能研究的关键。 目前,氢可以以高压气态液态、金属氢化物、有机氢化物和物理化学吸附等形式储存。高压气态液态[4]储氢发展的历史 较早,是比较传统而成熟的方法,无需任何材料做载体,只需耐压或绝热的容器就行,但是储氢效率很低,加压到15MPa时质量储氢密度不超过3 %。而且存在很大的安全隐患,成本也很高。 金属氢化物[5-7]储氢开始于1967年,Reilly等报道Mg2Cu能大量储存氢气,接着1970年菲利浦公司报道LaNi5在室温下能可逆吸储与释放氢气,到1984年Willims制出镍氢化物电池,掀起稀土基储氢材料的开发热潮[8-9]。金属氢化物储氢的原理是氢原子进入金属价键结构形成氢化物。有稀土镧镍、钛铁合金、镁系合金、钒、铌、锆等多元素系合金。具体有NaH-Al-Ti、 Li3N-LiNH2、MgB2-LiH、MgH2-Cr2O3及Ni(Cu,Rh)-Cr-FeO x等物质,

储氢的各种材料

一、前言 随着社会的发展,环境保护问题已经越来越为人们所重视。酸雨、温室效应、城市热岛效应等等 或初露倪端,或已对人类造成巨大的危害,这些环保问题的产生在很大程度上与人类大量使用化石能 源有关。同时,由于能源消耗量的迅猛增加,化石能源将不能满足经济高速发展的需求,需要开发新 的能源。在我国开发清洁的新能源体系更具有重要意义。 氢可以地球上近于无限的水为原料来制备,其燃烧产物也是水,具有零污染的优点,有望在石油中国论文联盟https://www.360docs.net/doc/037369066.html, 时代末期成为一种主要的二次能源。氢能技术的发展,已在航天技术中得到了成功的应用。 氢是一种危险,易燃易爆的气体,在使用中必须保证安全,因此,一种安全、高能量密度(包括体积能量密度和重量能量密度)、低成本、使用寿命长的氢储、输技术的应用需求已越来越迫切。 二、目前主要的储氢方式 近年来研究较多的储氢方式有:(1)金属氢化物储氢;(2)液化储氢;(3)吸附储氢;(4)压缩储氢。 2.1金属氢化物储氢 氢和氢化金属之间可以进行可逆反应,当外界有热量加给氢化物时,它就分解为氢化金属并释放 出氢气。用来储氢的金属大多是由多种元素构成的合金,目前世界上研究成功的合金大致分为:(1)稀土镧镍,每公斤镧镍合金可储氢153L;(2)铁钛合金,储氢量大,价格低月在常温常压下释放氢;(3)镁系合金,是吸氢量最大的元素,但需要在287℃条件下才能释放氢,而且吸收氢十分缓慢;(4)钒、铌、铅等多元素系,这些金属本身是稀贵金属,因此只适用于某 些特殊场合。 与其它储氢方式相比,金属氢化物储氢具有压力平稳,充氢简单、方便、安全等优点,单位体积贮氢的密度,是相同温度、压力条件下气态氢的1000倍。该储氢方式存在的问题为在大规模应用中如 何提高储氢材料的储氢量和降低材料成本,节约贵重金属。国际能源机构确定的未来新型储素材料的标准为储氢量应大于5Wt%,并且能在温和条件下吸放氢。根据这一标准,目前的储氢合金大多尚不能满足这一性能要求。 2.2液化储氢 将氢气冷却到-253℃时氢气即可液化。液氢储存方式的质量能量密度最大,是一种轻巧紧凑的方式。但氢气液化成本高,能量损失大(氢液化所需能量为液化氢燃烧产热额的30%),且存在蒸发损 失。液氢贮存工艺首先用于宇航中,但需要极好的绝热装置来隔热,才能防止液态氢不会沸腾汽化, 导致液体贮存箱非常庞大。 2.3吸附储氢 C.CarPetis和W.Peschka是首先提出在低温条件下氢气能够在活性炭中吸附储存的两位学者。他们提出可以考虑将低温吸附刘运用到大型氢气储存中,并研究得到了在温度为-195℃和-208℃,压力为0-4.15MPa时,氢在多种活性炭上的吸附等温线:压力为4.2MPa 时,氢气在活性炭上的吸附容量分别可以达到 6.8wt%和 8.2wt%在果等温膨胀到0.2MPa,则吸附容量为4.2wt%和5.2wt%。 在一个最近的研究中,Hynek在27℃和-83℃条件下测试了一系列吸附剂,如活性炭、碳黑、碳气凝胶 以及碳分子筛等。测试结果为:在0-20MPa压力范围内,随着压力的增大,吸附剂的储氢量只有少 量的增加。 目前吸附储氢材料研究的热点是碳纳米材料。由于碳纳米材料中独特的晶格排列结构,其储氢数量大大的高过了传统的吸附储氢材料。碳纳米管产生一些带有斜口形状的层板,层

纳米材料修饰电极

A highly sensitive hydrogen peroxide amperometric sensor based onMnO2-modi?ed vertically aligned multiwalled carbon nanotubes,Analytica Chimica Acta,2010 MnO2-多臂碳纳米管 Cu电极 Gold nanoparticles mediate the assembly of manganese dioxide nanoparticles for H2O2 amperometric sensing,Electrochimica Acta,2010 MnO2–AuNP/ GCE H2O2电流传感 器 A novel nonenzymatic hydrogen peroxide sensor based on MnO2/graphene oxide Nanocomposite,Talanta,2010 GO/MnO2/ GCE(氧化 石墨烯) H2O2电流传感 器 Electrochemical investigation of MnO2 electrode material for supercapacitors,ScienceDirect,2011 MnO2泡沫镍电极MnO2电活性物 质作为超级电容 材料 Facile synthesis of novel MnO2 hierarchical nanostructures and their application to nitrite sensing,Sensors and Actuators B: Chemical,2009 MnO2/QPVP-Os/GCE (联吡啶锇取代的聚乙 烯吡啶) 亚硝酸盐传感器 Preparation of MnO2/graphene composite as electrode material for supercapacitors,J Mater Sci ,2011 MnO2/grapheme(石墨 烯) 超级电容器 Hydrogen peroxide sensor based on glassy carbon electrode modified with β-manganese dioxide nanorods,Microchim Acta (2011) β-MnO nanorods/GCE 。 H2O2电化学传 感器 Mn3O4 Graphene Hybrid as a High-Capacity Anode Material for Lithium Ion Batteries,American Chemical Societ,2010 Mn3O4/RGO(还原石墨 电极) 锂离子电池阳极 材料 Non-enzymatic electrochemical CuO nano?owers sensor for hydrogen peroxide detection,Talanta,2010 CuO/Cu箔H2O2电流传感 器(无酶) Synthesis of CuO nanostructures and their application for nonenzymatic glucose sensing,Sensors and Actuators B: Chemical,2010 CuO以碳为基底做成电 极 葡萄糖传感器 (无酶) A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles-modi?ed carbon nanotube electrode,Biosensors and Bioelectronics,2010 CuO/MWCNTs/Cu电极葡萄糖传感器 (无酶) An improved sensitivity nonenzymatic glucose biosensor based on a CuxO modi?ed electrode,Biosensors and Bioelectronics,2010 CuxO/Cu箔葡萄糖传感器 (无酶) Synthesis of CuO nanoflower and its application as a H2O2 sensor,Bull. Mater. Sci,2010 CuO NFS/Nafion-Au电 极 H2O2电流传感 器(无酶)

锂离子电池纳米电极材料

锂离子电池纳米电极材料 摘要:纳米材料因为其具有尺寸小、比表面积大等特点,在锂离子电池电极材料的研究中倍受人民关注。使用纳米电极材料之后锂离子电池容量明显比传统的块体材料提高很多,然而纳米材料的使用也带来了相应的问题。本文主要讨论纳米材料在锂离子电池电极材料上的应用,分析其优缺点和改进方法,并对未来锂离子电池电极材料做出了展望。 关键词:纳米材料,锂离子电池, 1.锂离子电池原理和结构 作电压与重量能量密度优于常用的镍镉电池(Ni/Cd)与Ni/MH电池,又无记忆效应及环保问题(锂离子电池的金属含量最低),因此成为目前商业开发二次电池的主流;还以其薄形化及形状有高度的可塑性等特点,因此符合电子产品轻、薄、短、小的要求,所以备受各国科学家及电池业的重视,发展极快。 锂离子电池被人们称为“绿色环保能源”和“跨世纪的能源革命”。锂离子电池是照相机、电子手表、计算器、各种具有储存功能的电子器件或装置的理想电源。其结构如下图所示: 图1. 锂离子电池的结构

锂离子电池由正负电极、电解质、隔膜和外部控制电路组成。所以研究锂离子电池材料包括:电极材料、电解质材料和隔膜材料。 锂离子电池工作原理如下[1]: 图2. 锂离子电池工作原理 正极反应:LiCoO2→CoO2+Li++e 负极反应:Li++e+C6→LiC6 电池反应:LiCoO2+C6→CoO2+ LiC6 放电时:锂离子由负极中脱嵌,通过电解质和隔膜,重新嵌入到正极中。充电时:锂离子从正极中脱嵌,通过电解质和隔膜,嵌入到负极中。 2.纳米电极材料的优缺点 锂离子电池纳米电极存在一些潜在的优缺点。 优点:(i)更好地释放锂嵌入和脱嵌过程中的应力,提高循环寿命;(ii)可发生在块体材料中不可能出现的反应;(iii)更高的电极/电解液接触面积提高了充/放电速率;(iv)短的电子输运路径(允许在低电导或高功率下使用);(v)短的锂离子传输路径(允许在低锂离子传导介质或高功率下使用)。 缺点:(i)高比表面积带来的不可预期的电极/电解液反应增加,导致自放电现象,差的循环性能及寿命;(ii)劣等的颗粒包装技术使其体积能量密度很低,除非开发出一种特殊的压缩工艺,否则会限制它的应用;(iii)电极合成过程可能会更加复杂。

纳米铂

纳米铂-L半胱氨酸修饰玻碳电极对 对苯二酚的检测研究 姓名:陈盼盼学号:201004034032 班级:化学一、文献综述 化学工业对人类社会和物质文明做出了重大贡献,人们在享受现代科学与技术给人们带来巨大的便利和快乐的同时,也逐渐意识到人类未来面临的巨大生存危机和困难。20世纪,人们逐步认识化学品的不当生产和使用会对人的健康、社区环境、生态环境产生危害性。据统计,世界每年生产的人工合成有毒化合物约50万种,共400万t,所有这些物质,近一半留在大气江河、湖、海内,另外每年还有将近18万t的铅和磷,3000万t的汞和各种有毒重金属流入水体内,200万t石油流进海洋。中国化学工业排放的废水、废气和固体废物分别占全国工业排放总量的22.5%、7.82%和5.93%,造成环境严重恶化,直接危害人类,又破坏生物圈,长期的影响着人类的生存。 对苯二酚,又名氢醌.化学名1,4-苯二酚,英文名 1,4-Dihydroxybenzene ; Hydroquinone。对苯二酚为白色针状结晶,分子式C6H4(OH)2,分子量110.11,比重1.332,熔点172℃,沸点286℃,闪点165℃,溶于水、乙醇及乙醚,微溶于苯。可燃。自燃点516℃。长期接触对二苯酚蒸气、粉尘或烟雾可刺激皮肤、粘膜,并引起眼的水晶体混浊。操作现场空气中最高容许浓度2mg/m3。 对苯二酚是一种重要的化工原料且应用广泛【1】主要用于显影剂、蒽醌染料、偶氮染料、合成氨助溶剂、橡胶防老剂、阻聚剂、涂料和

香精的稳定剂、抗氧剂等。对苯二酚因具有毒性,而且在自然条件下,不易降解,对人体环境有较大的危害, 因此受到人们的普遍关注,但其微量不容易不检测出来,因而需要更加灵敏的方法来检测目前,微量对二苯酚的测定方法有荧光谱法【2】、薄层色谱法【3】高效液相色谱法【4】动力学光度法【5】因为对苯二酚具有电学活性,可用电化学方法测定其含量,因此用选择性好、灵敏度有高的化学修饰电极测量对对苯二酚已有报道【6-7】,但是因为修饰过程复杂,干扰过多,灵敏度等问题。所以要设计更好的修饰方法来对微量对苯二酚的检测。 玻碳电极,是电化学研究中使用最为频繁的碳材料基础电极【8】。它的表面具有多变的性质,极易受实验条件的影响而发生变化。玻碳电极在应用与电化学研究时,在每次试验前需要对电极进行前处理,以改善其电化学相应信号的重现性【8】。目前,世界上几乎所有的实验室,对玻碳电极最为常采用的的前处理程序都是先在Al2O3磨料浆中打磨电极,随后在超声水浴中清洗。但这样的处理方法再重现性上不尽人意。因次,在这里我们要进行电化学活化以此来满足电分析实验室所需的各种高要求,各种有效的电化学活化方法均采用一个叫高阳极极化电位。电化学活化既可以在酸性、中性溶液中【9】也可以在碱性溶液中【10】,动力学研究表明活化电极的电子传导性质的改善可能以表面的亲水性【11】、清洁度【12】、含氧基团【13】等因素有关。 纳米材料具有表面效应【14】、体积效应【15】和介电限域效应登

聚吡咯纳米阵列电极的光电化学

物理化学学报(Wuli Huaxue Xuebao) March Acta Phys.鄄Chim.Sin.,2006,22(3):261~264 聚吡咯纳米阵列电极的光电化学 刘玲赵尧敏杨洁赵崇军江志裕* (复旦大学化学系,分子催化和创新材料上海重点实验室,上海200433) 摘要以多孔的铝阳极氧化膜(AAO)为模板制备了直径约为80nm聚吡咯(PPy)纳米线的阵列电极,并研究了它的光电化学响应.结果表明,在电极电位低于-0.1V(vs Ag/AgCl)时出现的阴极光电流是由聚吡咯纳米线的p型半导体性质引起的,其平带电位为-0.217V.聚吡咯纳米线的长度对光电流的影响较大,最佳长度为42nm.这是因为在很短的聚吡咯纳米线阵列中PPy太少,产生的光电流弱,而在过长的聚吡咯纳米线阵列中光生电子在到达电极基底前易于与光生空穴复合而消失.聚吡咯纳米线有可能作为纳米光电器件用于未来微器件系统. 关键词:聚吡咯,阳极氧化铝膜,纳米线阵列,光电化学 中图分类号:O646 Photoeletrochemical Behavior of Polypyrrole Nanofiber Array Electrodes LIU,Ling ZHAO,Yao?Min YANG,Jie ZHAO,Chong?Jun JIANG,Zhi?Yu* (Department of Chemistry,Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University,Shanghai200433,P.R.China) Abstract Polypyrrole(PPy)nano?fiber array electrodes were fabricated by electrochemical deposition of PPy in the pores of anodic aluminium oxide(AAO)templates.The photocurrent appeared at the potential below-0.1V(vs Ag/AgCl) was caused by the p?type semiconductor properties of PPy material.Its flat?band potential E fb was determined as-0.217 V(vs Ag/AgCl).The photocurrent of PPy nano?fiber array electrode varied with the length of the PPy nanofibers.For very thin PPy nano?fiber array the photocurrent was small.But if the arrays were too thick the photocurrent was also small because the photo?induced electrons might recombine with photo?induced holes in the film before reaching the back contact.The optimum thickness was42nm.The PPy nano?fiber devices might be used as nano photo?electronic device in the future. Keywords:Polypyrrole,Anodic aluminium oxide membrane,Nano?fiber arrays,Photoelectrochemistry 聚吡咯(PPy)是一种重要的导电聚合物.由于其在水溶液或有机电解质中具有良好的充放电性能,可用作化学电源、传感器的电极材料,因此其电化学性能受到广泛的关注[1?4].在阳极极化时溶液中的阴离子可掺入聚吡咯,使材料的导电性增加,而在阴极极化时随着阴离子的脱出,聚吡咯的电阻明显增加.通过聚吡咯膜的光电化学研究,已经证明在较负的电极电位区间聚吡咯在水溶液或有机溶液中都可以测到阴极光电流,而且其强度随电极电位的负移而增大.光电化学过程中涉及光致阴离子脱掺杂和阳离子掺杂过程的发生.该光电流是由于PPy膜的p型半导体性质引起的[5?6].在含高浓度支持电解质和较小阳离子(Li+和Na+)的溶液中得到的光电流信号更强.Miquelino等[5]观察到在还原态时PPy膜呈现阴极光电流,而在导电态时则为阳极光电流,并且采用红外光时得到的信号更强.从研究光 [Article]https://www.360docs.net/doc/037369066.html, Received:July26,2005;Revised:September20,2005.*Correspondent,E?mail:zyjiang@https://www.360docs.net/doc/037369066.html,;Tel:+8621?65642404. 国家自然科学基金(20333040),复旦大学研究生创新基金资助项目 鬁Editorial office of Acta Physico?Chimica Sinica 261

纳米储氢材料原理及示意图

Air-stable magnesium nanocomposites provide rapid and high-capacity hydrogen storage without using heavy-metal catalysts Ki-Joon Jeon 1?,Hoi Ri Moon 2??,Anne M.Ruminski 2,Bin Jiang 3,Christian Kisielowski 4,Rizia Bardhan 2and Jeffrey J.Urban 2* Hydrogen is a promising alternative energy carrier that can potentially facilitate the transition from fossil fuels to sources of clean energy because of its prominent advantages such as high energy density (142MJ kg ?1;ref.1),great variety of potential sources (for example water,biomass,organic matter),light weight,and low environmental impact (water is the sole combustion product).However,there remains a challenge to produce a material capable of simultaneously op-timizing two con?icting criteria—absorbing hydrogen strongly enough to form a stable thermodynamic state,but weakly enough to release it on-demand with a small temperature rise.Many materials under development,including metal–organic frameworks 2,nanoporous polymers 3,and other carbon-based materials 4,physisorb only a small amount of hydrogen (typ-ically 1–2wt%)at room temperature.Metal hydrides were traditionally thought to be unsuitable materials because of their high bond formation enthalpies (for example MgH 2has a H f ~75kJ mol ?1),thus requiring unacceptably high release temperatures 5resulting in low energy ef?ciency.However,recent theoretical calculations 6,7and metal-catalysed thin-?lm studies 8have shown that microstructuring of these materials can enhance the kinetics by decreasing diffusion path lengths for hydrogen and decreasing the required thickness of the poorly permeable hydride layer that forms during absorption.Here,we report the synthesis of an air-stable composite ma-terial that consists of metallic Mg nanocrystals (NCs)in a gas-barrier polymer matrix that enables both the storage of a high density of hydrogen (up to 6wt%of Mg,4wt%for the composite)and rapid kinetics (loading in <30min at 200?C).Moreover,nanostructuring of the Mg provides rapid storage kinetics without using expensive heavy-metal catalysts. There have been various efforts to synthesize nanosized magnesium,such as ball-milling 9,sonoelectrochemistry 10,gas-phase condensation 11and infiltration of nanoporous carbon with molten magnesium 12.However,these approaches remain limited by inhomogeneous size distributions and high reactivity toward oxygen.Our synthesis for air-stable alkaline earth metal NC/polymer composites consists of a one-pot reduction reaction of an organometallic Mg 2+precursor in the presence of a soluble organic polymer chosen for its hydrogen gas selectivity (Fig.1).The Mg NCs/PMMA nanocomposites were synthesized at room 1Environmental Energy T echnologies Division,Lawrence Berkeley National Laboratory,Berkeley,California 94720,USA,2The Molecular Foundry,Material Science Division,Lawrence Berkeley National Laboratory,Berkeley,California 94720,USA,3FEI Company,NE Dawson Creek Dr.,Hillsboro,Oregon,97124,USA,4National Center for Electron Microscopy and Helios SERC,Lawrence Berkeley National Laboratory,Berkeley,California 94720,USA.?These authors contributed equally to this work.?Present address:Interdisciplinary School of Green Energy,Ulsan National Institute of Science and T echnology (UNIST),Ulsan 689-798,Korea.*e-mail:jjurban@https://www.360docs.net/doc/037369066.html,. Mg 2+ + Li Lithium naphthalide Bis(cyclopentadienyl)- magnesium Mg/PMMA nanocomposites b a H 2 Mg nanoparticle Organic polymer with selective gas permeability PMMA THF H 2 H 2O O 2 Formation of MgH 2 Figure 1|Mg NCs in a gas-barrier polymer matrix.a ,Schematic of hydrogen storage composite material:high-capacity Mg NCs are encapsulated by a selectively gas-permeable polymer.b ,Synthetic approach to formation of Mg NCs/PMMA nanocomposites. temperature from a homogeneous tetrahydrofuran (THF)solution containing the following dissolved components:the organometallic precursor bis(cyclopentadienyl)magnesium (Cp 2Mg),the reduc-ing agent lithium naphthalide,and the gas-selective polymer poly(methyl methacrylate)(PMMA).Mg nanocrystals are then nucleated and grown in this solution by means of a burst-nucleation and growth mechanism 13in which lithium naphthalide reduces the organometallic precursor in the presence of a capping ligand (the soluble PMMA (M w =120,000)acts as a capping ligand for the Mg nanocrystals)14.Transmission electron microscopy (TEM)analysis of our reaction mixture before addition of reductant,immediately thereafter,and at later stages of the growth (Supplementary Fig.S1)further support this model.

【CN110060875A】用于超级电容器的Co基纳米片阵列电极及其制备方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910356369.9 (22)申请日 2019.04.29 (71)申请人 南京工业大学 地址 211899 江苏省南京市浦口区浦珠南 路30号 (72)发明人 房贞兰 赵丽娜 刘美丽 徐宜秀  陈宝军 张兰天 袁小云 鞠强  (74)专利代理机构 西安中科汇知识产权代理有 限公司 61254 代理人 刘玲玲 (51)Int.Cl. H01G 11/24(2013.01) H01G 11/30(2013.01) H01G 11/86(2013.01) (54)发明名称用于超级电容器的Co基纳米片阵列电极及其制备方法(57)摘要本发明的一种用于超级电容器的Co基纳米片阵列电极及其制备方法,其特征在于,以Co (NO 3)2·6H 2O和1,4-萘二甲酸为反应原料,N,N -二甲基甲酰胺为溶剂,三乙胺为表面活性剂,通过一步水热法,制备得到用于超级电容器的Co基纳米片阵列电极。本发明的有益之处在于,本发明提供的一种用于超级电容器的Co基纳米片阵列电极及其制备方法具有以下优势:原料来源广,制备成本低;制备工艺简单、成本低、效率高;产品电容性能、稳定性能优越;产品具有有序的层状结构,用作超级电容器电极具有较高的可逆比电容、优异的倍率性能和稳定的循环性,具有 巨大的商业化应用前景。权利要求书1页 说明书4页 附图4页CN 110060875 A 2019.07.26 C N 110060875 A

权 利 要 求 书1/1页CN 110060875 A 1.一种用于超级电容器的Co基纳米片阵列电极的制备方法,其特征在于,包括以下步骤: (1)将碳布裁成1cm×2cm的长方形碳布块,之后使用水:乙醇:丙酮=1:1:1的混合液超声清洗,之后烘干过夜,称量; (2)将三乙胺溶于N,N-二甲基甲酰胺中,搅拌得到混合均匀的混合溶液A,并在搅拌过程中放入经步骤(1)处理后的所述碳布块; (3)称取Co(NO3)2·6H2O和1,4-萘二甲酸溶,放入所述混合溶液A中,继续搅拌得到混合溶液B; (4)将所述混合溶液B连同里面的所述碳布块一起转移到20mL的水热反应釜中,之后将所述水热反应釜放置于烘箱中,缓慢升温反应; (5)反应结束后,用去离子水和乙醇冲洗所述碳布块,然后烘干; (6)使用前称量所述碳布块,以确定用于超级电容器的Co基纳米片阵列电极的有效质量。 2.根据权利要求1所述的一种用于超级电容器的Co基纳米片阵列电极的制备方法,其特征在于,步骤(2)中所述三乙胺和N,N-二甲基甲酰胺的用量比例为1mg:1mL,搅拌时长为1h。 3.根据权利要求1所述的一种用于超级电容器的Co基纳米片阵列电极的制备方法,其特征在于,步骤(3)中所述Co(NO3)2·6H2O和1,4-萘二甲酸的用量质量比为4:3。 4.根据权利要求1所述的一种用于超级电容器的Co基纳米片阵列电极的制备方法,其特征在于,步骤(4)中所述水热反应釜放置于烘箱中缓慢升温反应过程控制的条件为:所述烘箱温度在30min内逐渐从室温升至120℃,在120℃条件下保持3d,之后以4℃·h-1的速度冷却至室温。 5.根据权利要求1所述的一种用于超级电容器的Co基纳米片阵列电极的制备方法,其特征在于,步骤(5)中所述烘干的条件为80℃过夜充分烘干。 6.一种用于超级电容器的Co基纳米片阵列电极,其特征在于,所述用于超级电容器的Co基纳米片阵列电极采用权利要求1-5任意一项所述的一种用于超级电容器的Co基纳米片阵列电极的制备方法制备得到。 7.根据权利要求6所述的一种用于超级电容器的Co基纳米片阵列电极,其特征在于,所述用于超级电容器的Co基纳米片阵列电极的材料表面为六边形二维层状垂直纳米结构。 8.根据权利要求7所述的一种用于超级电容器的Co基纳米片阵列电极,其特征在于,所述用于超级电容器的Co基纳米片阵列电极可用作超级电容器柔性电极,且比电容可达844Fg-1。 2

纳米材料修饰电极在电化学分析中的应用研究进展

纳米材料修饰电极在电化学分析中的应用研究进展 作者:陈丽娟, CHEN Li-juan 作者单位:福建交通职业技术学院,安全技术与环境工程系,福建,福州,350007 刊名: 化学研究 英文刊名:CHEMICAL RESEARCH 年,卷(期):2010,21(5) 被引用次数:1次 参考文献(40条) 1.Nian B L;Jun H P;Kyungsoon P Characterization and electrocatalytic properties of Prussian blue electrochemically deposited on nano-Au/PAMAM dendrimer-modified gold electrode[外文期刊] 2008(10) 2.Lu W;Jin Y;Wang G Enhanced photoelectrochemical method for linear DNA hybridization detection using Au-nanopaticle labeled DNA as probe onto titanium dioxide electrode 2008(02) 3.Lu X X;Bai H P;Ping H A reagentless amperometric immunosensor for α-1-fetoprotein based on gold nanowires and ZnO nanorods modified electrode[外文期刊] 2008(02) 4.黄海平;张玉梅;孙旦子基于聚苯胺-纳米金修饰玻碳电极的研制及其对过氧化氢的催化研究[期刊论文]-分析化学 2007(11) 5.Lin L;Qiu P H;Cao X N Colloidal silver nanoparticles modified electrode and its application to the electroanalysis of cytochrome c[外文期刊] 2008(16) 6.林丽;仇佩虹;杨丽纳米银粒子修饰电极法测定血红蛋白[期刊论文]-分析化学 2006(01) 7.Maiyalagan T Synthesis,characterization and electrocatalytic activity of silver nanorods towards the reduction of benzyl chloride[外文期刊] 2008(02) 8.姚爱丽;吕桂琴;胡长文银纳米修饰电极的制备及电化学行为[期刊论文]-无机化学学报 2006(22) 9.邵玉艳;尹鸽平;王家钧Pt/碳纳米管电极的电化学稳定性[期刊论文]-催化学报 2006(03) 10.Lei B;Xue J J;Qin L Preparation and electrocatalytic activities of Pt-TiO2 nanotubes electrode[期刊论文]-J Mater Sci Engin 2007(06) 11.Ding H Y;Zhou Y;Zhang S J Preparation of nano-copper modified glassy carbon electrode and its catalytic oxidation to glucose[期刊论文]-Chin J Analyt Chem 2008(06) 12.周庆美;谢青季纳米金-壳聚糖-血红蛋白/普鲁士蓝/金电极检测过氧化氢[期刊论文]-化学传感器 2008(01) 13.李正;赵燕荣;晏青峰金核-铂壳纳米修饰电极在酸性溶液中对甲醛的电催化氧化[期刊论文]-光谱实验室 2008(02) 14.Lo P H;Kumar S A;Chen S M Amperometric determination of H2O2 at nano-TiO2/DNA/ thionin nanocomposite modified electrode 2008(02) 15.Lu X X;Bai H P;Ping H A reagentless amperometric immunosensor for α-1-fetoprotein based on gold nanowires and ZnO nanorods modified electrode[外文期刊] 2008(02) 16.Le W Z;Liu Y Q Preparation of nano-copper oxide modified glassy carbon electrode by a novel film plating/potential cycling method and its characterization[外文期刊] 2009(01) 17.Du D;Ye X P;Zhang J D Stripping voltammetric analysis of organophosphate pesticides based on solid-phase extraction at zirconia nanoparticles modified electrode[外文期刊] 2008(05) 18.Mohammad A M;Awad M I;El-Deab M S Electrocatalysis by nanoparticles:optimization of the loading

相关文档
最新文档